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Abstract— This paper presents a new practical framework for
multiloop controller design in which controllers are designed
independently, i.e., a controller in one loop is designed without
exploiting information of controllers used in other loops. The
method is based on the (block) diagonal approximation of a
system that is different from its (block) diagonal elements. The
focus of this work is on unstable systems and the approximated
systems are obtained by minimizing a scaled L∞ norm for the
error systems. This extends the applicability of conventional
µ-interaction measure to a more general scenario. The validity
of the proposed approach is demonstrated through numerical
simulation and application to an industrial boiler system.

I. INTRODUCTION

In the chemical process industry and large scale systems

(power systems, vehicle platooning), it is common to avoid

centralized architectures in favor of simple decentralized or

block decentralized controllers [1], [2], [3], [4]. Although, it

is not always possible to respect this desideratum, the reasons

for this preference include: ease of understanding by control

engineers, tuning of fewer parameters than the multivariable

controllers and loop failure tolerance of the resulting control

system, to mention just a few. The design technique of a

decentralized control system usually involves two steps [5]:

1) choice of suitable pairings (control structure selection)

and 2) design of single input single output (SISO) or block

decentralized controllers. So far in process industries, the

relative gain array (RGA) [6] and Rijnsdrop’s interaction

measure [7] are found to be efficient tools for eliminating

undesirable pairings in step 1. For the case of control design

in step 2, all the past research efforts can be grouped into

the following three categories [8], [9], [5], [10], [11], [12]

• Simultaneous design using parametric search methods:

In this approach, the controller is assumed to have a

fixed structure (like state space form, PID, PI, etc.) with

unknown parameters to be designed. By using direct

or indirect search methods, these parameters are then

obtained by minimizing the appropriate norm of the

closed loop system. A shortcoming of this approach

is its relative complexity and, in some cases, the non-

convexity of the resulting optimization problem.

• Sequential loop closing: In this case, the method pro-

ceeds by designing each element of the controller (or

block) sequentially. The controller corresponding to a

fast loop (inner loop) or lowest level is designed first and

the loop is closed. Then, the controller corresponding
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to the next loop is designed based on this partially

closed loop system. Due to its simplicity, this method is

now being widely used by industries. However, when

the lower level loops fail, the failure tolerance of the

remaining loops cannot be guaranteed.

• Independent design: In this method, the control design

is based on the (block) diagonal approximation that is

usually done by taking the (block) diagonal elements of

the system. The controller in each loop is designed by

specifying the form of each closed loop (CL) transfer

function, resulting in an IMC-PID type controller. If

the interaction is less than a certain bound, this method

can maintain stability of the overall closed loop system.

Since the information of the controllers in other loops

are not used, it is conservative but the nominal stability

of the remaining loops is guaranteed if any loop fails.

In this paper, the work is focussed on the independent de-

sign approach. Though simpler than other design techniques,

one practically important question may always attract the

attention of many engineers: “How much is the performance

deterioration of the overall closed loop system caused by

ignoring the off-diagonal system blocks, and what should

be the upper bound on the interactions such that overall

closed loop stability can be maintained?” To answer these

questions, a number of interaction measures are available

in the literature, which indicates under what conditions the

stability of (block) diagonal loops guarantees that of the

overall closed loop system. In addition to predicting closed-

loop stability, they also measure the performance loss caused

by a given control structure [1].

Among the different interaction measures available so far,

namely, Rijnsdrop’s interaction measure [7], Relative gain

array [6], µ-interaction measure (µ-IM) [13], [1] and Direct

Nyquist array [14], the µ-IM is noteworthy. This is because,

it offers a dynamic measure of interactions, and is also

applicable to high order systems. Its equal applicability to

block pairings and other elegant properties have attracted the

attention of many researchers in the field of decentralized

control [13], [5], [15], [16], [11], [17], [12]. Based on µ-

IM, the method proposed by [13] utilizes an independent

design approach. The controllers are designed independently

of each other based on the diagonal approximation that

is usually taken as the diagonal elements of the system.

Sufficient conditions for the synthesis are provided under

which they can maintain nominal stability of the overall

closed loop system. This approach, however, suffers from the

shortcoming that it requires that the system and its diagonal

part have the same number of open right half plane (RHP)
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poles. Since this condition is not satisfied by most of the

systems in practice, it limits the applicability of this approach

to only open loop stable systems.

