
 

 

 

  

Abstract—This paper presents design of nonlinear feedback 

controllers for two different macroscopic models for two-

dimensional pedestrian dynamics. The models presented 

here are based on the laws of conservation of mass and 

momentum. These models have been developed by 

extending one-dimension macroscopic vehicle traffic flow 

models that use two-coupled partial deferential equations 

(PDEs). These models modify the vehicle traffic models so 

that bi-directional controlled flow is possible. Both models 

satisfy the conservation principle and are classified as 

nonlinear, time-dependent, hyperbolic PDE systems. The 

equations of motion in both cases are described by 

nonlinear partial differential equations. We address the 

feedback control problem for both models in the framework 

of partial differential equations. The objective is to 

synthesize nonlinear distributed feedback controllers that 

guarantee stability of a closed loop system.   

I. INTRODUCTION 

HE objective of this paper is to design feedback 

controllers and study their stability properties for an  

evacuation control system in two dimensions. The 

evacuation system we are proposing is for evacuating people 

from large halls and buildings. The hardware for the 

implementation is assumed to include sensors such as 

cameras that can calculate in real-time the traffic density as 

a function of space variables. It is also assumed that a 

method of indicating the desired speed and direction is 

available so that people can follow those for 

evacuation. One method that is implementable with the 

current available technologies is that of using light matrix 

on the ceiling. These can be turned on and off in a sequence 

to indicate how fast and in which direction people should 

move at different locations. This actuation could also be 

achieved by providing speakers that are local, i.e. they 

should not be too loud for all people to hear. They should 

only let people know close to the speakers where to move 

and how fast.  This way, different commands can be given 

at different locations. In either case, we can control the 

vector field of people flow in a continuous manner in space 

and time.   
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The dynamics that are used to model an evacuation 

system in this paper are based on traffic flow theory [1]. 

The evacuation system can be modeled like a traffic flow, 

which can be thought of as the flow of people on a building 

floor or a corridor. These models are based on the basic law 

of conservation. In case of an evacuation, the conservation 

can be stated as “total number of people is conserved in the 

system”. This kind of systems is distributed, that is both the 

state and control variables are distributed in time and space. 

The control objective is to design feedback controllers to 

remove people from the evacuation area by generating 

distributed control commands. 

There are two main approaches to modeling. One 

approach is microscopic [2] where each individual is taken 

into consideration and his behavior is expressed by a set of 

rules or an equation involving adjacent individuals. The 

other approach is macroscopic [3]. Here the overall 

behavior of the flow of people is considered. The area is 

treated as a series of sections within each of which the 

density and average velocity of people can be measured for 

a given time. The changes in these variables may then be 

described using partial differential equations. The models 

presented here are macroscopic where the dynamics are 

represented in terms of density, flow and speed.  

This paper uses two different macroscopic models for 

two-dimensional pedestrian movements.  These models 

have been developed by extending one-dimension 

macroscopic vehicle traffic flow models that use two-

coupled partial deferential equations. The coupled PDE 

equations provide conservation of continuity and movement 

(momentum). These models modify the vehicle traffic 

models so that bi-directional controlled flow is possible. 

One model is taken from [4], which is a macroscopic system 

model that is derived directly from a microscopic car-

following model. This model was selected based on its 

microscopic-to-macroscopic derivation property, which adds 

to the macroscopic model an important validation point. 

The other model, which is also a two-equation PDE system 

model is proposed by Al-nasur in [5]. This model is an 

expansion of the one-dimension vehicle traffic model by Aw 

and Rascle [6], and improved by Rascle [7]. The model does 

not have a direct micro-to-macro link, but it carries the 

desired anisotropic nature of traffic flow that the first model 
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also carries. This property is described as being the natural 

observed traffic flow behavior in which traffic flow 

movement is influenced by conditions from current and 

ahead locations only. This property is different from the 

isotropic property of fluids, where a fluid particle is 

influenced from all directions.  

There are two approaches to the design of feedback 

controllers for distributed systems. In the conventional 

approach, a lumped parameter model having finite 

dimensions approximates the distributed mathematical 

model. The controllers are designed based on the resulting 

linear or nonlinear ordinary differential equation model 

using known techniques available for such systems [8], [9]. 

