
 
 

 

  

Abstract— This paper deals with some new aspects of the 
well-known double pendulum experiment (sometimes also 
denoted as pendubot). It becomes challenging if it is made 
uncertain by adding suitable mechanic and electronic devices 
and if additionally the performance requirements are taken to 
the limit. It will be proposed how this can be achieved. The 
performance for the upward directed double pendulum is 
measured in terms of disturbance rejection properties. Several 
controllers are designed: pole placement, LQ, 2H , ∞H  and 
µ . They are compared with respect to their performance and 
robustness properties. The main performance limitation 
comes from additional high-frequency dynamics of the plant 
which are found by identification. Additionally, the dynamics 
of the actuator are made uncertain by adding a suitable elec-
tronic circuit at the input of the pwm amplifier. To handle this 
challenging situation, a µ  controller will be designed which 
has remarkable robustness and performance properties. In a 
further part of the experiment, a weight with a spring is 
mounted at the double pendulum. This leads to an oscillatory 
disturbance and moreover to a change of the dynamics of the 
plant so that excellent robustness properties of the controller 
are required. 

I. INTRODUCTION 
 

N In the last two decades, a tremendous progress con-
cerning controller design and analysis methods was 

made. For the students or practitioners working in indus-
tries the question arises which of these modern methods 
should be chosen and how they should be applied. A con-
vincing way to get familiar with the specific advantages 
and disadvantages of a method is to apply it to a suitable 
laboratory experiment. Even for a researcher such an ex-
periment is of great value because it puts him into a posi-
tion to compare his method with already existing ones. For 
this reason, there is a need for benchmark laboratory ex-
periments which on the one hand are easily accessible and 
on the other hand are difficult enough to characterize the 
specific properties of the applied design method. 
   The laboratory experiment under consideration deals with 
stabilization and disturbance rejection for an inverted dou-
ble pendulum. This problem is not new and there are vari-
ous papers dealing with it, compare for example [2], [3], 
and [4]. The difference from these papers is that we add a 
mechanical and an electrical uncertainty to the plant and 
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that we try to achieve maximum performance by the con-
troller. The performance will be measured in terms of re-
jecting a strong disturbance as good as possible. These hard 
requirements can not be fulfilled by "simple" controllers 
designed by pole placement or linear quadratic optimiza-
tion. It is necessary to synthesize sophisticated ∞H  or µ  
controllers to get a satisfactory result. A paper dealing with 
a similar intention for a simple pendulum is [5]. 
   In Sect. 2, we first describe the dynamics of the plant by 
using the Euler-Lagrange method. The dynamical quanti-
ties are the two deflection angles of the pendulum and the 
spring deflection. It will be found experimentally that there 
are additional high-frequency dynamics. Later, we will see 
that these dynamics play a key role for controller design 
when hard performance requirements are imposed.  
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 1.1:  Pendulum with spring and electronic unit with uncertainty 
 
   In Sect. 3, a pole placement, a LQ and a 2H  controller 
will be designed. All three controllers are capable to stabi-
lize the pendulum but their ability to reject a constant dis-
turbance at the plant input differs considerably. Perform-
ance limitations are the limited current and the additional 
high-frequency dynamics. The best controller is the 2H  
controller. In Sect. 4, a ∞H  controller design will be tried 
to obtain further improvements. By introducing a weight 
for the transfer function for the disturbance, considerably 
better disturbance rejection properties in comparision to the 

2H  controller can be achieved. Then we add further uncer-
tainty by implementing an all-pass before the pwm ampli-
fier. This degrades the performance of the ∞H  controller. 
Specifying an uncertainty model and using the D-K itera-
tion, it is possible to design a µ  controller which has ap-
proximately the same performance for the nominal plant as 
the ∞H  controller but whose performance is only mildly 
degraded by the electronic circuit.  
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   In the last part of the experiment, the constant disturbance 
is replaced by an oscillatory one which is realized by a 
moving mass which is mounted at a spring (Sect. 5). 
Strictly speaking, the additional spring-mass system is not a 
disturbance but a further uncertainty of the plant. Control-
ler design is done for the system without the spring and the 
spring is taken into account by choosing suitable weights. 
A comparable industrial situation arises for the Hubble 
space telescope: Here, the solar arrays cause structural vi-
brations of the telescope and have to be suppressed by the 
controller (cf. [6]).  