In spite of these restrictions, [5] generalized the results

of [13] by providing simple bounds which when satisfied,

guarantee robust performance of the overall system. Pairing

rules for unstable plants, based on µ−IM are then introduced

in [18] and their relationship with RGA and Niederlinski

index (NI) are explicated. In [11], phase stability condi-

tions are presented which claimed to remove some con-

servativeness associated with the µ-IM (since it constrains

only the magnitude of each SISO loop). An independent

robust decentralized control design approach for unstable

as well as non-square systems was carried out in [16] and

[15], respectively. Many other ideas also came into picture

and subsequently improved, some were really interesting

and innovative, but finding a (block) diagonal approximated

system that posses the same number of unstable poles as the

system itself still remains an open question. In [17], [12], a

step towards solving this approximation problem for unstable

systems was carried out. It presents a numerical approach,

where the decentralized controller is designed based on an

approximated system that is different from (block) diagonal

elements, but has the same number of unstable poles of the

system. The method is interesting because it extended the

applicability of µ-IM to unstable systems and the outcome of

numerical example given in the paper is also good. However,

the algorithm bears some complexity and includes approxi-

mations, iterations in the frequency-wise approximation step

as well as in the parametric identification step, which have no

guarantee of convergence. This open problem, which remains

almost unsolved during the last twenty years, constitutes the

motivation of development in this paper.

In this paper, the authors utilize Smith-McMillan decom-

positions, properties of norms, congruence transformations

and reciprocal variant of the projection lemma to provide

an easily understandable and programmable approach of

obtaining (block) diagonal approximated systems. By using

a constant scaling matrix (Dr), they convert the design al-

gorithm into an optimization problem, which can be directly

solved by the available numerical software. There is no trial

and error or approximations involved and, in some cases,

the optimization problem involves linear matrix inequalities

(LMIs) and only one semidefinite constraint. This quasi-

convex optimization can be readily solved using YALMIP

(Yet Another LMI Parser) [19], which is a parser, namely,

the interface between different solvers (including LMILab)

and Matrix Laboratory (Matlab). An upper bound on the

closed loop performance due to the decentralized architecture

is also derived and special attention is paid on the effect of

non-minimum phase transmission zeros. It is well known

that in multiloop control systems, because of the inherent

interactions between different loops, closing the loop around

one subsystem moves the transmission zeros of other sub-

systems across the imaginary axis [6], [20]. These zero

crossings occur despite of the existence of non-minimum

phase behavior in the open loop system, and it represents

performance limitations specific to the use of decentralized

controllers [20]. They are responsible for sensitivity peak

as well as bandwidth limitation of the resulting closed loop

system. To overcome this problem, some conditions are

developed, such that these zero crossings can be prevented.

Thus the algorithm has the dual feature of being also related

to intrinsic system properties.

The validity of the proposed approach is demonstrated

through numerical simulation and through applications to an

industrial utility boiler. Throughout this work, a nonlinear

simulation package of Syncrude integrated energy system

called SYNSIM is used and the effectiveness of the pro-

posed design strategy is demonstrated through simulations

in SYNSIM under different perturbed conditions.

II. A SOLUTION TO (BLOCK) DIAGONAL

APPROXIMATION AND CONTROLLER DESIGN

The H∞ norm of a stable transfer matrix G(s) is defined

by ‖G(s)‖∞ = supω∈R
σ̄[G(jω)] and L∞ norm is similar

to the H∞ norm, except that G(s) can be unstable. In

this section, an algorithm is developed, which finds (block)

diagonal approximation G̃(s) for a given unstable system

G(s) by minimizing the following scaled L∞ distance

between the system and its approximation

min
G̃(jω)

σ̄[Dr(G(jω) − G̃(jω))D−1
r ], ∀ω ∈ R (1)

where the number of unstable poles in G̃(s) and G(s) are

the same. Clearly, as G(s) contains both stable and unstable

poles, achieving an optimal solution to this problem is a

very difficult task. However, an acceptable solution can be

obtained by proceeding in the following way:

1. Separate the stable and antistable part of G(s) by

G(s) = G1(s) + G2(s) = L−1(s) [Gsm]s R−1(s) +

L−1(s) [Gsm]as R−1(s),

where Gsm(s) is the Smith-McMillan form [21] of G(s) and

L(s), R(s) are unimodular matrices. [Gsm]s and [Gsm]as

contain stable and unstable poles of G(s), respectively.