This approach however has certain disadvantages. By 

neglecting infinite dimensional nature of original system, 

the design of controllers may result in instability even 

though the resulting finite dimensional system is stable 

using same controllers.  Moreover, properties like 

controllability and observability depend on the method of 

discretization used [10]. Thus in order to avoid errors 

introduced by spatial discretization it is desirable to 

formulate the control and stability problem directly in the 

framework of distributed model in form of partial 

differential equations. In this paper latter approach is used. 

Here we extend the feedback control design done in [11]. 

The evacuation model is presented in a partial differential 

equation framework. Design of controllers and stability 

analysis is performed using distributed setting. Sufficient 

conditions for Lyapunov stability for distributed control are 

also derived. 

II. MATHEMATICAL MODELS 

 In this section mathematical models of the crowd 

dynamics problem are presented. Both models are similar to 

the compressible fluid flow and are based on the principle of 

conservation. The dynamics are described by nonlinear 

hyperbolic partial differential equations. The models are 

macroscopic with the dynamics being represented in terms 

of density, flow and speed. As a result the system is 

distributed with all the parameters as functions of space and 

time. There are two PDEs that we use to model the control 

problem. The first is the equation of conservation of mass 

and the second is conservation of momentum. 

   We will discuss the models of a two-dimensional area 

of dimensions LL× . Let ( ) ( )LL ,0,0 ×=Ω  be a bounded, 

open subset of a two-dimensional Euclidean space 2R  and 

Ω∂  be its boundary. Let ),( txρ  denote the density of 

people as a function of position vector x  and time t . The 

vector 2ℜ⊂Ω∈x  is expressed in terms of its coordinates 

as
T

xxx ],[ 21= . Let ),(1 txq  and ),(2 txq  be the flows in 1x  

and 2x  directions respectively. The velocity vector fields 

associated with the flows are given as ),(1 txv  and ),(2 txv . 

The flux rates ),( txqi  in both directions are given as 

),(),(),( txvtxtxq ii ρ= with 2,1=i .For simplicity the 

arguments x  and t  are dropped from all dependent 

functions. 

A. Model 1 

 The first model is taken from [8]. The model there is 

classified as a nonlinear, time-varying hyperbolic system of 

two coupled partial differential equations that describe a 

macroscopic crowd flow in two-dimension space. The first 

equation is simply the conservation of continuity that keeps 

the mass (pedestrians) in conservation. This equation is 

coupled with a second equation that serves similar objective 

as the momentum equation in Navier-Stokes for 

compressible flows. Here it describes the motion in the 1x  

and 2x  for crowd flow. The model is derived from a 

microscopic car-following model. Therefore, it establishes a 

link between micro-to-macro models. The nature of this 

model is anisotropic, i.e. pedestrians respond to current and 

front conditions only. This way the model moves away from 

fluid flow models and gives a similar behavior to the one 

observed by crowds. 

In the first equation, the conservation of continuity which 

conserves density (pedestrians) will change according to the 

change in flow at the boundary endpoints only. The 

conservation equation is given by  
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The second set of equations represent the pedestrian motion 

dynamics and they are derived for 1x  and 2x  directions 

from the microscopic model. They are given by 
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Here ],[),( 2 ℜΩ∈ Htxρ  with ],[2 ℜΩH  being the infinite 

dimensional Hilbert space of two dimensional like vector 

function defined on domain Ω , whose spatial derivatives 

upto second order are square integrable with a 

specified 2L norm. 

