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Abstract— Simultaneous Localization and Mapping (SLAM)
has emerged as a key capability for autonomous mobile robots
navigating in unknown environments. The basic idea behind
SLAM is to concurrently obtain a map of the environment
and an estimate of where the robot is placed within this map.
In other words, the map and the robot’s pose have to be
estimated at the same time, given the same data set. This
paper revisits this problem from a control theoretic vantage
point by reformulating the SLAM problem as a problem of
simultaneously estimating the state and the output map of
a controlled, dynamical system. What is different with this
formulation is that the map is contained in the output map
and not, as previously done, in the state of the system.

I. INTRODUCTION

SLAM, or Simultaneous Localization and Mapping, is the

process of concurrently building a map of the environment

and estimating the pose of the robot in this environment. This

problem has been referred to as the “holy grail” in mobile

robotics [1] and as such has received considerable attention.

For an overview of the history and basics of SLAM, as well

as the state-of-the-art, see e.g. [2], [3].

Arguably, the progress made in the field of SLAM has

lead to a point where the problem in practical terms can

be considered solved in small enough environments, and

with range-based sensors. As a result, as the field has

matured, some of the attention has shifted towards a more

theoretical analysis of the basic properties of the SLAM

problem itself, and it is in this context that this paper is to

be understood. Most of the previous analysis of the SLAM

problem has been devoted to the EKF formulation and to

linear examples. For instance, convergence properties for

a linear SLAM formulation was presented in [1]. Several

examples of consistency analysis ARE available [4], [5], [6],

and in [7] the observability and controllability of SLAM is

discussed for certain classes of systems, such as switched

linear systems.

This paper continuous along this latter trend of papers

and tries to take a step back and approach the SLAM

problems from a slightly more abstract perspective. In fact,

we will argue that SLAM should be understood as a problem

involving the simultaneous estimation of the output map

and state of a dynamic system rather than a (sometimes
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unnatural) incorporation of the map into the state of the

system. This formulation moreover lends itself to be directly

extended to the so-called SPLAM [8] problem (Simultaneous

Planning, Localization, and Mapping) in that the control

input becomes an integral part of the problem formulation.

II. SIMULTANEOUS LOCALIZATION AND MAPPING

A. Background

Loosely speaking, the SLAM problem has traditionally

been formulated as finding the joint probability distribution

P (xk,M | u[0,k], y[0,k], x0), where xk is the pose of the

robot at time k, M is a (static) map of the environment,

u[0,k] and y[0,k] are the control and measurement history

respectively, and x0 is an initial estimate of the pose.

One of the first key insights into the SLAM problem was

the understanding that in order to estimate the robot pose

and the map, the correlation between these two individual

components is very important and needs to be correctly

maintained in order for the SLAM problem to be solv-

able. These correlations and the fact that the size of the

problem often is large typically results in computationally

demanding problems. In this light it is not surprising that a

substantial amount of work has been carried out to tackle the

complexity issue of SLAM (see e.g. CEKF [9], DSM [10],

Atlas [11], treemap [12], SEIF [13], Graphical SLAM [14],

M-Space [15]).

One of the central issues in solving the SLAM problem

is that of representation, both in terms of the map and in

terms of the probability distribution itself. In fact, the issue

of representation is one of the main differences between the

many proposed approached to SLAM, the two most common

ones being Extended Kalman Filters (EKF-SLAM) [16] and

Rao-Blackwellized particle filters (FastSLAM) [17].

In terms of map representations, the two most widely

used representations use so-called features and occupancy

grids [18]. In a feature-based representation, the environment

is modelled as a set of geometric features such as points,

lines, planes, etc, while an occupancy grid representation

uses a discrete approximation of the world into grid cells,

typically with a 2D assumption.

The view advocated in this paper is that the environment

map should be thought of as an output mapping, which is

somewhat in line with the ideas advocated in [19] in that

the world is its own best representation, using raw or only

slightly processed sensor data as the model. An example

of this is to use laser scans acquired as the robot moves

around in the environment, with each component in the map

being given by a tuple {xk, scank}, where scank is the laser
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scan reading at time k. (These scans can in fact be seen as

generalized features.)

