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Abstract— This work considers the problem of predictive
control of nonlinear process systems subject to input con-
straints. Lyapunov-based tools are used to develop control-
law independent characterizations of the stability region and
this characterization is exploited via the constraints handling
capabilities of model predicative controllers to expand on the
set of initial conditions for which closed–loop stability can
be achieved. The utilization of this idea is first illustrated
for the case of linear systems and a predictive controller is
designed that achieves closed–loop stability for every initial
condition in the null controllable region. For nonlinear process
systems, constraints are formulated requiring the process to
evolve within the region from where continued decay of the
Lyapunov function value is achievable and incorporated in
the predictive control design, thereby expanding on the set
of initial conditions from where closed–loop stability can be
achieved. The proposed method is illustrated using a chemical
reactor example.
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I. INTRODUCTION

The operation and control of chemical processes often

encounters constraints that arise out of physical limitations

on the control actuators. The constraints, if not accounted

for in the control design, can cause performance dete-

rioration or even instability in the closed–loop system.

Specifically, the presence of constraints limits the set of

initial conditions from where a process can be stabilized at

a desired equilibrium point (the so-called null controllable

region). A meaningful measure of how well the available

control effort is being utilized by the control law can be

obtained via a comparison of the stability region under a

given control law with the null controllable region. Such

a measure also provides assurance on the ability of the

control law in recovering from the effect of disturbances that

may temporarily drive the process away from the nominal

operating point. These considerations have motivated exten-

sive research on accounting for constraints via modifications

in existing control approaches (e.g., anti-windup designs

[1]) as well as fostered the development of controllers

that explicitly account for the presence of constraints via

Lyapunov-based (see, for example, [2], [3], [4], [5], [6],

[7] and [8], [9] for excellent reviews) and model-predictive

control designs (see, for example, [10], [11], [12], [13], [14],
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[15] and the survey paper, [16]).

Given that process dynamics are sometimes identified or

approximated by linear process systems, extensive research

work has focused on designing and analyzing controllers

that utilize a linear process description in computing the

control action. Characterization of the null controllable

region for linear process systems, while being difficult,

is a tractable problem and has been the focus of several

research efforts [17], [18]. Furthermore, several controller

designs have been proposed that allow the possibility of

turning any given subset of the null controllable region into

the stability region of a proposed controller design [19],

[20]. For some classes of linear systems (systems with real

eigenvalues, low order systems with complex eigenvalues),

explicit expressions for the boundary of the null controllable

region have recently been characterized [18]. The work in

[18], however does not consider the problem of determining

the control law that can stabilize all initial conditions in the

null controllable region.

For nonlinear processes, the problem of explicitly char-

acterizing the null controllable region remains intractable.

Lyapunov-based control designs address the problem of

explicit characterizations of the stability region (see, e.g.,

[2], [5], [6]) under given control laws. The stability regions,

however, are limited to (possibly conservative estimates

of) invariant subsets (Ω) of the set of states for which

the Lyapunov function (V ) can be made to decay (Π). In

[21], [22] (see [9] for further results and references), the

stability properties of auxiliary Lyapunov-based controllers

of [2], [6] were utilized in formulating stability constraints

in the optimization problem in a way that the predictive

controllers of [21], [22] mimic the stability region of the

auxiliary control designs. The predictive controllers of [21],

[22], however, do not fully utilize the constraint handling

properties of the predictive controller approach to expand on

the set of initial conditions from where closed–loop stability

can be achieved.

II. PRELIMINARIES

A. Process description

We consider nonlinear processes with input constraints,

described by:
ẋ = f(x) + G(x)u(t); u ∈ U (1)

where x ∈ IRn denotes the vector of state variables,

u ∈ IRm denotes the manipulated inputs taking values in
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a nonempty convex subset U of IRm, where U = {u ∈
IRm : umin ≤ u ≤ umax}, umin ∈ IRm and umax ∈ IRm

denote the lower and upper bounds on the manipulated

input, unorm > 0 is such that ‖u‖ ≤ unorm implies

u ∈ U , where ‖ · ‖ is the Euclidean norm of a vector,

and f(0) = 0. The vector function f(x) and the matrix

G(x) = [g1(x) · · · gm(x)] are assumed to be sufficiently

smooth on their domains of definition. The notation Lfh
denotes the standard Lie derivative of a scalar function h(·)
with respect to the vector function f(·), ∂X denotes the

boundary of a set X and x(T+) is used to denote the limit

of the trajectory x(t) as T is approached from the right,

i.e., x(T+) = lim
t→T+

x(t). Throughout the manuscript, we

assume that for any u ∈ U the solution of the system of

Eq.1 exists and is continuous for all t.
III. ENHANCING THE STABILITY REGION ESTIMATES