2. Now, GT
2 (−s), G1(s) ∈ RH∞ (both have poles on the

left half of the s-plane, i.e., stable). Without loss of general-

ity, G̃(s) can be parameterized as G̃(s) = G̃1(s) + G̃2(s),
which gives

‖Dr[G(s) − G̃(s)]D−1
r ‖L∞

≤ (‖Dr[G1(s) − G̃1(s)]

×D−1
r ‖∞) + (‖Dr[G

T
2 (−s) − G̃T

2 (−s)]D−1
r ‖∞), (2)

since ‖Dr[G2(s) − G̃2(s)]D
−1
r ‖L∞

= ‖Dr[G
T
2 (−s) −

G̃T
2 (−s)]D−1

r ‖∞ and G̃2(s) is the L∞ optimal approxima-

tion of G2(s) with np (say) unstable poles.

3. Solve the following optimization problem
min γ

subject to XP > 0, (3)








−Q AT
cl + MT 0 CT

cl,h

√
2XP MT

⋆ −I Bcl 0 0 0

⋆ ⋆ −γH DT
cl,h 0 0

⋆ ⋆ ⋆ −γH 0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −I









< 0, (4)

[

−γH DT
cl,h

⋆ −γH

]

< 0,
[

Q XP + MT

⋆ I

]

≥ 0, (5)
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where

Acl =
[

A 0

0 0

]

+
[

0 0

I 0

] [

Ad Bd

Cd Dd

] [

0 I

0 0

]

Bcl =
[

B

0

]

+
[

0 0

I 0

] [

Ad Bd

Cd Dd

] [

0

I

]

Ccl = [ C 0 ] + [ 0 −I ]
[

Ad Bd

Cd Dd

] [

0 I

0 0

]

Dcl = D + [ 0 −I ]
[

Ad Bd

Cd Dd

] [

0

I

]

CT
cl,h = CT

clH, DT
cl,h = DT

clH, H = DT
r Dr.

Here, (A,B,C,D) is the minimal state space realization

of G1(s) and (Ad,Bd,Cd,Dd) is the state space realization

of G̃1(s). This optimization problem, which minimizes the

scaled H∞ norm of the error system should also be solved

to obtain structured G̃T
2 (−s) from GT

2 (−s) .

Proof: Please see Appendix.

Since, H is invertible, Cd and Dd can be obtained

from the decision variables Ccl,h and Dcl,h, respectively.

Hence, the terms are now affine in the design parameters

(Ad,Bd,Cd,Dd) and can be easily computed. However, in

(4) and (5) there is one bilinear term γH. Therefore, by fixing

γ to a small value or by selecting Dr equal to identity matrix,

the conditions are LMIs with only one semidefinite constraint

in (5). As Q = (XP + M)T (XP + M) corresponds to the

boundary of the convex set in (5) or (19), the solution of

the optimization problem in (3), (4) and (5) using the parser

YALMIP or the Cone Complimentary Linearization (CCL)

approach [22] always yields Q = (XP + M)T (XP + M)
(or Q = MTM in (21)).

A. Controller Design

The algorithm of finding a (block) decentralized controller

K(s) to satisfy the µ-IM condition [13], [1], σ̄(H̃(jω)) <

µ−1(E(jω)), ∀ω can be reduced to solving a skewed-µ

problem. Here, H̃(s) = G̃K(s)(I + G̃K(s))−1 and E(s) =
(G(s) − G̃(s)G̃−1(s) represents the relative error. Assume

H̃(s) is stable, and that G(s) and G̃(s) have the same

number of unstable poles. Then the closed loop system H(s)
is stable (all loops are closed) if

σ̄
(

1
cH

H̃(jω)
)

≤ 1, ∀ω ∈ R (6)

where at each frequency cH solves µ
∆̂

[

0 E(jω)
cHI 0

]

=

1. Here, µ is computed w.r.t the structure ∆̂ =
diag(H̃(jω), H̃(jω)). It should be noted that (6) is just a

restatement of the µ-IM condition [13] and can be easily

derived by using properties of singular values in [5], [21].

In the following proposition, it is shown that when the µ-

IM condition is satisfied, an upper bound on the closed loop

performance is always minimized.