In this paper, we will formalize the SLAM problem

at a level of abstraction in which entities such as ”robot

positions”, ”maps”, ”landmarks”, ”particle filters”, ”Kalman

filters”, and ”range sensors” are all delegated to particular

instantiations of the SLAM problem. We will in fact do this

by formulating a more general, control-theoretic problem,

namely the SSAOME (Simultaneous State And Observation

Map Estimation) problem but we acknowledge that this

acronym will never catch on, so we will keep referring to it

as the SLAM problem.

B. A Trivial Yet Illustrative Example

In order to distill away the particulars of robot-based map

building and localization from the SLAM problem to arrive

at a control-theoretic formulation, we start by considering

a highly trivial scenario. (And, it should be pointed out

already at this point that the approach taken in the next few

paragraphs is certainly not the most effective.) Here a robot is

to navigate a 2×2 grid, with cells (1, 1), (1, 2), (2, 1), (2, 2).
Moreover, each of the grid cells is colored with one of two

different colors, namely white and gray. These colors are the

measurements that the robot have access to, and we thus let

the output set be given by Y = {white,gray}.

The robot can move in four different directions, i.e. the

input set is U = {↑, ↓,←,→} and we assume that, at the

boundary of the grid, a move that would result in the robot

leaving the grid simply leaves the robot in the cell from

which the move originated. In fact, if we let the grid be given

by X = {(1, 1), (1, 2), (2, 1), (2, 2)} and let xk be the cell

that the robot is in at time k, the dynamics of the system can

be defined through the transition function f : X × U → X .

Now, given that the robot is traversing through the grid,

using a string of moves, u0, u1, . . ., the result is that a string

of colors is observed, y0, y1, . . .. And, the SLAM problem

is precisely that of figuring out how the different cells in the

grid are colored at the same time as we should know where

in the grid the robot is located.

As an example, assume that the input string is u0 =↑,

u1 =←, u2 =↓, u3 =→, u4 =↑, with the corresponding

output string being y0 =white, y1 =white, y2 =white,

y3 =gray, y4 =white, y5 =white. Is it possible to solve

the SLAM problem using this information? The answer is

yes, and the solution is shown in Figure 1.

At time k = 0, the robot can be anywhere, but since

y0 =white, each hypothesis about the robot’s location

corresponds to a particular map with only one cell having a

known color. (In the figure, the robot’s location is denoted

by ⋆, while a ? in the cell means that the color of that cell

is unknown.) At time k = 1, there are still four possible

colorings of the grid, but we now know that the robot is

in one of two possible locations, namely (1,2) or (2,2).

The localization part of the SLAM problem is in this case

actually solved already at time k = 2, where we know

that x2 = (1, 2). However, there are still four possible grid

colorings that are consistent with the input-output string. In

?

⋆ ?

⋆ ? ⋆ ?

⋆
y0 = ⇒

u0 = ↑

?⋆ ?⋆ ? ⋆

?

⋆
y1 = ⇒

u1 = ←

?⋆ ?⋆

?

⋆

?

⋆
y2 = ⇒

u2 = ↓

?⋆ ?⋆ ⋆
y3 = ⇒

u3 = →

?

⋆ ⋆
y4 = ⇒

u4 = ↑

y5 = ⇒

?

? ?

?

? ? ?

?

? ? ? ? ?

?

? ? ? ?

?

⋆

Fig. 1. A simple example problem is shown in which a robot negotiates
a 2× 2 grid, in which each cell is colored with one of two possible colors.

fact, using this particular input-output string, it takes until

k = 5 until a unique coloring of the grid has been obtained,

and the SLAM problem has been completely solved.

C. A Control-Theoretic Approach

The example described in the previous paragraphs is

certainly not overly complicated. And the solution was not

very hard to come by. But, what was actually the problem

that we solved? If we associate an output map to each grid

cell h : X → Y it is clear that knowing h is equivalent

to knowing how the grid was colored. In other words, the

SLAM problem in the previous paragraphs can be formulated

as finding x and h from the input-output string.

In fact, it is our claim that this formulation captures the

SLAM problem precisely. Given a general, dynamic system

xk+1 = f(xk, uk)
yk = h(xk),

together with input-output strings u0, u1, . . . and y0, y1, . . .,
find estimates x̂ and ĥ such that ‖xk − x̂k‖ → 0 and

‖h − ĥk‖ → 0 as t → ∞, in some appropriate (possibly

functional) norms. The central claim to this paper is thus

that SLAM is a particular instantiation of the problem of

simultaneously estimating the state and the output map of a

dynamical system.