USING MODEL PREDICTIVE CONTROL

The stability region estimates of existing Lyapunov-

based predictive controllers are limited (and dependent

upon) stability region estimates obtained using the auxiliary

control approaches. Such controllers do not fully utilize

the constraint handling capabilities of the predictive control

approach, and suffer from the same possible conservatism

as the auxiliary control designs. In this section, we present a

predictive control design wherein constraints are formulated

that, by better utilizing Lyapunov-based analysis tools,

enhance the set of initial conditions from where closed–loop

stability is achieved. To clearly explain the key idea, we first

consider linear systems subject to constraints and design a

predictive controller that guarantees stabilization from all

initial conditions for which closed–loop stability can be

achieved subject to constraints. Generalization of this idea

for nonlinear process systems is subsequently presented.

A. Linear systems subject to constraints

Linear descriptions of the process dynamics are often

utilized in controller design for chemical processes. While

extensive results exist on constructing control designs that

guarantee stability from any given subset of the null

controllable region (see, e.g., [17], [23], [24], [18], [25],

[19], [20], [10], [19]), the computational complexity of the

control design typically renders the control implementation

impractical as larger and larger stability regions are desired.

Furthermore, there exists a lack of results that guarantee sta-

bility for any initial condition in the entire null controllable

region. In this section, we show how the characterization

of the null controllable region, developed in [18], can be

utilized within the predictive control approach in achieving

stability for all initial conditions in the null controllable

region. To this end, consider processes whose dynamics can

be described by

ẋ(t) = Ax(t) + Bu(t), u ∈ U (2)

where A and B are constant n × n and n × m matrices
respectively. A summary of characterization of the null

controllable region is described below [18].

1) Null controllable region for linear systems: A state

x0 is said to be null controllable if there exists a

T ∈ [0,∞) and an admissible control u(t) such that

the state trajectory x(t) of the system of Eq.2 sat-

isfies x(0) = x0 and x(T ) = 0, and the union

of all null controllable sets is called the null control-

lable region of the system which we denote by Xmax.

The null controllable region characterized as (see [18])

Xmax =
⋃

T∈[0,∞)

{x = −

∫ T

0

e−AτBu(τ)dτ : u(τ) ∈ U}

can be shown to be a bounded convex open set containing

the origin if A is unstable. It can be shown that the null

controllable region of the multi-input system of Eq.2 is the

Minkowski sum of the single input subsystems

ẋ(t) = Ax(t) + biui(t), ui(t) ∈ Ui (3)

where B = [b1 b2 . . . bm] and ui denotes the ith component

of the vector u. Specifically, let Xmax
i denote the null

controllable region of the subsystem of Eq.3 then Xmax =
m

∑

i=1

Xmax
i = {x1 + x2 + · · · + xm : xi ∈ Xmax

i , i =

1, . . . ,m}. For systems with real eigenvalues (see [18] for

computing the null controllable region for low dimensional

systems with complex eigenvalues), the boundary of the null

controllable region can be computed as [18]

∂Xmax
i = ±[

n−1
∑

j=1

2(−1)je−A(t−tj) + −1nI]A−1biu
norm
i :

(4)

0 = t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ t ≤ ∞

Eq.4 can be used to verify whether a state lies within the

null controllable region and, more importantly, can be used

to compute, for a given state, the unique value of u∗
i such

that the state resides on the boundary of the null controllable

region of a system of the form of Eq.3 with a constraint of

u∗
i on the manipulated input ui. Utilizing these properties,

for a given state x0 we define a function ū∗
i (x0) as the

unique positive number u∗
i for which x0 ∈ ∂Xmax

i (u∗
i ).

