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Abstract— Flatness based tracking controllers (see e.g. [1],
[2], [3], [4]) are a very important tool for nonlinear controller
design. Such tracking controllers achieve an exact linearization
of the tracking error dynamics. In [5] a different flatness based
tracking controller has been proposed based on the notion
of feedforward linearization. This contribution clarifies the
relations between these two flatness based tracking controllers
and the tracking controller design for flat systems which has
been proposed in [6], [7]. This approach uses a differential
operator representation of the linearized tracking error dy-
namics and yields a linear time varying feedback. Similarities
and differences of the different controllers are pointed out and
are illustrated for a magnetic levitation system.

I. INTRODUCTION

Flatness based tracking controllers (see e.g. [1], [2], [3],

[4]) are a very important tool for nonlinear controller design.

To improve the robustness of flatness based tracking con-

trollers against parameter variations, in [5] another flatness

based tracking controller has been proposed which is based

on the notion of feedforward linearization. Additionally, in

some cases not all states have to be available for measure-

ment to achieve a stabilizing feedback with this tracking

controller. In [6], [7] the stabilization of trajectories for

flat systems using only linear feedback has been proposed.

This feedback is derived from a time varying differential

operator representation (see e.g. [8], [9]) of the linearized

tracking error dynamics. Based on the differential operator

representation also a linear dynamic output feedback can be

constructed to estimate the feedback when not all states are

available for measurement. In this contribution the relations

between these three flatness based tracking controller design

strategies are investigated for the case of SISO systems. The

paper is organized as follows: Section II shortly reviews

the relevant relations for flat SISO systems, which are

used in this contribution. In Section III the flatness based

tracking controller design with exact linearization of the

tracking error dynamics is recalled. In Section IV the two

approaches of [5] and [7] are introduced which make both

use of a linearization of the tracking error dynamics. Then,

in Section V the relations between the different tracking

controllers are discussed by analyzing the resulting feedback

laws. In Section VI the construction of a dynamic output

feedback using a nonlinear tracking observer as well as the

construction of a linear dynamic output feedback based on

a differential operator representation are recalled. Finally,

in Section VII the results are illustrated for the case of
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a magnetic levitation system. The robustness properties of

flatness based tracking controllers are an important question

which has been raised, e.g., in [5]. Therefore, by means of

the investigated example system, the robustness properties

of the different controllers are discussed and it is shown that

the construction of an output feedback can be more relevant

with respect to robustness than the used feedback law.

II. FLAT SYSTEMS

For a unified presentation of the different controllers the

following relations are used: For a nonlinear SISO system

ẋ = f (x,u) (1)

with x ∈ R
n and u ∈ R the flatness property implies the

existence of a flat output y f ∈ R, such that

y f = h f (x) (2)

x = ψx(y f , ẏ f , . . . ,y
(n−1)
f ) (3)

u = ψu(y f , ẏ f , . . . ,y
(n)
f ) (4)

holds, with h f , ψx, ψu smooth at least on an open subset of

R
n, R

n and R
n+1 respectively. Introducing the new coordi-

nates

ζ = (ζ1, . . . ,ζn) = (y f , ẏ f , . . . ,y
(n−1)
f ) , (5)

the flat system (1) can be transformed via the well defined

diffeomorphism

ζ = Φ(x) (6)

into controller normal form

ζ̇i = ζi+1, i = 1,2, . . .n−1

ζ̇n = α(ζ ,u) .
(7)

Setting v = y
(n)
f yields

u = ψu(ζ ,v) (8)

in view of (4) and (5). In [5] it has been shown that

α(ζ ,ψu(ζ ,v)) = v (9)

holds and thus by application of the feedback law (8), system

(1) is diffeomorphic to the Brunovský normal form

ζ̇i = ζi+1, i = 1,2, . . .n−1

ζ̇n = v
(10)

with the new input v. From these relations it becomes clear

that (4) is an exact linearizing feedback law.

