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Abstract— A continuous-time model of optimal life
insurance, consumption and portfolio is examined by
dynamic programming technique. The Hamilton-Jacobi-
Bellman (HJB in short) equation with the absorbing bound-
ary condition is derived. Then explicit solutions for Con-
stant Relative Risk Aversion (CRRA in short) utilities with
subsistence levels are obtained. Asymptotic analysis is used
to analyze the model.
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I. INTRODUCTION

This paper considers the optimal life insurance pur-
chase, consumption and portfolio management strate-
gies for a wage earner subject to mortality risk in a
continuous time economy. Decisions are made contin-
uously about these three strategies for all time t ∈ [0, T ],
where the fixed planning horizon T can be interpreted
as the retirement time of the wage earner.

The wage earner receives his income at rate i(t) con-
tinuously, but this is terminated by the wage earner’s
death or retirement, whichever happens first. We use a
random variable to model the wage earner’s lifetime.
The wage earner needs to buy life insurance to protect
his family due to his premature death. Aside from
consumption and life insurance purchase, the wage
earner also has the opportunity to invest in the capital
market which consists of a riskless security and a risky
security.

Yarri [8] provided the key idea for research on life
insurance, consumption and/or portfolio decisions un-
der an uncertain lifetime, that is, the problem under
the random horizon can be converted to one under
the fixed horizon. the uncertainty of lifetime is the
sole source of uncertainty in his model, and he used
a nonnegative bounded random variable to model
uncertain lifetime. Leung [3] pointed out that Yaari’s
model cannot have an interior solution which lasts until
the maximum lifetime for the optimal consumption.
Ye [9] showed that using a nonnegative bounded ran-
dom variavle to model uncertain lifetime will produce
abnormal behavior of the model from the perspective
of dynamic programming. Merton [5] briefly consid-
ered consumption/portfolio under an uncertain life
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using the dynamic programming approach, but he
ignored life insurance. Richard [7] used Yaari’s setting
for an uncertain lifetime and dynamic programming
to consider a life-cycle life insurance and consump-
tion/investment problem. Richard introduced the con-
cept of a continuous-time life insurance market where
the wage earner continuously buys term life insurance,
the term being infinitesimally short. But the terminal
condition for his model is in question. Recently, Pliska
and Ye [6] used a comparative technique to study the
demands of life insurance. Ye [10] summarized the
results from the martingale approach in Ye [9]. Zhu [11]
studied individual consumption, life insurance, and
portfolio decisions in one-period environment.

This paper is organized as follows. The next section
describes the intemporal model proposed in Ye [9].
Section 3 derives the HJB equation with the absorbing
boundary condition which is important in numerical
research, and then derives the optimal feedback control.
In Section 4 we obtain explicit solutions for the family
of CRRA utilities with subsistence requirements, and
asymptotic analysis is used to analyze the model. We
conclude with some remarks in Section 5.

II. THE MODEL

Let W (t) be a standard 1-dimensional Brownian
motion defined on a given probability space (Ω,F , P ).
Let T < ∞ be a fixed planning horizon, here in-
terpreted as the wage earner’s retirement time. Let
F = {Ft, t ∈ [0, T ]} be the P-augmentation of the
filtration σ{W (s), s ≤ t}, t ∈ [0, T ], so Ft represents the
information at time t.

The continuous-time economy consists of a friction-
less financial market and an insurance market. We
are going to describe their details separately in the
following.

We assume that there is a risk-free security in the
financial market whose time-t price is denoted by S0(t).
It evolves according to

dS0(t)

S0(t)
= r(t)dt, (1)

where r(·) is a function of time t satisfying
∫ T

0
|r(t)|dt <

∞. This condition ensures the above equation is well-
defined.

There is a risky security in the financial market. It
evolves according to the linear stochastic differential
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equation

dS1(t)

S1(t)
= µ(t)dt + σ(t)dW (t), (2)

where µ(·) and σ(·) are functions of time t satisfying
∫ T

0
|(µ(t) − r(t))/σ(t)| < ∞. This condition ensures the

financial market is complete (see Chapter 1, Karatzas
and Shreve [2]).