Essentially, for a given state x0, Eq.4 is solved to yield ti,
i = 2 . . . n − 1, t and unorm

i . In the next subsection, we

show how the predictive control approach can utilize such

a characterization in enabling stabilization from all points

within the null controllable region.

2) Predictive control design with the null controllable

region as the stability region: The key idea in the predictive

control design is as follows: for any given value of the

state, the value u∗
i represents the minimum control action

required to stabilize the system. A meaningful control action

therefore would be one that drives the process in a way that

the minimum control action required to stabilize the system

decreases. This intuitive idea is formulated mathematically

in Theorem 2 below. To this end, consider the system of

Eq.2 and an x0 ∈ Xmax. Let xi,0 ∈ Xmax
i (u∗

i ), i =
1, . . . ,m be such that x0 =

∑m
i=1 xi,0, with u∗

i ≤ unorm
i .
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The predictive controller that guarantees stabilization from

all initial conditions in Xmax takes the form:

ui,MPC = argmin{J(x, t, u(·))|u(·) ∈ U, x(0) = xi,0}
(5)

s.t. ẋ = Ax + biui (6)

˙̄u
∗
i (x(t)) ≤ 0 (7)

Eq.6 is the linear model describing the time evolution of the

state x, due to the ith manipulated input. The performance

index is given by
J(x, t, u(·)) = ˙̄u

∗
(xi(t)) (8)

The minimizing controls u0
i (·) are then applied to the plant

and the procedure is repeated indefinitely. Note that the

above formulation is a continuous time version of the MPC,

and assumes instantaneous evaluation and implementation

of the computed control value. The result under continuous

implementation is presented in Theorem 2 below, and the

‘implement and hold’ approach demonstrated and discussed

in the simulation example for linear systems and addressed

explicitly in the predictive control design for nonlinear

process systems in Theorem 3.

Theorem 2: Consider the constrained system of Eq.2 under

the MPC law of Eqs.5–8. Then, given any x0 ∈ Xmax, the

optimization problem of Eq.5-8 is feasible for all times, and

lim
t→∞

x(t) = 0.

Proof of Theorem 2: We first prove the results for a single

input system, and then illustrate the generalization to multi-

input systems. In the proof, the key things to show are

guaranteed feasibility of the optimization problem and the

optimal solution leading to closed–loop stability.

Single input system: In this part of the proof, we will drop

the subscript on the input with the understanding that a

single input system is being analyzed. Consider an x0 ∈
Xmax, for which ū∗(x0) = u∗

0 < unorm. In part 1, we

show feasibility of the optimization problem, and in part

2, the implementation of the optimal solution resulting in

closed–loop stability.

Part 1: Since x0 ∈ Xmax(unorm), there exists at least

one input trajectory u(t) with |u(t)| ≤ unorm such that

lim
t→∞

x(t) = 0. Out of all such possible trajectories (for

which lim
t→∞

x(t) = 0) let

u∗
1 = min

|u1(t)|≤unorm
max

t, x(0)=x0

ū∗(xu1
(t)) (9)

where xu1
(t) denotes the state profile corresponding to an

input profile of u1(t). Thus u∗
1 represents the minimum

(over all possible stabilizing trajectories) of the maximum

(over time) value that the function ū∗(·) takes. Note that

if u∗
1 ≥ unorm then an x∗

1 such that ū∗(x∗
1) = u∗

1 will be

such that x∗
1 ∈ Xmax(unorm) (in other words, it would

mean that the process starting from a state outside the null

controllable region is actually stabilized) which leads to a

contradiction, we therefore have that

u∗
1 < unorm (10)