Proposition 2.1: Assume that G(s) and G̃(s) have the

same number of RHP poles, and µ-IM holds. Then,

σ̄(H(jω)) ≤
κ(D(ω)) σ̄(GG̃−1(jω))

σ̄−1(H̃(jω)) − µ(E(jω))
, ∀ω ∈ R

where κ(D) is the euclidean condition number and D(ω) is

the frequency dependent scaling matrix.

Proof: It is clear that

(I + GK(s))K−1G̃−1(s) = (I + G̃K(s))K−1G̃−1(s)

+(G(s) − G̃(s))G̃−1(s) = S̃−1K−1G̃−1(s) + E(s),

where S̃(s) = (I + G̃K(s))−1 is the sensitivity function of

the approximated system G̃(s). Pre- and post- multiplying

by D(ω) and D−1(ω), respectively and using the properties

of the singular values [21], [12]

σ
(

D(ω)S−1K−1G̃−1(jω)D−1(ω)
)

≥ σ(D(ω)

×H̃−1(jω)D−1(ω)) − σ
(

D(ω)E(jω)D−1(ω)
)

,(7)

where S(s) = (I + GK(s))−1 is the sensitivity func-

tion of the overall closed loop system and H̃−1(jω) =
S̃−1K−1G̃−1(jω). Now,

D(ω)S−1K−1G̃−1(jω)D−1(ω) = D(ω)S−1K−1G−1

×GG̃−1(jω)D−1(ω) = D(ω)H−1(jω)(I+E(jω))D−1(ω),

where H(s) is the closed loop transfer function and

σ[D(ω)H−1(jω)(I + E(jω))D−1(ω)]

≤ σ(D(ω))σ(H−1(jω))σ(I + E(jω))σ(D−1(ω))

= κ(D(ω))σ(I + E(jω))σ(H−1(jω)). (8)

Here, κ(D(ω)) = σ(D(ω))σ(D−1(ω)) is the eu-

clidean condition number. Since, D(ω)H̃−1(jω)D−1(ω) =
H̃−1(jω), and suppose that D(ω) is chosen to minimize

σ
(

D(ω)E(jω)D−1(jω)
)

, then from (7) and (8)

σ(H(jω)) ≤
κ(D(ω))σ(I + E(jω))

σ−1(H̃(jω)) − µ(E(jω))
. �

Hence, when interactions are not large and the decentral-

ized controller stabilizes the closed loop system satisfying (6)

then an upper bound on closed loop performance is always

minimized. Generally speaking, this bound is very loose.

However, the maximization of σ̄−1(H̃(jω)) − µ(E(jω))
provides an advantage of maximizing the robustness of the

closed loop system against unmodelled dynamics represented

by an output multiplicative uncertainty. Similar condition in

terms of control sensitivity function was also derived in [12].

B. Performance Limitations due to RHP Zero Crossings

In the following, a method of multiloop controller design is

presented, which prevents the movement of the transmission

zeros of open loop subsystems across the imaginary axis

(when some other loops are closed). The main concern is

to find an upper bound for the interactions, such that zero

crossings can be prevented. For sake of brevity, a stable open

loop system is considered.

Theorem 2.1: Assume that G(s) is divided into two

blocks and the subsystems G11(s) and G22(s) are minimum

phase. When the first loop is closed with a (block) decen-

tralized controller K1(s), such that H̃1(s) = G11K1(s)(I+
G11K1(s))

−1 is stable, then the transmission zeros of the

remaining subsystem G22(s) will not cross the imaginary

axis, if

σ̄(H̃1(jω)) < µ−1
[

G12G
−1
22 G21G

−1
11 (jω)

]

, ∀ω ∈ R
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Proof: Consider the square multivariable system

y1 = G11(s)u1 + G12(s)u2, y2 = G21(s)u1 + G22(s)u2.

When a negative feedback u1 = −K1(s)y1 is applied

around the subsystem G11(s), then the remaining subsys-

tem Ĝ22(s) with inputs u2 and outputs y2 is given by

Ĝ22(s) = G22(s)−G21(s)(I+G11K1(s))
−1K1G12(s) =

G22(s)
[

I − G−1
22 G21(s)(I + G11K1(s))

−1K1G12(s)
]

.