For flat systems a feedforward controller can be derived

very naturally from the differential parameterization. When

assigning for the flat output a sufficiently smooth reference

trajectory

y∗f : I → R, I = [t0,te] (11)
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a feedforward controller is obtained by inserting y∗f into the

differential parameterization (4)

u∗ = ψu(y
∗
f , ẏ

∗
f , . . . ,y

∗
f
(n)) (12)

In case of consistent initial conditions, i.e.

x(t0) = ψx(y
∗
f (t0), ẏ

∗
f (t0), . . . ,y

∗
f
(n−1)(t0)) (13)

and in absence of disturbances the feedforward controller

(12) leads to exact tracking of the reference trajectory (11),

due to relations (7), (9) which yield

ζ̇n = α(ζ ∗
,ψu(ζ

∗
, ζ̇ ∗

n ) = ζ̇ ∗
n (14)

The corresponding trajectory in the original coordinates is

obtained to

x∗ = ψx(y
∗
f , ẏ

∗
f , . . . ,y

∗
f
(n−1)) (15)

III. TRACKING CONTROLLER DESIGN WITH EXACT

FEEDBACK LINEARIZATION

To stabilize the tracking of the reference trajectory y∗f , the

tracking error e is introduced as

e = (e1,e2, . . . ,en) = (y f − y∗f , ẏ f − ẏ∗f , . . . ,y
(n−1)
f − y∗f

(n−1))

= (ζ1 − ζ ∗
1 ,ζ2 − ζ ∗

2 , . . . ,ζn − ζ ∗
n ) (16)

In view of (10) the tracking error dynamics are given by

ėi = ei+1, i = 1,2, . . . ,n−1

ėn = α(ζ ,u)− ζ̇ ∗
n

(17)

When setting the new input v in (8) to v = vel , i.e.

uel = ψu(ζ ,vel) (18)

where

vel = ζ̇ ∗
n +∆vel = ζ̇ ∗

n −
n

∑
i=1

ãi−1ei = ζ̇ ∗
n −

n−1

∑
i=0

ãie
(i)
1 (19)

it follows with (17) and (9) that the tracking error obeys the

linear differential equation

0 = e
(n)
1 +

n−1

∑
i=0

ãie
(i)
1 (20)

The ãi are usually chosen as the lower order coefficients of

some monic Hurwitz polynomial to assure stability.

IV. TRACKING CONTROLLER DESIGN BASED ON A

LINEARIZATION ABOUT THE REFERENCE TRAJECTORY

The other two flatness based control methodologies dis-

cussed in this paper do not achieve an exact linearization

of the tracking error dynamics but rather use a linearization

about the reference trajectory. A linearization of the nonlin-

ear tracking error dynamics (17) at e = 0 (i.e. ζ = ζ ∗ in view

of (16)) and u = u∗ yields

∆ė = (21)









0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1

ac0
(t) ac1

(t) ac2
(t) · · · acn−1

(t)










∆e +










0

0
...

0

bc(t)










∆u

where

aci−1
(t) =

∂ α(ζ ,u)

∂ ζi

∣
∣
∣
∣ζ=ζ∗

u=u∗
, i = 0,1, . . . ,n−1 (22)

bc(t) =
∂ α(ζ ,u)

∂ u

∣
∣
∣
∣ζ=ζ∗

u=u∗
(23)

Note that due to the flatness property of (1)

bc(t) 6= 0 ∀t ∈ I (24)

is assured (see e.g. [4]). From the structure of (21) it follows

furthermore that

∆e = (∆e1,∆e2, . . . ,∆en) = (∆e1,∆ė1, . . . ,∆e
(n−1)
1 ) (25)

A. Tracking Controller Design based on a

Differential Operator Representation

In this section the flatness based tracking controller design

as elaborated in [7] is introduced, which uses a time varying

differential operator representation (see e.g. [10], [11], [12]

for the time invariant case and [8], [9] for the time varying

case). A differential operator representation of the linearized

tracking error dynamics can be derived from (21) by solving

the last row for ∆u and taking into account (25)

1

bc(t)

(

Dn −
n−1

∑
i=0

aci
(t)Di

)

︸ ︷︷ ︸

n(D,t)

∆e1 =∆u (26)

where the differential operator D = d
dt

was used. Relation

(26) can be restated using the time varying polynomial

differential operator n(D,t)

n(D,t)∆e1 =∆u (27)

For the controller design, the differential operator n(D,t) is

split up using the highest column degree matrix Γc[n(D,t)]
(see [12]) in the following way

n(D,t) = Γc[n(D,t)]Dn + nR(D,t) (28)

where in view of (26)

Γc[n(D,t)] =
1

bc(t)
(29)

nR(D,t) = −
1

bc(t)

n−1

∑
i=0

aci
(t)Di (30)

Taking into account (26), the additional control action

∆udor = −Γc [n(D,t)] n̄R(D)∆e1 + nR (D,t)∆e1 (31)

achieves the linear time invariant dynamics

n̄(D)∆e1 = (Dn +
n−1

∑
i=0

ãiD
i)∆e1 = 0 (32)

for the linearized tracking error, when n̄R(D,t) is chosen

according to

n̄R(D) =
n−1

∑
i=0

ãiD
i (33)