Before we start actually solving some SLAM problems,

a few words should be mentioned about what this problem

formulation actually entails. It really states that knowing the

output map is the same as knowing the map of the world.

This formulation, innocent as it may look, is in fact the main

contribution of this paper.
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III. LINEAR SLAM: A BILINEAR ESTIMATION PROBLEM

Consider the linear system

xk+1 = Axk + Buk

yk = Cxk,

where x ∈ R
n, u ∈ R

m, y ∈ R
p, and A,B, C are constant

matrices of compatible dimensions. As the SLAM problem

is precisely that of estimating C and x from input-output

strings, we see that the output equation above is bilinear in

these two terms. In other words, SLAM for linear systems

inevitably involves solving an estimation problem for linear

systems with bilinear output equations. And, as the output

equation becomes nonlinear, it is clear that observability

alone might not suffice to ensure that the SLAM problem has

a unique solution, as will be seen in the following paragraphs.

A. Non-Uniqueness In the Autonomous Case

First, consider the situation in which there is no control

term. Assume moreover that the output string y0, y1, . . . was

observed and that we were able to find x̂k, k = 0, 1, . . . and

Ĉ that perfectly reproduced this output string, i.e. Ĉx̂0 =
y0, Ĉx̂1 = y1, . . .. Does this mean that we have recovered

x and C? The answer to this is no, as can be directly seen

through the following construction:

Let

x̂k = αxk, Ĉ =
1

α
C

for any non-zero α ∈ R. With this choice, we have that

Ĉx̂k = Cxk = yk, ∀k ≥ 0 and as such we have reproduced

the output string perfectly without having the correct state

and output matrix estimates (as long as C 6= 0). If, in fact,

C = 0 then by letting Ĉ = 0 and x̂ be arbitrary, the correct

(all zeros) output string is also reproduced, and we have thus

shown the following result:

Theorem 3.1: For linear, autonomous systems xk+1 =
Axk, yk = Cxk, the SLAM problem can not be uniquely

solved.

B. A Small Computation

So, in light of the previous result, one is tempted to

abandon all hope of being able to solve the SLAM problem

for linear systems. However, it will turn out that this is not

necessarily the case if one ensures sufficient excitation of the

system. This can, as we will see in the next paragraphs, be

achieved by allowing feedback in the system. In other words,

if we use the state estimate to drive the true system, the state

estimate will affect the output, and in that way, uniqueness

can be obtained.

We illustrate this fact informally by considering the fol-

lowing scalar system

xk+1 = axk + uk

yk = cxk,

where x, u, y, a, b, c ∈ R. Now, let, as before, ĉ and x̂k, k =
0, 1, . . . be state and output matrix estimates and assume that

we use the estimate to define the control signal through the

feedback law

u = −kx̂,

with the result that x̂k+1 = axk − bkx̂k. Moreover, assume

that the estimates are such that they reproduce the output

string perfectly, i.e. ĉx̂0 = y0, ĉx̂1 = y1, . . .. If we assume

that x̂0, a 6= 0 and that the dynamics for the state estimate

is x̂k+1 = (a − bk)x̂k, this implies that

ĉx̂0 = cx0 ⇒ ĉ = cx0

x̂0

ĉx̂1 = ĉ(a − bk)x̂0 = cx1 = cax0 − cbkx̂0,

which implies that ĉax̂0 = cax0. But, since ĉ = cx0/x̂0 this

gives that x̂0 = x0 and thus also that ĉ = c.

What this computation shows is that if it is possible to find

x̂0 and ĉ such that the output string is perfectly reproduced

under the dynamics x̂k+1 = (a − bk)x̂k, we have in fact

solved the SLAM problem uniquely. However, it does not

tell us when this is possible or (even less) how one would

go about finding ĉ and x̂0. However, it does give us hope

that the SLAM problem should be solvable under at least

some assumptions.

C. Deadbeat SLAM: Uniqueness Through Feedback

We will now return to the general, linear case with state

estimate feedback, and we let

xk+1 = Axk − BKx̂k

yk = Cxk,

where x ∈ R
n, u ∈ R

m, y ∈ R
p, and where x̂k ∈ R

n is the

state estimate at time k.