Now, det(Ĝ22(s))

= det(G22(s)) det
[

I − G−1
22 G21G

−1
11 G11(s)

×K1(s)(I + G11K1(s))
−1G12(s)

]

= det(G22(s)) det
[

I− G−1
22 G21G

−1
11 H̃1G12(s)

]

= det(G22(s)) det
[

I− H̃1G12G
−1
22 G21G

−1
11 (s)

]

.

Therefore, if the overall system is stable, then the

zeros of the second subsystem will not cross the

imaginary axis if and only if the nyquist plot of

det
[

I − H̃1G12G
−1
22 G21G

−1
11 (jω)

]

, ∀ω ∈ R does not

encircle the origin. Using the spectral radius stability

condition [21], the zero crossing can be prevented if

ρ
[

H̃1G12G
−1
22 G21G

−1
11 (jω)

]

< 1, ∀ ω ∈ R. Since,

H̃1(jω) has a structure and ρ[H̃1G12G
−1
22 G21G

−1
11 (jω)] ≤

µ[H̃1G12G
−1
22 G21G

−1
11 (jω)], ∀ω ∈ R, the sufficient condi-

tion is given by

σ̄(H̃1(jω)) < µ−1
[

G12G
−1
22 G21G

−1
11 (jω)

]

, ∀ω ∈ R. (9)

This derivation utilizes the fact that µ∆(AB) ≤
µ∆(A)σ̄(B) and µ is computed w.r.t. the structure of

H̃1(jω). �

Remark 2.1: For a 2×2 system with scalar loops, Theorem

2.1 boils down to σ̄(h̃1(jω)) < µ−2(E(jω)), ∀ω ∈ R. In

general, for controllers designed independently

σ̄(H̃1(jω)) < min
(

µ−1(E(jω)),

µ−1
[

G12G
−1
22 G21G

−1
11 (jω)

])

,(10)

and σ̄(H̃2(jω)) < µ−1(E(jω)), ∀ω ∈ R (11)

guarantees overall closed loop stability and also prevents

the movement of transmission zeros in G22(s) across the

imaginary axis, when the first loop is closed. This has an

important effect on the closed loop system performance.

For scalar loops, (10) can be represented by σ̄(h̃1(jω)) <

min
[

µ−1(E(jω)), µ−2(E(jω))
]

, ∀ ω. If interactions are

large, then designing controller based on (10) and (11)

leads to low frequency performance deterioration in the

first channel. This is because, σ̄(H̃1(jω)) has to be re-

duced at low frequencies (µ−1
[

G12G
−1
22 G21G

−1
11 (jω)

]

<

µ−1(E(jω)) < 1). For systems with integral action in all

channels, the upper bound of the interaction is given by

max
(

µ(E(0), µ
[

G12G
−1
22 G21G

−1
11 (0)

])

< 1,

since H̃1(0) = H̃2(0) = I.

III. SIMULATION RESULTS

Consider the following system [12]

G(s) =







1 0 0 0 1 0.5 0.5
0 2 0 0 0.5 1 0.5
0 0 3 0 0.5 0.5 1
0 0 0 −4 1 0.4 0.4

1 0.1 0.1 1 0 0 0
0.1 1 0.1 0.6 0 0 0
0.1 0.1 1 0.6 0 0 0






.

The system has unstable poles at 1, 2 and 3. Application

of the (block) diagonal approximation algorithm gives

G̃(s) =

[ 0.7923s−6.009

s2
−7.179s−37.82

0 0

0
0.6135s−0.05103

s2
−1.402s−27.43

0

0 0 0.7911s+0.9201

s2
−0.8216s−24.77

]

which has poles at 10.71, −3.53, 5.98, −4.58, 5.40 and

−4.58, i.e., the same number of unstable poles as the

original system G(s). The optimum γ is 1.3. Next, con-

sider the controller design. Since, E(s) = (G(s) −
G̃(s))G̃−1(s) is improper, the algorithm is slightly modified

to σ̄
(

1
cH

R̃(jω)
)

≤ 1, ∀ω ∈ R, where at each frequency

cH solves µ
∆̂

[

0 (G(jω) − G̃(jω))
cH I 0

]

= 1. Here, R̃(jω) =

K(jω)(I+G̃K(jω))−1 is the control sensitivity function and

µ is computed w.r.t. the structure ∆̂ = diag(H̃(jω), R̃(jω)).
Application of this algorithm gives cH = 0.8026 and the

decentralized controller

K(s) = diag
(

123.2s+435
s−72.64 , 34.94s+160.1

s−4.881 , 20.78s+95.24
s−1.046

)

.