We suppose the wage earner is alive at time t = 0
and his lifetime is denoted by a random variable τ . The
hazard rate function of τ is denoted by λ(t), t ∈ [0, T ].
According to Collett [1], the conditional probability
density function, f(s, t), for the death at time s con-
ditional upon the wage earner being alive at time t ≤ s
is given by

f(s, t) , λ(s) exp

{

−

∫ s

t

λ(u)du

}

. (3)

Suppose life insurance is offered continuously and
the wage earner enters a life insurance contract by
paying premiums at the rate p(t) at each point in time t.
In compensation, if the wage earner dies at time t when
the premium payment rate is p(t), then the insurance
company pays an insurance amount p(t)/η(t). Here η(t)
is called the insurance premium-payout ratio.

Suppose the wage earner is endowed with the initial
wealth x and will receive the income at rate i(t) during
the period [0, min{T, τ}], that is, during a period which
will be terminated by the wage earner’s death or
retirement at T , whichever happens first.

We now define some processes describing the wage
earner’s decisions:

• c(t) , Consumption rate at time t, which is
an {Ft}-progressively measurable, nonnegative

process satisfying
∫ T

0
c(t)dt < ∞ almost surely.

• p(t) , Premium rate (e.g., dollars per annum)
at time t, which is an {Ft}-predictable process

satisfying
∫ T

0
|p(t)|dt < ∞ almost surely.

• θ(t) , Dollar amount in the risky security at
time t, which is an {Ft}-progressively measurable

process satisfying
∫ T

0
σ2(t)θ2(t)dt < ∞ almost

surely.

For a wage earner’s decision, (c, p, θ), the wealth pro-
cess X(t) on [0, min{T, τ}] is defined by

X(t) = x −

∫ t

0

c(s)ds −

∫ t

0

p(s)ds +

∫ t

0

i(s)ds

+

∫ t

0

X(s) − θ(s)

S0(s)
dS0(s) +

∫ t

0

θ(s)

S1(s)
dS1(s).

(4)

Using (1) and (2), we write (4) as the stochastic differ-
ential equation

dX(t) = r(t)X(t)dt − c(t)dt − p(t)dt + i(t)dt

+θ(t)[(µ(t) − r(t))dt + σ(t)dW (t)].

(5)

If the wage earner dies at time t, 0 < t ≤ T , the
estate will get the insurance amount p(t)/η(t). Then the
wage earner’s total bequest when he dies at time t with
wealth X(t) is

Z(t) = X(t) +
p(t)

η(t)
on {τ = t}. (6)

We denote by A(x) the control set of all 3-tuples
(c, p, θ) such that X(t) + b(t) ≥ 0 and Z(t) ≥ 0,∀t ∈
[0, T ], where b(t) is defined as

b(t) =

∫ T

t

i(s) exp

{

−

∫ s

t

[r(v) + η(v)]dv

}

ds. (7)

A (c, p, θ) ∈ A(x) is called as an admissible decision.
Remark 2.1: • Here we give an economic meaning

for b(t). Suppose the wage earner wants to borrow
money from a financial institution using his future
income as a mortgage. The question is how much
the wage earner can borrow from the financial
institution. We analyze this problem as follows.
The financial institution issues a loan to the wage
earner at time t and the wage earner transfers all
of his future income i(s), t ≤ s ≤ T, to the finan-
cial institution. However, the wage earner’s life
is uncertain, so the financial institution buys life
insurance for the wage earner in order to prevent
a loss due to the wage earner’s premature death
before he pays off the loan. Hence the financial
institution uses the wage earner’s future income to
pay the loan and pay the life insurance premiums.
If the wage earner dies at time s, where t < s < T ,
then the insured amount must be enough to pay
off the loan, and if he is alive at the time T , his
wage accumulating from time t to time T must
be enough to pay off the insurance premiums
accumulating from time t to time T and pay off
the loan which is continuously compounded by the
interest rate r(·) (in general, the loan rate is higher
than the risk-free rate in reality. The methodology
in this item of this remark can still be applied if
you use the actual loan rate.). Let l(s), t < s ≤ T ,
be the time s principal balance for the loan process
described above, so














l(s) =
∫ s

t
r(u)l(u)du

+
∫ s

t
(i(u) − p̃(u))du on {τ ≥ s},

l(s) + p̃(s)
η(s) ≥ 0 on {τ = s},

l(T ) ≥ 0 on {τ > T},

where p̃(s) is the insurance premiums paid at
time s by the financial institution to hedge the
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wage earner’s mortality risk. Rewriting the above
equation,







l(s) ≤
∫ s

t
(r(u) + η(u))l(u)du

+
∫ s

t
i(u)du on {τ ≥ s},

l(T ) ≥ 0 on {τ > T}.