II. MATHEMATICAL MODEL OF THE PLANT 
Nonlinear pendulum dynamics. The dynamical quantities 
are the deflection angles ϕ  and ψ and the deflection z of 
the spring, cf. Fig. 2.1. In a complete rigorous approach, a 
forth variable would be needed, namely the angle α  which 
describes the lateral oscillations of the additional pendulum 
which is formed by the spring, the rod and the mass 0m . 
These oscillations are visible in the experiment but the ef-
fect on the double pendulum is very small if a motion of 
the double pendulum near a position where the rod is 
nearly horizontal is considered. Then the moment caused 
by the side motion depends on cosα  which is 1 in a first 
order approximation. If the dynamics are linearized, the 
side motion is completely decoupled from the rest of the 
pendulum and needs not to be considered for control pur-
poses. For this reason, we assume 0α = .  
   Let (cf. Fig. 2.1)  
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Define a generalized mass matrix by (with δ ψ ϕ= − ) 
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Then the kinetic energy and the potential energy are (with 
( )Tq zψ ϕ= as the vector of the generalized coordinates)  
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The friction torque about 1D  is fM ϕ , and the friction 
torque about 2D  is fM ψ . Both are the sum of viscous and 
Coulomb friction: 
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The motor induces a torque aM  about 1D . It can be writ-
ten as a a a a iM c i c k u k u= = =  where u  is the input  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Fig. 2.1: Dynamical quantities and constants for the double pendulum 
 
voltage of the pwm amplifier and where ,a ic k are con-
stants (and a ik c k= ). We denote the vector with the com-
ponents  0, 0, aM  also by aM . Let fM  be the vector 
with the components fM ψ , fM ϕ ,0. Define a matrix 

( , )C q q  and a vector ( )g q  by 
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   Fig. 2.2: Step response for the double pendulum (curve 1: measured     
                  signal, curve 2: simulated signal) 
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Then the Euler-Lagrange equation can be written in the 
form   

       ( ) ( , ) ( ) ( )r aM q q C q q q g q M q M+ + + = .      (2.1)                            
 
With this equation it is possible to build up a SIMULINK 
model. In the experiments, it runs in real-time in parallel to 
the hardware. Figure 2.2 shows the measured and simulated 
quantities for a step response. It can be seen from the figure 
that the simulation model is very accurate. 
 
Linear model of the plant. If no external torque is exerted 
on the pendulum, it has four equilibrium points 0 0( )ψ ϕ . 
We are interested in the equilibrium point where both links 
are directed upwards (the up-up position). It is a routine 
task to linearize (2.1) and to compute the transfer functions. 
For the up-up position and the double pendulum without 
spring, the transfer functions from u  to δ  and u  to ϕ  are 
(if friction is neglected) 
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(with 1Zω  close to 1ω  and 2Zω  close to 1ω ). Thus the 
plant has two real poles in the right half-plane and non-
minimum phase behavior. The transfer function from u  to 

)( Tϕδ  will be denoted by idG . 

Identified high-frequency dynamics of the plant. The 
simplest stabilizing controller for the double pendulum uses 
state feedback and can be designed by pole placement, for 
example. If (2.1) would exactly describe the full dynamic  

 

 

 

 

 
 
 
 
 
Fig. 2.3: Step response (left-hand figure) and response to a sinusoidal 
input with 12470 sω −= (right-hand figure). Curve 1: measured signal, 
curve 2: simulated signal 