Hence, the design procedure here is very straightforward.

When the unstable poles in the LMI optimization are kept

fixed, the approximated system is given by G̃(s) =

diag
(

1.067s+0.9654
s2+2.531s−3.531 , 0.9054s+2.366

s2+2.583s−9.167 , 0.9953s+2.508
s2+1.583s−13.75

)

,

with γ = 0.9. Application of the design algorithm to this

system gives cH = 1.1233 and the stabilizing controller

K(s) = diag
(

4.459s+15.75
s+0.7735 , 6.304s+28.89

s+2.876 , 8.283s+37.96
s+2.34

)

.

A. Industrial Utility Boilers

Inputs to the developed nonlinear boiler model are feed-

water flow, firing rate, spray flow and the outputs are: drum

level, header pressure and steam temperature. The overall

model is of order 11 and it has shown good fitness at all

operating regions. The linearized model has one pole at the

origin (associated with water dynamics), one RHP zero at

0.0619 and decentralized controller is designed based on

the block diagonal approximation (γ = 0.28) as well as

µ-IM condition. For implementation, the controller is then

discretized with a sampling period of 6 seconds and it has

the form K(z) = diag [K11(z), K22(z), K33(z)], where

K11(z) = 60.64z3−41.41z2−91.75z+72.96
z3−1.875z2+0.8786z+7.242e−018

,

K22(z) = 0.0003238z3−0.0009514z2+0.0009314−0.0003039
z3−2.97z2+2.941z−0.9708

,

K33(z) = −0.02555z3−0.006817z2−0.01441z+2.1e−4
z3−0.008143z2+0.001135z+1.598e−024 .

With this controller, the µ-IM [12] can be satisfied at all

frequencies (Fig. 1) and RHP zero crossings can be prevented

(conditions (10) and (11) are satisfied). Figs 2-4 shows the

response of the system under perturbed conditions. Fig. 2

represents the measurements during a sudden load change

of 100 kpph in the 6.306 MPa steam header. Fig. 3 shows

the corresponding inputs that are required to overcome the

load variations. The interesting feature of Fig. 4 is that when
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Fig. 2. Outputs during load change

the plant is controlled by a multivariable controller and if

the firing rate controller fails, then overall system becomes

unstable. However, the decentralized controller is capable of

maintaining the stability. This is an important property of

control by independent designs.

IV. CONCLUSIONS

This paper extends the practical applicability of µ-IM

to unstable systems. Decentralized controllers are designed

based on a (block) diagonal approximation that is different

from the (block) diagonal elements, but has the same number

of unstable poles as the system. It is shown that the (block)

diagonal approximation can be obtained by solving a quasi-

convex optimization problem. An upper bound of the closed

loop performance due to decentralized architecture is derived

and some sufficient conditions for the multiloop controller

design are also presented, such that closing the loop around

one subsystem does not move the transmission zeros of

remaining subsystems across the imaginary axis. The validity

of the proposed approach is demonstrated through applica-

tion to an industrial boiler system.
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VI. APPENDIX

Proof of the block diagonal approximation: It is straight-

forward to show that finding a structured G̃1(s) such that
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σ̄[Dr(G1(jω)− G̃1(jω))D−1
r ] < γ is equivalent to solving

the following optimization [21]

Y > 0, and

[

YAT
cl + AclY Bcl YCT

clH

⋆ −γH DT
clH

⋆ ⋆ −γH

]

< 0,

where H = DT
r Dr. This can be expanded using the Schur’s

complement method [23] as
[

YAT
cl + AclY +

YCT
cl

HCclY

γ
Bcl +

YCT
cl

HDcl
γ

⋆ −γH +
DT

cl
HDcl
γ

]

< 0,

and further into

YAT
cl + AclY +

YCT
cl

HCclY

γ
+

(

Bcl +
YCT

cl
HDcl

γ

)

×

(

γH −
D

T
clHDcl

γ

)

−1 (

B
T
cl

+
D

T
clHCclY

γ

)

< 0,(12)
(

−γH +
D

T
clHDcl

γ

)

< 0. (13)

Application of the reciprocal projection lemma [24] to the

inequality in (12) gives
[

F11 + X − (W + WT ) YAT
cl + F12 + WT

⋆ −X

]