Let u∗
1 = u∗

0 + γ with γ > 0. Since x0 ∈ ∂Xmax(u∗
0),

this implies that x0 ∈ Xmax(u∗
0 + γ/2). Denoting

u∗
2 = min

|u2(t)|≤u∗

0
+γ/2

max
t, x(0)=x0

ū∗(xu2
(t)) (11)

and invoking Eq.10 again with u∗
0 + γ/2 = unorm, we

get that u∗
2 < u∗

0 + γ/2. Furthermore, noting that the

minimizations of Eq.9 and Eq.11 are exactly the same, albeit

with a larger constraint in Eq.9 compared to Eq.11, we get

that u∗
1 = u∗

0 + γ ≤ u∗
2 < u∗

0 + γ/2, which once again

leads to a contradiction, implying γ cannot be a positive

real number. This finally leads to the conclusion that for any

x0 ∈ Xmax(unorm), there exists a manipulated input profile

and corresponding state trajectory such that ū∗(x(t+δt)) ≤
ū∗(x(t)) for all δt > 0. This implies that along such a

trajectory the function ū∗(x(·)) is non-increasing, implying

the feasibility of the constraint ˙̄u
∗
(x(t)) ≤ 0.

Part 2: Having established the feasibility of the optimiza-

tion problem in Part 1 above, consider now an x0 in

Xmax for which J∗(x0, t, u(·)) = min ˙̄u
∗
(x0(t)) = 0. This

implies that for this x0, the minimizing uMPC is such that

the vector Ax0 + bu (which represents the current direction

of the state trajectory) is on the tangent plane to the surface

defining ∂Xmax(ū∗(x0)). This would further imply that the

vectors Ax0 and buMPC must themselves be co-planar (if

they were not, a different allowable value for uMPC could

have been chosen to point the vector Ax0 + bu away from

the tangent plane to the surface defining ∂Xmax(ū∗(x0)),
resulting in a J∗(x0(t)) < 0). Upon implementation of

such a uMPC , the tangent to ∂Xmax at x(t+) cannot

remain in the same plane (due to the strict convexity of the

boundary of the set Xmax) as that of the vector b resulting

in min ˙̄u
∗
(x+

0 ) < 0. Therefore, for any x0 for which the

minimum of ˙̄u
∗
(x(0)) = 0, the minimum of ˙̄u

∗
(x(0+)) < 0

ensuring convergence of ū∗(x(t)) to zero, in turn resulting

in lim
t→∞

x(t) = 0.

Multiple input system: The result for the multiple input

system is a direct generalization for the single input system.

Having defined x0 =
∑m

i=1 xi,0, Xmax and Xmax
i , the

evolution of the multiple input system is exactly the same as

the sum of the multiple single input systems. Feasibility and

stability of the subsystems yields stability for the original

multi-input system.

Remark 2: The result achieving stabilization from the null

controllable region can best be understood in light of the

result using, say, a control Lyapunov function. Specifically,

Lyapunov-based predictive controllers [21] do not guar-

antee stabilization from all initial conditions in the null

controllable region due to the following reasons: (1) for

a choice of a CLF V , V̇ is not necessarily guaranteed to

be negative for all initial conditions in Xmax, (2) even if

a certain choice of the CLF resulted in V̇ being negative

for all initial conditions in Xmax, the level sets of a

CLF may not necessarily coincide with the boundary of

the null controllable region. The stability region estimate

would therefore typically be a subset of the null controllable
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region. Note also that if it were always possible to obtain

the global optimum to the optimization problem, then for

the specific choice of the objective function, the constraint

of Eq.7 would be redundant. Specifically, if a control action

were to exist that would make ˙̄u
∗
(x) ≤ 0 it would naturally

be chosen over another control action for which ˙̄u
∗
(x) > 0

(due to the specified objective function). In implementing

the control algorithm, however, the optimization problem

may not always be able to compute the global optimum.

The constraint of Eq.7 ensures that a local minima of ˙̄u
∗
(x),

for which ˙̄u
∗
(x) may be greater than zero (and may lead to

de-stabilization) is avoided and only a stabilizing solution

is chosen.

B. Model predictive control of nonlinear systems

In contrast to linear systems, where an explicit char-

acterization of the null controllable region is possible,

for nonlinear process systems such a characterization re-

mains an open problem. In [22], predictive controllers were

designed that utilized auxiliary Lyapunov–based control

design for estimating the feasibility and stability region.

In the predictive control design of [22], the first layer of

conservativeness stems from the estimation of Π which only

captures initial conditions for which negative definiteness

of V̇ can be achieved by the auxiliary control law, instead

of characterizing the set of initial conditions for which

negative definiteness of V̇ can be achieved independent of

the control law (which we will characterize and denote by

Π+). Additionally, only requiring V̇ to be negative allows

stabilization from all initial conditions inside Ω but misses

out on achieving stabilization from initial conditions outside

Ω but inside Π.