We note that

y0 = Cx0

y1 = Cx1 = CAx0 − CBKx̂0

y2 = Cx2 = CAx1 − CBKx̂1 =
= CA2x0 − CABKx̂0 − CBKx̂1

...

yn = CAnx0 −
∑n−1

k=0 CAkBKx̂n−1−k.

The Cayley-Hamilton Theorem states that

An =
n−1
∑

k=0

αkAk,

for some real coefficients α0, . . . , αn−1 defined through the

characteristic polynomial of A. What this tells us is that if

we let

Yn =
[

yn −
∑n−1

k=0 αkyk, yn+1 −
∑n−1

k=0 αkyk+1

· · · y2n−1 −
∑n−1

k=0 αkyk+n−1

]

∈ R
p×n,

we have that

Yn = CMKX̂0,

where

X̂0 =











x̂0 x̂1 · · · x̂n−1

x̂1 x̂2 · · · x̂n

...
...

...

x̂n−1 x̂n · · · x̂2n−2











∈ R
n2×n

K =











K 0 · · · 0
0 K · · · 0
...

. . .
...

0 0 · · · K











∈ R
nm×n2

,
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and

M =
[

−An−1B +
∑n−1

k=1 αkAn−1−kB,

− An−2B +
∑n−1

k=2 αkAn−1−kB,
, · · · ,−AB + αn−1B, − B] ∈ R

n×nm.

What we would like to do is thus to establish conditions

under which MKX̂0 has full rank and then simply set

Ĉ = Yn

(

MKX̂0

)−1

∈ R
p×n,

which would uniquely give us the correct output matrix.

Then, as long as the system is observable, finding the state

estimate is simply the standard linear estimation problem.

But, before we can establish this result, some notation is

needed. Given a p× q matrix D, we let R(D) ⊆ R
p denote

the range space of D, given by {η ∈ R
p | ∃µ ∈ R

q s.t. η =
Dµ}. Similarly, the null space {µ ∈ R

q | Dµ = 0} ⊆ R
q

is denoted by N (D). Finally, given a subspace S ⊂ R
p, by

S⊥ ⊂ R
p we understand the orthogonal complement of S

given by {v ∈ R
p | vT s = 0 ∀s ∈ S}.

Lemma 3.1: If (A,B) is a controllable pair, R(BT ) ∩
N (KT ) = {0}, and R(KTMT ) ⊆ R(X̂0), then

rank(MKX̂0) = n.
Proof: Let e1, . . . , en be the unit vectors, i.e. the standard,

orthonormal basis for R
n. Since (A,B) is a controllable pair,

for each ei, there exists a ki ∈ {0, . . . , n − 1} such that

eT
i AkiB 6= 0. Let ki⋆ be the smallest such ki. This in turn

implies that

eT
i M =

[

⋆ · · · ⋆ −eT
i⋆Aki⋆ B 0 · · · 0

]

6= 0,

for i = 1, . . . , n, and hence rank(M) = n.

Given an arbitrary z ∈ R
n, let

zTM =
[

ωT
1 ωT

2 . . . ωT
n

]

,

with ωi ∈ R
m. Since M has full rank, at least one ωi 6=

0. Moreover, the structure of M directly gives that ωi ∈
R(BT ), and multiplying together zTMK gives

zTMK =
[

ωT
1 K · · · ωT

i K · · · ωT
n K

]

.

As ωi ∈ R(BT ) and thus, per assumption, not in N (KT ),
a direct consequence of this is that ωT

i K = (KT ωi)
T 6= 0

as long as ωi 6= 0, i = 1, . . . , n, and hence zTMK 6= 0.

Now, let z ∈ R
n be arbitrary and non-zero. Then

zTMK = ξT 6= 0, with ξ ∈ R(KTMT ). But, if

R(KTMT ) ⊆ R(X̂0) this in turn implies that ξ ∈ R(X̂0)
or, more importantly, ξ 6∈ R(X̂0)

⊥. As such, ξ can not be

orthogonal to all of X̂0’s columns, i.e. if we let ei, i =
1, . . . , n denote the unit vectors in R

n, ξT (X̂0ei) 6= 0 for at

least one i, which completes the proof.