The ãi are again chosen such that n̄(D) is a monic Hurwitz

polynomial. The resulting tracking controller can be summa-

rized as

udor = u∗ +∆udor (34)
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B. Tracking Controller Design based on

Exact Feedforward Linearization

For the tracking controller design based on exact feedfor-

ward linearization (see e.g. [5]) the feedback

u f l = ψu(ζ
∗
,v f l) (35)

is used, where it is proposed to assign for v f l

v f l = ζ̇ ∗
n +∆v f l = ζ̇ ∗

n +
n

∑
i=1

λiei (36)

For the design of the parameters λi the tracking error

dynamics of the controlled system

ėi = ei+1, i = 1,2, . . . ,n−1 (37)

ėn = α(ζ ∗ + e,ψu(ζ
∗
, ζ̇ ∗

n +
n

∑
i=1

λi−1ei))− ζ̇ ∗
n

are linearized at e = 0. In contrast to [5], this is done by

showing that when the feedback law (35)–(36) is applied, ∆u

in (21) is given by

∆u =
n

∑
i=1

∂u f l

∂v

∂v f l

∂ei

∆ei =
1

bc(t)

n

∑
i=1

λi∆ei (38)

Thus, when assigning

λi = −aci−1
(t)− ãi−1, i = 1,2, . . . ,n (39)

in (36), the linearized tracking error ∆e1 satisfies the linear

differential equation (32), in view of (21), (25) and (38). This

choice of the controller parameters to achieve time invariant

linearized tracking error dynamics has been mentioned ex-

plicitely in [5], although also time invariant parameters λi

have been considered.

To derive (38) it is realized that

e = 0 ⇔ ζ = ζ ∗ (40)

holds and clearly

∂ψu(ζ ,v)

∂v

∣
∣
∣
ζ=ζ ∗

=
∂ψu(ζ

∗,v)

∂v
(41)

Together with (9), it follows that

∂α(ζ ,ψu(ζ ,v))

∂v

∣
∣
ζ=ζ ∗ =

∂α(ζ ∗,ψu(ζ
∗,v))

∂v
= 1 (42)

Having

vel

∣
∣
ζ=ζ ∗ = v f l

∣
∣
ζ=ζ ∗ = ζ̇ ∗

n (43)

it follows that

uel|ζ=ζ ∗ = u f l |ζ=ζ ∗ = u∗ (44)

(see (18)–(19), (35)–(36)). This yields with (42)

∂α(ζ ,u)

∂u

∣
∣
∣ζ=ζ∗

u=u∗

∂ψu(ζ ,v)

∂v

∣
∣
∣
ζ=ζ ∗

= 1 (45)

and thus, in view of (23)

∂ψu(ζ ,v)

∂v

∣
∣
∣
ζ=ζ ∗

=

(
∂α(ζ ,u)

∂u

∣
∣
∣ζ=ζ∗

u=u∗

)−1

=
1

bc(t)
(46)

So, with (41)
∂ψu(ζ

∗,v)

∂v
=

1

bc(t)
(47)

holds and finally with (36)

∂v f l

∂ei
= λi (48)

is obtained. As a consequence, with

∆u =
∂u f l

∂e

∣
∣
∣
e=0

∆e =
n

∑
i=1

∂u f l

∂v

∂v f l

∂ei

∆ei

=
n

∑
i=1

∂ψu(ζ
∗,v)

∂v

∣
∣
∣
v=v f l

∂v f l

∂ei

∆ei (49)

and (47)–(48), it can be concluded that for the application

of the feedback law (35)–(36) relation (38) holds.

V. COMPARISON OF THE RESULTING FEEDBACK LAWS

The considerations in Sections III and IV showed that

there are strong relations between the three different tracking

controller design methods. This will be made more precise

by analyzing the resulting feedback laws. It will be shown

that all three feedback laws are identical when their taylor

series expansions with respect to the tracking error about the

reference trajectory are truncated after the first order. More

explicitely it will be shown that

udor = u∗ + ∇euel

∣
∣
e=0

·∆e = u∗ + ∇eu f l

∣
∣
e=0

·∆e (50)

holds, with the differential operator

∇e =

[
d

de1

,
d

de2

, . . . ,
d

den

]

(51)

Relation (50) means that the feedback law (34) is a first order

approximation of the nonlinear feedback laws (18) and (35)

in view of (44).