1) Nonlinear model predictive controller: We utilize in

this section the constraint handling capabilities of the pre-

dictive controller to expand on the set of initial conditions

from where closed–loop stability can be achieved to alle-

viate the possible conservatism associated with Lyapunov-

based control designs. To this end, we first characterize the

set Π+ for which negative definiteness of the Lyapunov

function derivative can be achieved subject to manipulated

input constraints (and independent of the control law)

described by Π+ =

{x ∈ IRn : LfV (x) +
m

∑

i=1

LGmin
i

V (x)ui ≤ −ǫ∗∗} (12)

where LGmin
i

V (x)ui = LGi
V (x)ui

max, if LGi
V (x) ≤ 0

and LGmin
i

V (x)ui = LGi
V (x)ui

min, if LGi
V (x) > 0

and ǫ∗∗ is a positive number to be defined. The set Π+

therefore denotes the entire set of initial conditions from

where V̇ < −ǫ∗∗ is achievable (and not just the set from

where a specific control law can achieve V̇ < 0. The idea

behind the expression in Eq.12 is as follows: each element

of the vector LGV (x), denoted by Lgi
V (x) captures the

effect of the ith component of the manipulated input on

the Lyapunov function derivative. The term LGmin
i

V (x)ui

therefore captures the most that the ith manipulated input

can contribute towards making V̇ (x) negative. Alternatively,

the expression can also be thought of as the set of states

for which V̇ (x) is negative under the ‘bang-bang’ control

law given by ui(x) = −sgn(Lgi
V (x))unorm

i (for the case

where |ui
max| = |ui

min| = unorm
i ) where sgn(x) = 1 if

x ≥ 0 and sgn(x) = −1 if x < 0. By accounting for the

maximum control action available, the set Π+ expands on

the estimate Π. Subsequently, computation of the largest

level set Ω+, of the form

Ω+ = {x ∈ IRn : V (x) ≤ cmax+

} (13)

completely contained in Π+ improves upon the estimate Ω.

Requiring V̇ ≤ −ǫ∗∗ instead of only requiring V̇ < 0 is

formulated to ensure stabilization subject to implement and

hold (similar to the result in Theorem 1). Having defined

the sets Π+ and Ω+ the predictive controller enhancing the

set of initial conditions from which stability is achieved

(accounting specifically for initial conditions outside Ω+

but inside Π+) takes the form:

u = argmin{J(x, t, u(·))|u(·) ∈ S} (14)

s.t. ẋ = f(x) + G(x)u (15)

V̇ (x(τ)) ≤ −ǫ∗ ∀ τ ∈ [t, t + ∆) if V (x(t)) > δ
′

(16)

V (x(τ)) ≤ δ
′

∀ τ ∈ [t, t + ∆) if V (x(t)) ≤ δ
′

(17)

x(t + τ) ∈ Π+ ∀ τ ∈ [t, t + ∆) if V (x(t)) > cmax+

(18)

where S = S(t, T ) is the family of piecewise continuous

functions (functions continuous from the right), with period

∆, mapping [t, t+T ] into U and T is the horizon. Eq.15 is

the model describing the time evolution of the state x under

continuous operation, V is the control Lyapunov function

(CLF) and δ
′

, ǫ∗ > 0 are parameters defined in Theorem

1. A control u(·) in S is characterized by the sequence

{u[j]} where u[j] := u(j∆) and satisfies u(τ) = u[j] for

all τ ∈ [t + j∆, t + (j + 1)∆). The performance index is

given by J(x, t, u(·)) =
∫ t+T

t

[

‖xu(s; x, t)‖2
Q + ‖u(s)‖2

R

]

ds+vV (x(t+∆)) (19)

where Q is a positive semi-definite symmetric matrix, R
is a strictly positive definite symmetric matrix and v > 0.

xu(s; x, t) denotes the solution of Eq.1, due to control u,

with initial state x at time t. The minimizing control u0(·) ∈
S is then applied to the process over the interval [t, t + ∆)
and the procedure is repeated indefinitely. The feasibility

and stability properties of the predictive controller are

formalized in Theorem 3 below:

Theorem 3: Consider the constrained system of Eq.1 under

the MPC law of Eqs.14–19. Then, given any d > 0, there

exists a positive real number ǫ∗∗ such that if x0 ∈ Ω+,

where Ω+ was defined in Eq.13, then the optimization

problem of Eq.14-19 is guaranteed to be feasible for all

times, x(t) ∈ Ω+ for all t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d.