],[),( 2 ℜΩ∈ Htxq , ],[)(0 ℜΩ∈ Hxρ , 2ℜ⊂Ω∈x and 

),0[ ∞∈t . For the rest of the paper it will be assumed that 
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the vector spaces are Banach spaces [12]. The velocities iV  

are the desired velocity functions  meant to mimic 

pedestrian behavior given by the velocity-density relation 

(6), and  
ρ

ρ
ρ

∂

∂ )(iV
is the traffic sound speed at which small 

traffic disturbances are propagated relative to the moving 

traffic stream. The relaxation term iS is added to the model 

to keep speed concentration in equilibrium and is given as 

τ

ρ ii

i

vV
S

−
=

)(
                                      (5) 

where τ is this process relaxation time.  In the above model 

iV  are the velocity-density functions that relate the desired 

pedestrian velocity to its density profile. Many relationships 

that describe this function can be found in [13]. In this 

model, we make use of Greenshield’s model [14] that 

assumes the velocity is a linearly decreasing function of 

density and it is given by  

               )1)(,()(
maxρ

ρ
ρ −= txvV fii                         (6) 

where ),( txv fi  is the free flow speed in ix  direction and 

maxρ  is the jam density which is the maximum number of 

people that could possibly fit a single cell. We have   

m

fii
txvV

ρρ
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                                 (7) 

Again, for the simplicity sake we drop all arguments from 

the functions.  Multiply (4) by ρ  and substitute for the 

product rules for terms
t
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Finally, the substitution of (1) results in the following form 

of the model 
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where  iŜ  is given as 

 fiii vFS =ˆ                                        (9) 
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Thus, the form for our model written in terms of density ρ  

and flow vectors iq   is as 
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B. Model2 

The second model has been proposed in [5]. Here we 

present a crowd dynamic model in 2-D space based on a 1-

D vehicle traffic flow model. The model does not closely 

follow fluids and gas-like models. In addition, it allows 

observed traffic conditions such as traffic flow with the flow 

in front, rather than with the flow that is upstream.  Hence, 

the model carries the desired anisotropic nature of traffic 

flow. 

 This model is also a nonlinear, time-varying 

hyperbolic system of two PDE’s. The first equation is the 

same conservation of continuity, but the second equation is 

different. In this model, a convective derivative is used 

instead of the space derivative for the pressure term. Due to 

this, traffic flow changes with respect to space and time, 

and not space only as in Payne [15] and Whitham [16] 

model.  Based on this modification, the second equation is 

given by 
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The pressure functions 1P  and 2P  are functions of density 

and velocity and are given by 
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Equation (14) is valid for 0>γ  and 1+> γρβ m . We 

modified these functions to serve two main purposes; first is 

to maintain the increasing property of these functions with 

respect to density as in the 1-D model, second, to be able to 

simulate bi-directional pedestrian motion and in the same 

time preserve the model anisotropic property. We rewrite 

the system in (13) in the following conservation form 
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The functions 1S  and 2S  given as before by (5). Using (6) 

we can write the above set of equations as 
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where  iP̂  and iŝ   are given as 
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Thus the form for our model written in terms of density ρ  

and flow vectors iq   is as 
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III. FEEDBACK CONTROL DESIGN 

 

        In this section we design feed back controllers for the 

two-equation models of the evacuation system using 

backstepping approach adopted in [11]. The approach is 

similar in principle to feedback control by backstepping for 

ordinary differential equations [17].  

A. Control Model 1 

To formulate the control problem we need to choose a 

control variable. To do so we use Greenshield’s model to 

represent the relationship between traffic density and the 

velocity field given by (6). In this model we take free flow 

velocity vector fields fiv  as the distributed control variables 

denoted by ],[ ℜΩ∈ Hu i . If the density at a location is zero 

then the speed at that location will be the free flow speed.  

However, with the actuation system implemented, we can 

tell people to change the speed.  Also the traffic density 

affects the achievable speeds, therefore we choose 
ifv  as 

the control variable, thus giving us the following control 

model for system (11) and (12) 
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where the functions iF  are given by (10). To use the control 

design scheme in [11] we need to put the above control 

model in a standard form given by following 
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The modified control variables are given as 
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B. Control Model 2 

For this model (19)-(20) also use of free flow velocity as 

the control variable gives us the following control model 
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where the functions if  are given by (18). The above system 

of equations can be written as 
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with the modified control variables being 
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The control model (28)-(29) is similar to (23)-(24). We will 

use this standard form to design the feedback controllers for 

both models in next section.  