Introduce the variable substitution w = T − s, use
Grönwall’s inequality, and do some algebra, then
we have

l(t) ≥ −

∫ T

t

i(u) exp

{

−

∫ u

t

[r(v) + η(v)]dv

}

du

= −b(t).

Hence the wage earner can borrow b(t) at most
from the financial institution using the future in-
come as the mortgage. Now it is clear that the
function b(t) represents the value at time t of the
wage earner’s future income from time t to time
T .

• We interpret X(t)+b(t) as the total wealth at time t,
so it is reasonable that we require X(t)+ b(t) to be
nonnegative. In fact, we can show once the wage
earner’s wealth X(t) reaches −b(t), then no further
consumption for the wage earner can take place.
Moreover, if he dies between time t and time T
with X(t) = −b(t) at time t, his bequest is 0 almost
surely, and his terminal wealth X(T ) is 0 almost
surely (see Ye [9]). In other words, X(t) = −b(t)
is an absorbing state for the wealth process X(·)
when (c, p, θ) ∈ A(x). Hence A(x) is an empty set
when x < −b(t).

Suppose that the wage earner’s preference structure
is given by (U1, U2, U3). U1(·, t) is a utility function
for the consumption with the subsistence consumption
c̄(t) assumed to be a nonnegative function of time t,
U2(·, t) is a utility function for the bequest with the
subsistence bequest Z̄(t) assumed to be a nonnegative
function of time t, and U3(·) is a utility function for the
terminal wealther with the subsistence terminal wealth
X̄ assumed to be a nonnegative number.

Remark 2.2: One refers to Ye [9], [10] for the math-
ematical definition of a preference structure. The sub-
sistence levels c̄(t) and Z̄(t) at time t mean the wage
earner does not want his consumption c(t) and the
bequest Z(t) lower than c̄(t) and Z̄(t) at time t, re-
spectively, and the subsistence level X̄ means he does
not want his terminal wealth X(T ) lower than X̄ .
From the perspective of mathematics, the subsistence
levels impose implicit constraints on the wage earner’s
decisions, viz., c(t) ≥ c̄(t), ∀t ∈ [0, T ], Z(t) ≥ Z̄(t),
∀t ∈ [0, T ], and X(T ) ≥ X̄ . As shown in Ye [9], these
implicit constraints can be satisfied only if

X(t) + b(t) ≥ b̄(t), ∀t ∈ [0, T ], (8)

where b̄(t) is defined as

b̄(t)

=

∫ T

t

(

c̄(s) + η(s)Z̄(s)
)

exp

{

−

∫ s

t

[r(v) + η(v)]dv

}

ds

+X̄ exp

{

−

∫ T

t

[r(s) + η(s)] ds

}

. (9)

Furthermore, once the wage earner’s wealth X(t)
reaches b̄(t)− b(t), then c(s) = c̄(s) and Z(s) = Z̄(s) for
any s satisfying t ≤ s ≤ T , and X(T ) = X̄ . Hence we
interpret X(t) + b(t)− b̄(t) as the total available wealth
at time t while x(t) + b(t) is the total wealth at time t.
Note that c̄(·), Z̄(·), and X̄ are nonnegative, then the
subsistence levels impose a more restrictive constraint
on the wealth process than admissible decisions do.

The wage earner’s problem is to choose life insur-
ance purchase and consumption/portfolio investment
strategies so as to maximize the expected utility

V (x) , sup
(c,p,θ)∈A1(x)

E

[
∫ T∧τ

0

U1(c(s), s)ds

+U2(Z(τ), τ)1{τ≤T}

+U3(X(T ))1{τ>T}

]

(10)

where T ∧ τ , min{T, τ}, and where

A1(x) ,

{

(c, p, θ) ∈ A(x);

E

[
∫ T∧τ

0

U−
1 (s, c(s))ds + U−

2 (τ, Z(τ))1{τ≤T}

+U−
3 (X(T ))1{τ>T}

]

> −∞

}

where U−
i , −min{0, Ui}, for i = 1, 2, 3.

The function of A1(x) is to pick out every admissible
control which satisfies the subsistence requirements
(see Ye [9], [10]).