1136



Furthermore, for x0 ∈ Π+\Ω+ where Π+ was defined in

Eq.12, if the optimization problem of Eq.14-19 is succes-

sively feasible for all times, then x(t) ∈ Π+
⋃

Ω+ for all

t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ d.

Proof of Theorem 3: The proof of the theorem comprises

of two parts. In part 1, we show the feasibility of the

optimization problem for all x ∈ Ω+ and subsequent

convergence to the desired neighborhood of the origin,

while in part 2, for x /∈ Ω+ we show convergence to

the desired neighborhood of the origin upon assumption of

feasibility of the optimization problem.

Part 1: From theorem 1 and the proof (see [22]) it follows

that given d, there exist positive real numbers δ
′

and

∆∗ such that if ∆ ∈ (0, ∆∗] then satisfaction of the

constraints of Eqs.16-17 ensures convergence to the desired

neighborhood of the origin. In the proof, we show the exis-

tence of the positive real number ǫ∗∗ (yielding Ω+) which

ensures initial and continued satisfaction of the constraints

of Eqs.16-17 for all x0 ∈ Ω+. From the continuity of the

functions f(·), G(·) LfV (·) LGV (·), the boundedness of u
and by restricting the state x0 to the set Ω+, it follows that

given ǫ∗ and ∆∗ there exists a positive real number ǫ∗∗ such

that if LfV (x0) + LGV (x0)u0 ≤ −ǫ∗∗ then LfV (x(τ)) +
LGV (x(τ))u0 ≤ −ǫ∗ ∀ τ ∈ (0,∆∗], where ǫ∗,∆∗ were

defined in Theorem 1. This ensures initial feasibility of the

constraints of Eq.16 for all x0 ∈ Ω+. Initial satisfaction of

the constraints ensures that V (x(t+∆)) ≤ V (x(t)), which

in turn implies that x(t + ∆) ∈ Ω+ for all t ≥ 0, thereby

yielding successive feasibility of the optimization problem.

Successive feasibility of the optimization problem leads to

convergence to the desired neighborhood of the origin.

Part 2: For all x0 /∈ Ω, the assumption of initial and

successive feasibility of the constraint of Eq.18 ensures

that x(t + τ) ∈ Π+ for all x(t) /∈ Ω+, τ ∈ (0,∆∗].
Also, the satisfaction of the constraint of Eq.16 ensures that

the value of the Lyapunov function continues to decrease,

implying that the state trajectory eventually converges to

the set Ω+. Convergence to lim sup
t→∞

‖x(t)‖ ≤ d follow from

part 1 above. This concludes the proof of Theorem 3.

Remark 3: For initial conditions within a level set of the

Lyapunov function (Ω+), successive decays in the Lyapunov

function value is achievable and sufficient to drive the

state to the desired neighborhood of the origin. For initial

conditions outside the set Ω+, the constraint of Eq.18 asks

for the control action to be computed such that for the

process state at the next time instant, negative definiteness

of V̇ can be successively achieved. This ensures that out

of all possible control actions that can achieve negative

definiteness of V̇ , one is chosen that ensures that the state

trajectory stays within Π+ from where continued decay of

the Lyapunov function value is possible. A continued decay

in the Lyapunov function value leads to convergence to the

desired neighborhood of the origin. Note also that in con-

trast to the result on linear system, guaranteed feasibility for

all initial conditions in the null controllable region simply

cannot be achieved, yet Eq.18 represents a constraint that at

least guides the control law to take some meaningful control

action for initial conditions outside Ω+. This constraint goes

beyond (and does better than) simply requiring a decay in

the value of the Lyapunov function and enables stabilization

from a larger set of initial conditions (see the simulation

example for a demonstration).