C. State Feedback Control Using Backstepping 

 Here we address the problem of synthesizing a 

distributed state feedback controller iu  that stabilizes origin 

( 0,0 == qρ ) of control systems (23)-(24) and (28)-(29). 
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We will use the standard form (23)-(24) for both models to 

design the feedback controllers. More specifically we 

consider control law 

( )qFu ii ,ρ=  

such that origin of closed loop dynamics is asymptotically 

stable. iF   is a nonlinear operator mapping ],[2 ℜΩH  

into ],[1 ℜΩH . First we design control law for equation (23) 

where iq   can be viewed as an input. We proceed to design 

a control law )(ρii Gq = to stabilize origin 0=ρ . iG  is a 

nonlinear operator mapping ],[2 ℜΩH  into ],[2 ℜΩH . By 

choosing the following control law  
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we can rewrite (23) as 
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which is the heat equation. We want to find the Lyapunov 

functional for (23) which will ensure that its origin of 

closed loop dynamics (32) is asymptotically stable. 

D. Stability analysis using Lyapunov 

 The stability problem is to establish sufficient 

conditions for which the origin of the closed loop dynamics 

(32) is exponentially stable. Within the framework of our 

system the definition of stability in terms of Lyapunov 

amounts to establishing conditions for which the null state 

of the linear system (32) is exponentially asymptotically 

stable with respect to the specified norm i.e.  ( ) 0
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→tρ  as 

∞→t . For our system we have chosen the following 2L  

norm defined by 
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Using the norm properties we can easily see that )(tV is a 

positive definite function. The time rate of change of )(tV  
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The first term vanishes by boundary condition (3). For the 

second integral we make use of Gagliardo-Nirenberg-

Sobolev Inequality [18]. The inequality as applied to our 

case states     
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where C  is a positive real number. Using (36) it can be 
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The rate of change of )(tV  can be thus be bounded by 
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−= kCβ . As long as 0>β , null state of closed loop 

system (32) is exponentially stable using control law (31).  

E. Control law  

 As we have already shown the origin of (32) is 

asymptotically exponentially stable and there exists a 

Lyapunov functional which ensures this stability. From the 

knowledge of this function we want to design a smooth 

feedback control to stabilize origin of the overall closed 

system for (23)-(24).  Rewriting (23) in closed loop form we 

have 
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Defining error variables )(ρiii Gqz −= , where the error 

variable ],[(2 ℜΩ∈ Hz i , result in the following modified 

dynamics 
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where 
t

G
uu i

ini
∂

∂
−=

)(ρ
, 2,1=i  are the new control 

variables. Now let us choose the Lyapunov functional for 

the overall system as 
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Ω+= dzdx
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2

2
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The time rate of change of this functional from [11] can be 

shown to be bounded by choosing the following control law 

    
i

i

iini
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zzku
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                          (40) 

This control law yields 

( ) ( )tVzktV
dt

tdV
a

a ββ 2ˆ)(
2

2
−=−−≤  

with 02ˆ >= βk . This shows that the origin for modified 
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system (37)-(38) is asymptotically exponentially stable. It 

can be proved from )(ρiii Gqz −=  that the origin for actual 

closed loop system (23) and (24) is also asymptotically 

exponential stable. Thus the feedback control law for the 

standard form of both the system is given by the following 

partial differential-integral equations: 

t

G
uu i

nii
∂

∂
+=

)(ρ
                              (41) 

with   
i

i

iini
x

z
zzku

∂

∂
−−=

− ρ1
�

.The actual control law iu  can 

be evaluated from (25) for model 1 and from (30) for model 

2. These control laws respectively result in the 

exponentially stability of closed loop dynamics for both 

models. 

IV. SIMULATION RESULTS 

In this section we show the simulation results for the 

closed loop dynamics for model 1 using controller (41). We 

have only included the plots for model 1 as the plots for 

model 2 are similar to these. We show the density profiles at 

different time instants. The solution is shown as contour 

plot snapshots in figure (1) and a mesh plot snapshots in 

figure (2). As is seen from plots density at every point in 

space is decreasing exponentially with time. 
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Fig.1: Snapshots of density contours at different time   intervals for closed loop 

dynamics for model 1.  
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Fig.2: Density plot snapshots at different time instants for cosed loop dynamics 

for model 1 
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