A. Feedback law achieving exact linearization of the tracking

error dynamics

For the investigation of the feedback law (18)–(19) it is

realized at first that for the linearizing feedback (8) it holds

in view of (9) that

dα(ζ ,ψu(ζ ,v))

dζi

∣
∣
∣
∣
ζ=ζ ∗

=
∂α

∂ζi

∣
∣
∣
∣ ζ=ζ∗
u=ψu

+
∂α

∂u

∣
∣
∣
∣ ζ=ζ∗
u=ψu

∂ψu

∂ζi

∣
∣
∣
∣
ζ=ζ ∗

= 0

(52)

Togehter with (23)–(24) it can be concluded that the partial

derivative of the feedback law (8) with respect to ζi satifies

∂ψu(ζ ,v)

∂ζi

∣
∣
∣
∣
ζ=ζ ∗

= −

(

∂α

∂u

∣
∣
∣
∣ ζ=ζ∗
u=ψu

)−1
∂α

∂ζi

∣
∣
∣
∣ ζ=ζ∗
u=ψu

(53)

At e = 0 relations (40)–(45) are valid and thus

dψu(ζ ,v)

dei

∣
∣
∣
∣
e=0

=
dψu(ζ

∗ + e,v)

dei

∣
∣
∣
∣
e=0

(54)

=
∂ψu(ζ

∗ + e,v)

∂ei

∣
∣
∣
∣
e=0

+
∂ψu

∂v

∣
∣
∣
∣
e=0

∂v

∂ei

∣
∣
∣
∣
e=0

=
∂ψu(ζ ,v)

∂ζi

∣
∣
∣
∣
ζ=ζ ∗

+
∂ψu

∂v

∣
∣
∣
∣
ζ=ζ ∗

∂v

∂ei

∣
∣
∣
∣
e=0

= −

(
∂α

∂u

∣
∣
∣
∣ζ=ζ∗

u=u∗

)−1 ∂α

∂ζi

∣
∣
∣
∣ζ=ζ∗

u=u∗
+

∂ψu

∂v

∣
∣
∣
∣
ζ=ζ ∗

∂v

∂ei
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With

∂vel

∂ei

= −ãi−1 (55)

(see (19)) and (22)–(23),(46), (53), (55) it follows that

duel

dei

=
1

bc(t)
(−aci−1

(t)− ãi−1) (56)

Taking into account (51) ∇euel evaluates to

∇euel =

[
duel

de1

, . . . ,
duel

den

]

(57)

This yields with (56)

∇euel=
1

bc(t)

[
−ã0 −ac0

(t), . . . ,−ãn−1 −acn−1
(t)
]

(58)

Thus, a taylor series expansion at e = 0 for the feedback law

(18) reads with (44)

uel = ψu(ζ ,vel) = u∗ + ∇euel ·∆e + . . . (59)

B. Feedback law for exact feedforward linearization

For the determination of the first order taylor series

expansion of the feedback law (35)–(36) it is realized that

dψu(ζ
∗,v f l)

dei

=
∂ψu(ζ

∗,v)

∂v

∣
∣
∣
∣ ζ=ζ∗

v=ζ̇∗n

∂v f l

∂ei

=
1

bc(t)
λi (60)

(see also (43), (47)–(49)). Thus, choosing the controller

parameters according to (39) yields together with (51)

∇eu f l =

[
du f l

de1

, . . . ,
du f l

den

]

(61)

=
1

bc(t)

[
−ac0

(t)− ã0, . . . ,−acn−1
(t)− ãn−1

]

As a consequence, a taylor series expansion of u f l at e = 0

has in view of (44) the form

u f l = ψu(ζ
∗
,v f l) = u∗ + ∇eu f l ·∆e + . . . (62)

C. Feedback law derived from the differential operator rep-

resentation

The feedback law (34) consiststs only of the feedforward

controller signal and a linear error feedback. It follows with

(29)–(31) and (25) that

udor = u∗ +
1

bc(t)

n

∑
i=1

(−aci−1
(t)+ ãi−1)∆ei (63)

In view of (58), (61) this can be expressed as

udor = u∗ + ∇euel ·∆e = u∗ + ∇eu f l ·∆e (64)

i.e., udor is, for the assumed choices of the controller param-

eters, a first order approximation of the feedback laws uel

and u f l .

VI. OUTPUT FEEDBACK

For the implementation of the feedback laws (18), (34),

(35), in general, all states have to be available for measure-

ment in view of the state transformation (6). If only the

output

y = h(x) (65)

with y ∈ R is available for measurement, the feedback laws

have to be estimated. This can be done by estimating the

states of system (1) using a nonlinear tracking observer (see

Section VI-A). On the other hand, the linear feedback law

(31) can be estimated directly, instead of estimating the states

of (1), using a reduced order linear dynamic output feedback

(Section VI-B).