III. STOCHASTIC DYNAMIC PROGRAMMING

In this section we use the stochastic dynamic pro-
gramming technique to derive the HJB equation, and
then derive the optimal feedback control from the HJB
equation. We restate (10) in a dynamic programming
form. For any (c, p, θ) ∈ A1(t, x), where the definition
of A1(t, x) is similar to the definition A1(x) except that
the starting time is time t and the wealth at time t is
x, define

J(t, x; c, p, θ)

, E

[
∫ T∧τ

t

U1(c(s), s)ds + U2(Z(τ), τ)1{τ≤T}

+U3(X(T ))1{τ>T}

∣

∣

∣
τ > t,Ft

]

(11)
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and

V (t, x) , sup
{c,p,θ}∈A1(t,x)

J(t, x; c, p, θ). (12)

The above value function is nontraditional due to
the random horizon. Using Fubini-Tonelli theorem (see
Ye [9]), we can J(t, x; c, p, θ) as follows:

Lemma 3.1: If the death time τ is independent of the
filtration F. For each (c, p, θ) ∈ A1(x, i),

J(t, x; c, p, θ)

= E

[
∫ T

t

[F̄ (u, t)U1(c(u), u) + f(u, t)U2(Z(u), u)]du

+F̄ (T, t)U3(X(T ))
∣

∣

∣
Ft

]

,

(13)

where F̄ (u, t) , exp
{

−
∫ s

t
λ(u)du

}

and f(u, t) is given
by (3).

From Lemma 3.1, we know that the wage earner
who faces unpredictable death acts as if he will live
at least until time T , but with a subjective rate of time
preferences equal to his “force of mortality” for his con-
sumption and terminal wealth. From the mathematical
point of view, this lemma enables us to convert the
optimization problem with a random terminal time to
a problem with a fixed terminal time.

According to Ye [9], that is, set up the optimality
principal and use Itô’s lemma, we derive so-called HJB
equation







Vt(t, x) − λ(t)V (t, x)
+ sup(c≥c̄(t),p≥η(t)(Z̄(t)−x),θ) Ψ(t, x; c, p, θ) = 0,

V (T, x) = U3(x),
(14)

on the domain D , {(t, x) ∈ [0, T ] × (−∞, +∞), x >
b̄(t) − b(t)}. Where

Ψ(t, x; c, p, θ) , (r(t)x + θ(µ(t) − r(t)) + i(t)

−c − p)Vx(t, x) +
1

2
σ2(t)θ2Vxx(t, x)

+U1(c, t) + λ(t)U2 (x + p/η(t), t) .

(15)

Moreover, V satisfies the absorbing boundary condition
(see (8))

V (t, b̄(t) − b(t))

=

∫ T

t

[F̄ (u, t)U1(c̄(u), u) + f(u, t)U2(Z̄(u), u)]du

+F̄ (T, t)U3(X̄). (16)

The boundary condition (16) for V follows from
Remark 2.2 and Lemma 3.1. The first-order conditions
for a regular interior maximum to (15) are

0 = Ψc(t, x; c∗, p∗, θ∗) = −Vx(t, x) + U1,c(c
∗, t), (17)

0 = Ψp(t, x; c∗, p∗, θ∗)

= −Vx(t, x) +
λ(t)

η(t)
U2,Z (x + p∗/η(t), t) , (18)

and

0 = Ψθ(t, x; c∗, p∗, θ∗)

= (µ(t) − r(t))Vx(t, x) + σ2(t)θ∗Vxx(t, x). (19)

A set of sufficient conditions for a regular interior
maximum is

Ψcc = U1,cc(c
∗, t) < 0, Ψpp =

λ(t)

η2(t)
U2,ZZ(Z∗, t) < 0,

Ψθθ = σ2(t)Vxx(t, x) < 0.

Note that the first two conditions are automatically
satisfied according to the definition of utility func-
tions. Thus a sufficient condition for a maximum is
Vxx(t, x) < 0.

IV. THE CASE OF CONSTANT RELATIVE RISK

AVERSION

In this section we derive explicit solutions for the
case where the wage earner has the same constant
relative risk aversion for the consumption, the bequest
and the terminal wealth. Assume for γ < 1, ρ > 0,
ai(t) > 0, ∀t ∈ [0, T ], i = 1, 2, and a3 > 0 that

U1(c, t) =
e−ρt

γ
a1(t)(c − c̄(t))γ ,

U2(Z, t) =
e−ρt

γ
a2(t)(Z − Z̄(t))γ ,

and

U3(x) =
e−ρT

γ
a3(x − X̄)γ ,

where c ≥ c̄(t) and Z ≥ Z̄(t) for all t ∈ [0, T ], and
x ≥ X̄ . Here γ = 0 represents the logarithmic utility
functions.