of the plant, the only performance limitation would be 
caused by actuator saturation. Surprisingly, the real plant 
becomes unstable before the actuator runs into saturation 
and this behavior is not reflected in the mathematical model 
up to now. In the next section, we take a closer look at this 
instability. In any case, from this observation it can be con-
cluded that there must exist unmodeled high-frequency 
dynamics in the plant. One possible source might be the 
pwm amplifier. The pwm amplifier shows a behavior 
which is close to that of a 1PT  system with a very small 
time constant, namely 0.00035pwmT s= , but this time lag 
is not the explanation of the instability. 
   The goal is to find a mathematical model of this unknown 
part of the dynamics. The most convincing proof for the 
existence of unmodeled dynamics is found in this case by 
applying sinusoidal oscillations to the real plant and to 
compare the measured output with the simulated output. By 
this way, it can be seen that the real plant has a resonance 
peak at 2600 rad/s. At this frequency, the measured ampli-
tude is approximately 50dB larger than that predicted by 
the model. A second approach is to look at the step re-
sponses for a short time interval with a small sampling pe-
riod. The measured step response shows for some millisec-
onds an oscillatory behavior. The next step is to complete 
the ideal transfer function idG  by a transfer function such 
that the series combination approximately has the same 
behavior as the real plant. A good choice is 
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.            (2.3)                 

 
The numerical values are -1= 2600 sIω , =190Ik , and 

I 0.04d = . We denote these dynamics as identified high-
frequency dynamics (IdHFDyn). Thus the IdHFDyn con-
tribute a transfer functions with a pair of zeros and a pair of 
poles near to the imaginary axis. Figure 2.3 shows the 
simulated and measured responses of the plant to a step and 
a sinusoidal input. It should be noted that without the 
IdHFDyn, the response to a harmonic oscillation in Fig. 2.3 
would be close to zero. 

III. DESIGN OF A POLE PLACEMENT, A LQ AND A 2H  
CONTROLLER 

The main goal of the experiment is to design various con-
trollers and to compare their quality with respect to per-
formance and robustness. Since the main concern for the 
pendulum is stabilization, it is natural to measure perform-
ance by the ability of the controller to reject a disturbance. 
We start with a large constant disturbance and require that 
the disturbance has to be rejected as quickly as possible.  
 
Controller design by pole placement. The simplest con-
troller is designed by pole placement and feeds back the 
measured angles ,δ ϕ   and the rates ,δ ϕ . Since the rates 
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are not directly measured, they are obtained by using a dif-
ferentiator. Because we want to reject a constant distur-
bance without a stationary control error, an integrator is 
needed. The controller then can be written as 
 

2
31 2

1 0
01 02

1 1ˆ ˆ ˆ ˆˆ ( )
1 1

D D kT s T s
u k k

T s T s s
δ ϕ ϕ ϕ

+ +
= + + −

+ +
. 

 
   A natural choice for the closed-loop poles is to leave the 
stable poles as they are and to mirror the unstable poles at 
the imaginary axis. If a larger bandwidth is required, a pos-
sible choice for the closed-loop poles is  

1,2 1 3,4 2 5, , Is s sλω λω ω= − = − = −  
 

with a factor λ  and a number 0Iω > .  The pole 5s  corre-
sponds to the integrator. For 1λ ≥ , the Nyquist curve for 
such a controller with 01 02 0T T= =  has a perfect behav-
ior: It avoids a circle with center 1−  and radius 1. Thus, if 
robustness is measured by the Nyquist criterion, the closed-
loop system is very robust (cf. [3], Chap. 6.3). For 1λ < , 
the Nyquist curve comes closer to the point 1− . The 
bandwidth of the closed-loop system increases if λ  in-
creases. On the other hand, the control effort increases very 
quickly if λ  increases.  
   The two differentiators may be interpreted as reduced 
observers for the rates. The design parameters are the time 
constants 01T  and 02T . If they are very small, the control 
has a sharp peak at the beginning of the control action. If 
they increase, the closed-loop system gets at least one com-
plex conjugate pole pair with a possibly small damping. 
We choose 01 1DT Tγ=  and 02 2DT Tγ=  with a suitable 
number 1γ <  and Iω  equal to the minimum of 1ω  and 