Now, in order to establish the final result, some additional

notation is needed. Let Y
N
p = (yT

p , yT
p+1, . . . , y

T
p+N )T , and

let N (C, x̂p, . . . , x̂p+N−1) be given by










0
−CBKx̂p

...

−
∑N−1

k=0 CAkBKx̂p+N−1−k











.

Moreover, let the standard observability matrix be denoted

by O(C), where we have added an explicit dependency on C
in order to be able to use the estimated output matrix rather

than the actual one. Using this notation, it is straightforward

to establish the following relation

Y
n−1
n = O(C)xn −N (C, x̂n, . . . , x̂2n−1).

Moreover, if rank(O(C)) = n, i.e. the system is completely

observable, then xn can be recovered from the output se-

quence as

xn = O(C)†(Yn−1
n + N (C, x̂n, . . . , x̂2n−1)),

where O(C)† is the Moore-Penrose pseudo inverse. And, we

have thus shown the following, main theorem of this section:

Theorem 3.2: Given the linear system

xk+1 = Axk + Buk

yk = Cxk,

where x ∈ R
n, u ∈ R

m, y ∈ R
p. If the system is completely

controllable and completely observable, u = −Kx̂, where

the m× n gain matrix K satisfies R(BT )∩N (KT ) = {0}
and x̂ is the state estimate, then the SLAM problem can

be solved uniquely in 2n steps as long as it is possible to

choose the first 2n − 1 state estimates x̂0, . . . , x̂2n−2 such

that R(KTMT ) ⊆ R(X̂0). With these initial state estimates,

after observing the first 2n outputs, y0, . . . , y2n−1, the output

matrix is uniquely given by

Ĉ = Yn

(

MKX̂0

)−1

,

which involves neither C nor x for its computation. More-

over, x̂2n−1 is uniquely given by

x̂2n−1 = An−1O(Ĉ)†(Yn−1
n + N (Ĉ, x̂n, . . . , x̂2n−1))−

−
∑n−2

k=0 AkBKx̂2n−2−k,

where Ĉ is given above.

D. Examples

Unicycles and Walls: What is potentially overly restric-

tive, from a robotics point-of-view, with the assumptions

leading up to the previous result is not that the system

dynamics are linear, but that the output map is. For example,

consider a unicycle robot moving in a fixed (albeit unknown)

direction. Moreover, assume that the robot is equipped with

a range sensor that measures the distance to a straight wall

in the direction perpendicular to the robot’s movement.

The problem of finding the robot’s position as well as the

orientation of the wall obviously seems ill-posed since any

simultaneous rotation and translation of the robot and the

wall would result in the same measurements. However, by

insisting that the output equation is linear, we have in fact

already assumed that the origin is the point at which the robot

hits the wall, i.e. the translation is already taken cared of.

Secondly, the output equation is only linear in the distance to

this (arbitrary) origin, and as such, the system is assumed to

have already been rotated so that it lines up with the direction

in which the robot moves. As such, a linear formulation of
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this problem has, in effect, already assumed away the rigid

transformation of the system that would otherwise cause the

solution to be non-unique.

x

y

origin

y = cx

wall

robot

Fig. 2. A robot is approaching a wall with an unknown location and
orientation.

Having said that, we will still solve this problem, just to

show how the deadbeat SLAM solution developed in the

previous paragraphs can be put to use. The setup is shown

in Figure 2, where x ∈ R is the distance to the point on the

wall where the robot’s trajectory intersects the wall. (Note,

we have thus assumed that the wall is in fact not parallel

to the movement of the robot.) Moreover, if y ∈ R is the

distance to the wall along the direction perpendicular to the

movement of the robot, then yk = cxk, where 1/c is the

slope of the wall relative to the axis perpendicular to the

movement of the robot, as shown in the figure. Assuming we

can control the velocity of the robot, the system becomes

xk+1 = xk + uk

yk = cxk.

Now, by choosing an arbitrary, non-zero x̂0 ∈ R and using

the feedback law u = −kx̂, where k is an arbitrary (for

stability, we need that |k| < 1 but stability is not necessary

for the estimator), non-zero scalar we can apply the deadbeat

SLAM derived in Theorem 3.2. And, after only one step, we

get

ĉ =
y0 − y1

kx̂0
,

which is well-defined as long as x̂0, k 6= 0.