From (17), (18), and (19), we have that

c∗(t) = c̄(t) +

(

a1(t)

Vxeρt

)1/(1−γ)

, (20)

x +
p∗(t)

η(t)
= Z̄(t) +

(

a2(t)

Vxeρt

λ(t)

η(t)

)1/(1−γ)

, (21)

θ∗(t) = −
(µ(t) − r(t))Vx

σ2(t)Vxx
. (22)

We now plug (20)-(22) in (14) and take as a trial solution

V (t, x) =
a(t)

γ
(x + b(t) − b̄(t))γ , x ≥ b̄(t) − b(t), (23)

where a(·) is a function to be determined. Then a(t)
must satisfy the following ordinary differential equa-
tion:

da(t)

dt

=

(

λ(t) −
γ

2(1 − γ)

(

µ(t) − r(t)

σ(t)

)2

− γ(r(t) + η(t))

)

a(t)

−(1 − γ)e−ρt/(1−γ)
K(t)(a(t))−γ/(1−γ)
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with a(T ) = a3e
−ρT , where

K(t) , (a1(t))
1/(1−γ)+(a2(t))

1/(1−γ) (λ(t))1/(1−γ)

(η(t))γ/(1−γ)
. (24)

To solve for a(t), suppose for some new function m(·)
that a(t) has the form:

a(t) = e−ρt(m(t))1−γ , (25)

and define

H(t) ,
λ(t) + ρ

1 − γ
−

1

2
γ

(

µ(t) − r(t)

(1 − γ)σ(t)

)2

−
γ

1 − γ
(r(t)+η(t)).

(26)
Then

dm(t)

dt
− H(t)m(t) + K(t) = 0, m(T ) = a

1/(1−γ)
3 .

(27)
Solving (27) by an integrating factor, we get that

m(t) = a
1/(1−γ)
3 exp

{

−

∫ T

t

H(v)dv

}

+

∫ T

t

exp

{

−

∫ s

t

H(v)dv

}

K(s)ds. (28)

Hence

a(t) = e−ρt

[

a
1/(1−γ)
3 exp

{

−

∫ T

t

H(v)dv

}

+

∫ T

t

exp

{

−

∫ s

t

H(v)dv

}

K(s)ds

]1−γ

.

(29)

From (20)-(22), (23) and (25) the optimal consumption,
life insurance and portfolio rules can be explicitly
written in feedback form as

c
∗(t) = c̄(t) +

(a1(t))
1/(1−γ)

m(t)
(x + b(t) − b̄(t)), (30)

Z
∗(t) = x +

p∗(t)

η(t)

= Z̄(t) +

(

λ(t)

η(t)

)1/(1−γ)
(a2(t))

1/(1−γ)

m(t)
(x + b(t) − b̄(t)),

(31)

and

θ
∗(t) =

µ(t) − r(t)

(1 − γ)σ2(t)
(x + b(t) − b̄(t)). (32)

The above formulas for c∗ and θ∗ are consistent with
the classical results in Merton [4]. In particular, the opti-

mal portfolio fraction µ(t)−r(t)
(1−γ)σ2(t) is the same as Merton’s.

This means, under the assumption of independence
between the mortality risk and stock return risk, the
mortality risk will not affect the risky investment.

From (30) and (31), the wage earner’s optimal de-
cisions c∗ and Z∗ consist of a ”compulsory” part and
”free choice” part. The ”free choice” part depends on
his spare money x + b(t) − b̄(t). The wage earner’s
optimal portfolio decisions is made based on his spare

money x + b(t) − b̄(t). We study the following cases
using asymptotic analysis:

• Z∗(t) → Z̄(t) as λ(t) → 0 for any t ∈ [0, T ].
This means that a long-lived wage earner will just
maintain the subsistence level of the bequest.

• c∗(t) → c̄(t) as a1(t) → 0 for any t ∈ [0, T ]. This
means that the consumption becomes unimportant
to the wage earner as the weight a1 approaches to
zero, then the wage earner will just maintain the
subsistence level of consumption.

• Z∗(t) → Z̄(t) as a2(t) → 0 for any t ∈ [0, T ]. This
means that the bequest becomes unimportant to
the wage earner as the weight a2 approaches to
zero, then the wage earner will just maintain the
subsistence level of the bequest.

• X∗(T ) → X̄ as a3 → 0. This means that saving
more for the after-retirement life becomes unim-
portant, then the wage earner will just maintain
the subsistence level of the terminal wealth. In
this case, setting c̄(t) = 0 and Z̄(t) = 0, for all
t ∈ [0, T ], and X̄ = 0, the solutions are the same
as Richard’s [7] if some errors in his solutions are
corrected, although the model is an intemporal
model while Richard’s is a life-cycle model.