2ω . The design parameters are now λ  and γ . A reason-
able choice is 1λ =  and 0.05γ = .  
   Surprisingly, with these choices the real closed-loop sys-
tem is unstable whereas the controller in the simulation 
works very well. This was the reason for seeking for addi-
tional high frequency dynamics. If the pendulum dynamics 
is completed by a suitable transfer function of the form 
(2.3), the closed-loop system becomes unstable in the simu-
lation, too. An acceptable controller is obtained for the 
choice 0.5λ =  and 0.05γ = . 
   An interesting situation occurs if the system is driven at 
the stability limit. Then it may occur that the linarized 
closed-loop system is unstable whereas the nonlinear sys-
tem is stable in the sense of Lyapunov, for the hardware as 
well as for the simulation! The control oscillates between 
the maximum possible values but the pendulum remains in 
the upward position. Figure 3.1 shows the measured and 
simulated quantities for such a case. 
 
LQ controller design.  Here, the output for controller de-
sign is ( )TC x r u . We choose   

2( 0 0 )eC L l q= . 

. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1: Measured (curve 1) and simulated quantities (curve 2) at the 
stability boundary for the pole placement controller  
The design parameters are now r  and eq . For a large pa-
rameter r , the closed-loop poles are the stable poles of the 
plant and the mirrored unstable poles of the plant. Thus, the 
closed-loop poles with the LQ controller are essentially the 
same as with the pole placement controller and the robust-
ness and performance properties are also very similar. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2: Disturbance rejection with the pole placement and the 2H  con-
troller  (dashed curves: pole placement controller, solid curves: 2H  con-
troller, curve 1: measured, curve 2: simulated) 
 
Design of a 2H  controller. The design of a 2H  controller 
consists of two parts, namely the design of a LQ controller 
and a Kalman filter. The poles of the closed-loop system 
with the LQ controller are not affected by the Kalman filter 
which is in contrast to the observer described by the differ-
entiators. We use for the LQ cost criterion a large parame-
ter r  as above. For the design of the Kalman filter we have 
to specify sensor noise and plant noise. For the sensor 
noise, we take exactly the sensor noise which is physically 
given for the encoders. There is no physically existing 
source for plant noise. So, for designing the Kalman filter, 
we introduce artificially noise into the plant which is only 
used for design purposes. We suppose that there exist for 
both revolution points stochastic moments which are dis-
tributed as white noise. For design purposes, it suffices to 
use equal spectral densities wσ . Then wσ  is the only de-
sign parameter for the Kalman filter. If wσ  is large, the 
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2H  controller behaves very similar to the LQ controller 
and has its nice Nyquist curve but is sensitive to the 
IdHFDyn. If wσ  is small, the controller is insensitive to the 
IdHFDyn but the Nyquist curve degrades and the controller 
gets other undesirable properties. A reasonable compromise 
has to be found by trial and error.  
   Figure 3.2 shows the result for a disturbance at the plant 
input, more precisely, a constant additive voltage of 6V. 
The LQ controller stabilizes the inverted pendulum but is 
not able to reject this large disturbance, the pendulum falls 
down. The 2H  controller is capable to defeat this distur-
bance but needs a rather long time to bring back the pendu-
lum in the upward position. 

IV. DESIGN OF A ∞H  CONTROLLER 

Our next goal is to design a ∞H  controller. To this end, we 
weight the transfer functions oS , oK S  and oGS . The 
latter transfer function is the transfer function from a dis-
turbance at the plant input to the variable to be controlled. 
By this way it is possible influence directly the disturbance 
rejection properties of the closed-loop system. Figure 4.1 
shows the corresponding weighting scheme. The dashed 
uncertainty block has not to be taken into account. 
 
 
 
 
 
 
 
 
 
 Fig. 4.1: Weighting scheme for the design of the ∞H  controller and the 
µ  controller 
 
   If the extended plant of Fig. 4.1 is controlled by a con-
troller K , then the transfer functions for the closed-loop 
system are  

1 1 1 1

2 2 2 1

ˆ ˆˆ
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o o d

o i d

z W S d W S GW d

z W K S d W T GW d

= +
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Here, oS  is the output sensitivity function and iT  is the 
input complementary sensitivity function. The choice of the 
weights is not quite obvious. One possible way to define 
them is to look at the Bode plots of  oS  and oK S  for the 

2H  controller. This gives a reason to choose the weights in 
the  following form: Let 1 1 1( ) diag ( ( ), ( ))W s w s w s=  and 
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+
 with 100Z Nω ω∞ = . 