< 0, (14)

where X is any given positive-definite matrix, W is a de-

cision variable, F12 =
YCT

clHDcl

γ

(

γH−
DT

clHDcl

γ

)−1

BT
cl

and F11 =
YCT

clHDcl

γ

(

γH−
DT

clHDcl

γ

)−1
DT

clHCclY

γ
+

YCT
clHCclY

γ
+ Bcl

(

γH−
DT

clHDcl

γ

)−1

BT
cl. Since,

X can be any given positive definite matrix and

Bcl

(

γH−
DT

clHDcl

γ

)−1

BT
cl is symmetric, in most of

the cases, the parameters (Bd,Dd), γ, H and X can be

designed such that
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X + Bcl

(

γH −
D

T
clHDcl

γ

)

−1

B
T
cl

= I. (15)

This selection is done to decouple the design variables

from the positive definite matrix Y. If, in some cases, this

is not satisfied, then similar to [25], a large decision variable

λ can always be selected such that positive definiteness of

X = λI − Bcl

(

γH −
D

T
clHDcl

γ

)

−1

B
T
cl

(16)

is guaranteed.

Case I: With the selection in (15), (14) is equivalent to
[

I + Z11 − (W + WT ) YAT
cl + Z12 + WT

⋆ −I + Bcl

(

γH − DT
cl

HDcl
γ

)

−1

BT
cl

]

< 0,

where Z11 =
YCT

clHDcl

γ

(

γH−
DT

clHDcl

γ

)−1
DT

clHCclY

γ
+

YCT
clHCclY

γ
, Z12 =

YCT
clHDcl

γ

(

γH−
DT

clHDcl

γ

)−1

BT
cl.

Pre- and post multiplying by diag (Y−1, I) and

diag (Y−1, I), respectively and expanding the above

inequality
[

Y−1Y−1 +
CT

cl
HCcl
γ

− Y−1M − MT Y−1 AT
cl + MT

⋆ −I

]

−

[

CT
cl

HDcl
γ

Bcl

](

−γH +
DT

clHDcl

γ

)−1
[

DT
cl

HCcl
γ

BT
cl

]

< 0,

where M = WY−1. Using the Schur’s complement




JY +
CT

cl
HCcl
γ

AT
cl + MT CT

cl
HDcl
γ

⋆ −I Bcl

⋆ ⋆ −γH +
DT

cl
HDcl
γ



 < 0,

where JY = Y−1(Y−1 − M) − MTY−1. This inequality

is equivalent to




2XP .XP + MT M − Q AT
cl + MT 0 CT

clH

⋆ −I Bcl 0

⋆ ⋆ −γH DT
clH

⋆ ⋆ ⋆ −γH



 < 0, (17)

where XP = Y−1 and Q = (XP +M)T (XP +M). Finally,

applying the Schur’s complement method to the inequality

in (17) and relaxing the equality constraint gives








−Q AT
cl + MT 0 CT

cl,h

√
2XP MT

⋆ −I Bcl 0 0 0

⋆ ⋆ −γH DT
cl,h 0 0

⋆ ⋆ ⋆ −γH 0 0

⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ −I









< 0, (18)

[

Q XP + MT

⋆ I

]

≥ 0, (19)

where Q = (XP + M)T (XP + M) corresponds to the

boundary of the convex set in (19). Moreover, the in-

equality
(

−γH +
DT

clHDcl

γ

)

< 0 in (13) is equivalent to

[ −γH DT
clH

⋆ −γH
] < 0.

It is interesting to note that the conditions in (18) and (19)

can also be converted into (useful due to 5 × 5 structure)






−Q AT
cl + MT 0 CT

cl,h XP − MT

⋆ −I Bcl 0 0

⋆ ⋆ −γH DT
cl,h 0

⋆ ⋆ ⋆ −γH 0

⋆ ⋆ ⋆ ⋆ −I






< 0, (20)

[

Q MT

⋆ I

]

≥ 0. (21)

Case II: With the selection in (16), (14) is equivalent to








−Q AT
cl

+ MT 0 CT
cl,h

XP MT XP

⋆ −λI Bcl 0 0 0 0

⋆ ⋆ −γH DT
cl,h

0 0 0

⋆ ⋆ ⋆ −γH 0 0 0

⋆ ⋆ ⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −λ−1I









< 0,

where λ has a physical meaning and can be selected by the

designer. �
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