We moreover have that y1 6= y0 as long as the wall and

the movement of the robot are not parallel, which in turn

gives

y1 = cx1 = ĉx̂1 ⇒ x̂1 =
y1k

y0 − y1
x̂0.

For general a, b, c 6= 0, the one-step deadbeat solution to

the scalar, linear SLAM problem is

ĉ = ay0−y1

bkx̂0

x̂1 = y1bk

ay0−y1

x̂0

x̂k+1 = (a − bk)x̂k, k = 1, . . .

A Two Dimensional Example: Now consider the case

when n = 2 and

A =

[

0.7 −0.5
0.5 0.4

]

, B =

[

0
1

]

K =
[

0.1 0.1
]

, C =
[

1 0
]

.

As

rank
([

B AB
])

= 2, rank

([

C
CA

])

= 2,

the system is both controllable and observable. Moreover, as

N (KT ) = {0}, the condition that R(BT ) ∩N (KT ) = {0}
is trivially satisfied.

The final condition states that x̂0, x̂1, x̂2 should be chosen

in such a way that R(KTMT ) ⊆ R(X̂0). And, in our case

MK =
[

α1B − AB −B
]

[

K 0
0 K

]

=

=

[

0.05 0.05 0 0
0.07 0.07 −0.1 −0.1

]

,

which implies that

R(KTMT ) = span

















1
1
0
0









,









0
0
1
1

















.

By letting x̂0 = (1, 1)T , x̂1 = (0, 0)T , x̂2 = (1, 1)T , the

conditions for Theorem 3.2 are satisfied.

An example of using the deadbeat SLAM solution is

shown in Figure 3.

0 1 2 3 4 5
−3

−2

−1

0

1
_

x
1

x
1

evolution of state v.s. estimate

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

_

x
2

x
2

k

Fig. 3. Dipicted is the true state x (dotted) and the estimate x̂ (solid) as
function of time.

In Higher Dimensions: One might be tempted to draw the

conclusion from the previous example that the conditions

under which rank(MKX̂0) = n are pathological in the

sense that the system parameters must be carefully selected

for this to be true. However, based on a large number of

simulations, in which the dimension, the system matrices,

and the initial state estimates were all selected randomly,

MKX̂0 maintained full rank. As such, it seems that the

condition for SLAM to be solvable for linear systems with

state feedback are generically satisfied, which indicates that

teh sufficient conditions in Theorem 3.2 might be overly

restrictive. However, a more thorough study of this topic is

left to the future.
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IV. NONLINEAR SLAM

If the system dynamics and output equations are nonlinear,

i.e.
xk+1 = f(xk, uk)
yk = h(xk)

things get significantly more complicated. What facilitated

the solution in the linear case was that the output gain matrix

C could be thought of a state of the system (albeit a constant

one), resulting in a linear dynamical system with bilinear

output equation. Similarly, if is possible to parameterize the

output equation as yk = h(α, xk), where α ∈ R
q is unknown

while h is not, a similar methodology can be applied.

In particular, one possibility is to apply the Extended

Kalman Filter to the problem of finding the joint state of

the system
[

xk+1

αk+1

]

=

[

f(xk, uk)
0

]

yk = h(αk, xk).

And, a more direct method to use in this case of a parameter-

ized output equation is the so-called Grizzle-Moraal Newton

observer [20].

It should be noted that these methods both rely on a

parametrization of the environment as yk = h(α, xk).
And, as stated already stated, the choice of representation

of the environment becomes key when solving particular

instantiations of the SLAM problem. This choice can be

related to different ways in which the nonlinear output map

is represented, e.g. through a class of basis functions such

as wavelets, sigmoids, or Gaussian kernel functions.

V. CONCLUSIONS

In this paper we reformulated the SLAM problem in

robotics as a problem involving the simultaneous estimation

of both the state of a controlled dynamic system and the

output mapping itself. In this manner, a natural representation

is obtained that explicitly captures the way the environment

maps the robot state onto sensor readings. We show how

we can use this formulation to solve the SLAM problem in

the linear case, together with sufficient conditions for this

solution to exist uniquely. Potentially fruitful directions for

further research are outlined with regards to the general,

nonlinear problem.
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