By this way, oS  and oK S  can be formed. Moreover, a 
nice property of the ∞H  design is that we now have the 
chance to form oGS  directly. This will be done by an addi-
tional weight dW  which is chosen as a constant (cf. Fig. 
4.1). Figure 4.2 depicts the Bode plots of oGS  and iT  for 
various controllers. The plot shows that the disturbance 
rejection properties with the ∞H  controller are considera-
bly better than that of the other controllers. Another impor- 
tant difference is the behavior of iT  for large frequencies. 
The Bode plot for iT  with the ∞H  controller rolls of with 
80 dB per decade. For the 2H  controller, this amount re-
duces 60 dB per decade and for the pole placement control-
ler this amount reduces further to 40 dB per decade. This is 
why the pole placement controller is so sensitive against 
the IdHFDyn. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2: Singular value plot of oGS  (left-hand figure) and iT  (right-
hand figure) for the pole placement controller (1), the 2H  controller (2) 
and the ∞H  controller (3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.3: Disturbance rejection with the ∞H  controller (curve 1: meas-
ured, curve 2: simulated) 
 
   Figure 4.3 shows the response to a disturbance of the 
closed-loop system with the ∞H  controller. From this fig-
ure it can be seen that the disturbance rejection properties 
for the ∞H  controller are in fact considerably better then 
for the 2H  controller (cf. Fig. 3.2). 
   We now strengthen our requirements for the controller in 
the sense that we add a further uncertainty to the plant. Be-
side to the IdHFDyn we introduce artificially uncertainty 
by adding at the input of the pwm amplifier an electronic 
circuit like an all-pass. Denote its transfer function by elG . 
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Then the transfer function of the plant can be written in the 
form (1 )PG W G∆= + ∆  with an arbitrary stable transfer 
function ∆  such that || || 1∞∆ ≤ . The weight W∆  has to 
be chosen such that elG  takes the form 1 W∆+ ∆ . We de-
fine (with *1 0.001, 300 , 1k Wω ∞= = = ) 
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W s W
s W

ω
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∞

+
=

+
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Fig. 4.4: Disturbance rejection under model uncertainty, ∞H  controller 
(left-hand figure) and µ  controller (right-hand figure), (1: measured, 2: 
simulated) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5: Robust stability (left-hand figure) and robust performance (right-
hand figure) for the ∞H  controller (1) and the µ  controller (2) 
 
   By using the D-K iteration it is possible to synthesize a 
controller which has robust performance for all plants be-
longing to this set. The weighting scheme of Fig. 4.1 has 
then to be considered with the robustness weight W∆ . Fig-
ure 4.4 shows the responses of the current for the resulting 
µ  controller and the ∞H  controller for an additional all-
pass with a time constant of 0.004AT s= . The improve-
ment can clearly be seen. Using µ  tools, the robust stabil-
ity and robust performance properties of the ∞H  controller 
and the µ  controller can be compared (cf. Fig 4.5). 

V. REJECTION OF AN OSCILLATORY DISTURBANCE 
Finally, assume that the horizontal bar with the additional 
pendulum with a spring is attached to the pendulum, as 
described in Sect. 2. By this way, the plant dynamics 
changes considerably. First, suppose that the two additional 

masses are fixed at the horizontal rod. Then the moment of 
inertia of the upper pendulum and its length 1l  are 
changed. By this way, we get the nominal plant for which 
the controllers are designed. The additional dynamics due 
to the spring is only taken into account for simulation pur-
poses but not for controller design. The linearized differen-
tial equation for the rotation about 1D  is  
 

2 2 1 1 1 2 0 0( ) am l L J m l m L g m L z Mψ ϕ ϕ+ − + = + . 
 

Here, the term 0 0m L z  can be viewed as an oscillatory dis-
turbance moment. The linearized differential equation for 
the spring is  

0 0 0 0m L m z czϕ + + = . 