2) Illustrative chemical process example : Consider a

continuous stirred tank reactor where an irreversible, first-

order exothermic reaction of the form A
k
→ B takes place.

The mathematical model for the process takes the form:

ĊA =
F

V
(CA0 − CA) − k0e

−E

RTR CA

ṪR =
F

V
(TA0 − TR) +

(−∆H)

ρcp
k0e

−E

RTR CA +
Q

ρcpV
(20)

where CA denotes the concentration of the species A, TR

denotes the temperature of the reactor, Q is the heat added

to the reactor, V is the volume of the reactor, k0, E, ∆H are

the pre-exponential constant, the activation energy, and the

enthalpy of the reaction and cp and ρ are the heat capacity

and fluid density in the reactor. The values of all process

parameters can be found in [26]. The control objective is

to stabilize the reactor at the unstable equilibrium point

(Cs
A, T s

R) = (0.57 Kmol/m3, 395.3 K) using the rate

of heat input, Q, and change in inlet concentration of

species A, ∆CA = CA0−CA0s
as manipulated inputs with

constraints: |Q| ≤ 32 KJ/s and |∆CA0| ≤ 1 Kmol/m3.

We first construct a Lyapunov-based predictive controller

using a V (x) = x′Px where x = (CA − Cs
A, TR − T s

R),

P =

(

0.983 0.025
0.025 0.001

)

where the matrix P is com-

puted by solving the Riccati inequality with the linearized

system matrices. The parameters in the objective function

of Eq.19 are chosen as Q = qI , with q = 0.1, and

R =

(

10.0 0.0
0.0 10000.0

)

. The set Π and the stability

region estimate under the Lyapunov-based controller Ω are

computed and shown in Fig.1. The constrained nonlinear

optimization problem is solved using the MATLAB subrou-

tine FMINCON, and the set of ODEs is integrated using the

MATLAB solver ODE15s.

To illustrate the enhancement in the set of initial con-

ditions from where closed–loop stability can be achieved

using the proposed controller, we pick an initial condition

CA(0), TR(0) = 1.113 kmol/m3, 395.3 K outside Ω+

but inside Π+. We first implement the Lyapunov-based

predictive controller of Theorem 1 that only requires the

value of the Lyapunov function to decrease. Since the initial

condition is within the set Π+, there exists a control action

that can enforce negative definiteness of the Lyapunov

function and the controller proceeds to implement such

control action. However, enforcing negative definiteness of

V̇ (i.e., driving the trajectory to successively lower level

curves of the Lyapunov function), is not sufficient to ensure
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that the trajectory remains within the set Π+. At t = 0.12
min, the state trajectory escapes out of Π+, and it is

no longer possible to find a control action that enforces

negative definiteness of V̇ . If the stability constraints are

removed to allow feasibility of the optimization problem,

the value of the Lyapunov function continues to increase

and closed–loop stability is not achieved. In contrast, if the

proposed predictive controller is implemented, it not only

enforces negative definiteness of V̇ , but also ensures that

the state trajectory does not escape Π+. In other words, out

of possible state trajectories along decreasing values of the

level curves of V (x), those are chosen (if they exist) that

keep the state profile in Π+. Closed-loop stability is thereby

achieved, demonstrating an expansion on the set of initial

conditions from where closed–loop stability can be achieved

by better utilizing the constraint enforcing capabilities of the

predictive control approach.

0 0.5 1 1.5
350

400

450

500

550

C
A
 (kmol/m

3
)

T
 (

K
) ΠΩ

Fig. 1. Evolution of the state trajectory for the chemical reactor example
under a Lyapunov-based predictive controller of [21] (dashed line) with a
stability region Ω and under the proposed predictive controller (solid line)
enabling stabilization from initial conditions outside Ω.

In conclusion, this work considered the problem of

predictive control of nonlinear process systems subject to

input constraints. A predictive controller for linear systems

was first designed to achieve stability for every initial

condition in the null controllable region without resorting to

infinite horizons. For nonlinear process systems, predictive

controllers were designed to expand on the set of initial

conditions from where closed–loop stability is achievable.

The proposed method was illustrated using a chemical

reactor example.
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