From (31), the policy of insurance premiums is given
by

p
∗(t) = η(t)

{[

(

λ(t)

η(t)

)1/(1−γ)
(a2(t))

1/(1−γ)

m(t)
− 1

]

x

+

(

λ(t)

η(t)

)1/(1−γ)

(a2(t))
1/(1−γ) b(t) − b̄(t)

m(t)
+ Z̄(t)

}

.

(33)

From the above formula, the future income has a
positive effect on life insurance purchase as we expect.
The subsistence levels of consumption and terminal
wealth have a negative effect on life insurance pur-
chase, this means the wage earner tends to buy less
life insurance as these two subsistence levels increase.
As we carefully examine the effect of the subsistence
level of the bequest on life insurance purchase, we find
that the current subsistence level of the bequest has a
positive effect, while the future subsistence level of the
bequest has a negative effect.

Now let’s consider a wage earner who starts to work
at age 25 (the initial time), his expected retirement time
is age 65 (T=65-25=40), and his initial wage at age 25
is $50, 000, growing at the rate 3% every year. His risk
aversion parameter γ = −3, the utility discounted rate
ρ = 0.03, all utility weights are 1, and all subsistence
levels are zero. The hazard rate for him is 1/200 +
9/8000t. The market parameters are given by Table I.

Figure 1 was computed via (30) and shows the opti-
mal consumption proportion, viz., c∗(t)/(x+ b(t)), as a
function of age and the total overall wealth x+b(t). We
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TABLE I

THE PARAMETERS

Parameters r µ σ η(t)

Value 0.04 0.09 0.18 1
200

+ 9
8000

t

Fig. 1. Optimal consumption proportion without constraints using
exact solution

see this proportion is constant with respect to overall
wealth, it is relatively small in the early years, and it
rises with respect to age.

We used formula (33) to produce Figure 2, which
shows the optimal life insurance purchase amount p∗(t)
in terms of age and the total overall wealth. We see
that for small values of overall wealth the optimal
insurance payment is increasing with respect to age up
to a certain point, and then the payment declines as the
wage earner approaches retirement. Moreover, with age
fixed the optimal insurance payment is a decreasing
function of the overall wealth. Finally, for large values
of overall wealth we see that the optimal insurance
payment is actually negative. In particular, when the
total overall wealth exceeds a critical level which varies
with the wage earner’s age, it becomes optimal for the
wage earner to sell a life insurance policy on his own
life. We plot this critical level in terms of the overall

Fig. 2. Optimal life insurance rule without constraints using exact
solution
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Fig. 3. The critical level curve

wealth and age in Figure 3. When the overall wealth
is below the critical level the wage earner buys life
insurance, but when the overall wealth is above the
critical level the wage earner sells life insurance. In
particular, the wage earner will buy life insurance in
the early years since the critical level of the wealth is
very high at that time. But the wage earner might find
it optimal to sell life insurance close to retirement time.

V. DISCUSSION

We derived HJB equation with the absorbing bound-
ary condition for the model. Explicit solutions were
found for a rich family of CRRA utilities with subsis-
tence levels. Several economic implications were un-
derstood via interpreting the model setting and the
solutions. We also used asymptotic analysis to interpret
the model.

One point worth mentioning is that the asymptotic
results in Section 4 provides an unified perspective for
investigating variants of the objective functional (10).
For example, if we let a2(t) → 0 for each t ∈ [0, T ],
Z̄(t) = 0 for each t ∈ [0, T ], a3 → 0, and X̄ = 0, then
the asymptotic results correspond to maximizing the
expected utility from consumption.

We considered the financial market which consists
of a riskless and a risky securities and the insurance
market which is allowed to sell life insurance. This
combination of the financial market and the insurance
market is complete in that the wage earner’s any
reasonable financial plan (c, Z(·),X(T )), X(T ) can be
viewed as the pension plan, can be replicated in these
two markets (see Ye [9]). It is not technically diffi-
cult to include multiple risky securities in the model
assuming the financial market is complete. However,
either incompleteness of the financial market or prohi-
bition of selling life insurance makes the combination
incomplete. The incomplete financial market has been
extensively studied in the literature. The numerical
method has been carried out in Ye [9] to deal with the
constraint on life insurance.
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