The point is that ϕ  enters also into the differential equation 
for z . By this way, the spring dynamics and the double 
pendulum dynamics are coupled and if a controller has 
been designed only for the double pendulum, the closed-
loop system with the spring may become unstable. The 
closed-loop poles corresponding to the double pendulum 
are only moderately shifted but the poles of the spring 
which lie on the imaginary axis may move either in the 
negative or the positive half-plane. In the latter case, the 
amplitude of the spring oscillation increases until it reaches  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.1: Singular value plot of oGS  (left-hand figure) and iT  (right-
hand figure) for the 2H  controller (1) and the ∞H  controller with the 
dynamic weight dW  (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.2: Disturbance rejection with the spring: unstable case, 2H  con-
troller 
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the physical limits (or the pendulum falls down). 
   Our design goal is now to synthesize a controller which 
has the following properties: 
 
1. The closed-loop poles corresponding to the double pen-
dulum are only moderately shifted by the spring dynamics. 
2. The closed-loop poles corresponding to the spring get a 
small positive damping. 
3. The controller is capable to reject almost completely an 
oscillatory disturbance of maximum amplitude caused by 
the spring. 
  
These criteria can be checked for the various controllers. 
The pole placement controller fulfils the criteria 1 and 2 but 
not 3, and the 2H  controller fails since he doesn’t fulfill 
criterion 2: The closed-loop poles corresponding to the 
spring get a negative damping. This can also be seen from 
the measured angle ϕ  and the current, cf. Fig. 5.2: The 
spring is deflected manually after approximately 22s. Then 
the amplitude of the spring oscillation increases and the 
same does the oscillation of ϕ  until the pendulum falls 
down after approximately 33s. The ∞H  controller fulfils 1 
and 2 if the weights are properly chosen but criterion 3 
only to some extend. 
   To get a really convincing result, the choice of  dW  has 
to be refined. One possibility is to use a weight which 
works like a notch filter. Let 
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where Sω  is close to the eigenfrequency of the spring-mass 
system and where the damping Nd  is relatively small 
( 0.3Nd = , e.g.). The problem with this weight is that it 
has a certain tendency to make the closed-loop system un-
stable. The instability can be avoided by choosing the 
weight 2W  such that | |iT  is not to large in a vicinity of the 
eigenfrequency of the spring. The corresponding magni-
tude plots of transfer function for the disturbance and iT  
are shown in Fig. 5.1. The ∞H  controller has now very  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.3: Disturbance rejection with the spring: stable case, ∞H  controller 
and dynamic weight dW . 

good disturbance rejection properties and the system re-
mains stable in the presence of the spring. The experiment 
convincingly shows the benefits of this refined ∞H  design, 
cf. Fig. 5.3: The spring is taken manually to its maximum 
deflection after approximately 20s and the oscillations are 
almost completely suppressed. What is visible is a superpo-
sition of the permanent oscillations due to Coulomb friction 
and the small contribution of the spring oscillations. The 
amplitude of the sum of both is not larger than the contribu-
tion coming only from the Coulomb friction. It can also 
clearly be seen that the closed-loop system is stable. 
 
The PendCon Family. We would like to mention that this 
experiment belongs to a family of experiments which we 
have designed for education and research purposes at the 
Laboratory for Control Systems in the Department of Me-
chanical Engineering of the Fachhochschule Lübeck (Uni-
versity of Applied Sciences). There are experiments of an 
elementary character which suit very well to an introduc-
tory course on control system design as well experiments of 
an advanced level. The interested reader may visit the 
homepage www.pendcon.de, where also additional infor-
mation about the experimental set-up can be found. There 
are also many instructive short films presented. Four of 
them belong to the experiment described in this paper: 
 
• Inverted pendulum where the linear closed-loop system 

is unstable but where the pendulum doesn’t fall down 
(cf. Fig. 3.1). 

• Disturbance rejection for the uncertain pendulum with 
the ∞H  controller and the µ  controller (cf. Fig. 4.4). 

• Rejection of an oscillatory disturbance with the 2H  
controller (cf. Fig. 5.2). 

• Rejection of an oscillatory disturbance with the ∞H  
controller (cf. Fig. 5.3). 
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