A. Nonlinear Tracking Observer

A nonlinear tracking observer with time varying observer

gain L(t) is given by (see [13])

˙̂x = f (x̂,u)+ L(t)(y−h(x̂)) (66)

The observer (66) basically consists of a model of the plant

and a feedback of the difference of the measured output and

the estimated output. The time varying observer gain L(t) is

designed such that the linearization of the estimation error

dynamics about the reference trajectory y∗f which results to

∆ ˙̂x−∆ẋ = (A(t)−L(t)C(t))(∆x̂−∆x) (67)

with

A(t) =
∂ f

∂x

∣
∣
∣

x=x∗
u=u∗

, C(t) =
∂h

∂x

∣
∣
∣

x=x∗
u=u∗

(68)

is asymptotically stable. This is done by assigning stable

time invariant eigenvalues to the observer normal form of

(67) (see e.g. [13]).

B. Linear Dynamic Output feedback

For the estimation of the control signal based on the

differential operator representation of the linearized error

dynamics, (27) is extended with an output equation. To this

end it is realized that the output (65) can also be expressed

as a function of the ζ coordinates according to

y = h̃(ζ ) = h ◦Φ−1(ζ ) (69)

The linearization of the nonlinear output equation (69) yields

∆y = Cc(t)∆e = [cc0
,cc1

, . . . ,ccn−1
]∆e (70)

(note that ∆ζ =∆e) where

Cc(t) =
∂ h̃(ζ )

∂ζ

∣
∣
∣ζ=ζ∗

u=u∗
(71)

With (25) this can be expressed as

∆y =

(
n−1

∑
i=0

cci
(t)Di

)

∆e1 = z(D,t)∆e1 (72)

To summarize, the linearized error dynamics with the output

(70) are given by

n(D,t)∆e1 =∆u (73)

∆y = z(D,t)∆e1 (74)
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A dynamic output feedback for the time varying differential

operator representation (73)–(74) is given by (for details see

[6], [7])

∆(D)∆ûdor = zu(D,t)∆u + zy(D,t)∆y (75)

ûdor = u∗ +∆ûdor (76)

where ∆u is the actual input to the plant, which can deviate

from ∆udor e.g. in the case of input saturations (see e.g. [14]).

The differential operators zu(D,t) and zy(D,t) are determined

from the Diophantine equation

zu(D,t)n(D,t)+ zy(D,t)z(D,t) = ∆(D)(n(D,t)− ñ(D,t))
(77)

Relation (77) is the central design equation for a linear

dynamic output feedback base on a differential operator

representation, where ∆(D) specifies the desired time invari-

ant estimation error dynamics between the estimated control

signal ∆ûdor and the desired input signal ∆udor according to

∆(D)(∆ûdor −∆udor) = 0 (78)

The coefficients of ∆(D) are derived from a monic Hurwitz

polynomial. The differential operator ñ(D,t) in (77) specifies

the linearized tracking error dynamics (32) as it is related to

n̄(D,t) by

ñ(D,t) = Γc[n(D,t)]n̄(D) (79)

Remark 1 Based on the solvability conditions in [9] it can

be deduced that for single-input systems with a measured

output y ∈ R
m, the degree d of ∆(D), i.e. the order of the

output feedback (75)–(76), satifies d ≤ n−m (see [15], [14]

for an applicational verification, where also the extension of

this approach to non-flat systems with feedforward controller

design according to [16] is illustrated for systems with strong

accessibility). The low order of the dynamic output feedback

results from the fact that directly the additional control input

∆udor is estimated instead of all the states of (1) as is done

by the tracking observer (66).

VII. APPLICATION TO A MAGNETIC LEVITATION SYSTEM

In this section the above derived results are discussed for

a model of a magnetic levitation system, which, on the one

hand, is of interest for industrial applications (see e.g. [17])

on the other hand, it has a simple enough structure to illus-

trate nicely the differences of the investigated approaches.

Integral error feedback is not considered here as it would

conceal, to the author’s opinion, the robustness properties.

The system equations for the magnetic levitation system are

given by [5], [17]

ẋ1 = x2 (80)

ẋ2 =
k

m

u2

(s0 − x1)2
−g (81)

where x1 is the load position and x2 its velocity. The

input u is the current for the electromagnet. The constant

k = 58.042 ·10−6 kgm3

A2s2 depends on several setup parameters,

m = 0.0844kg is the mass of the load, s0 = 0.0011m is

the minimum distance of the load to the magnet and g =
9.81 m

s2 is the gravity acceleration constant. System (80) is

already in controller normal form (see (7)). Therefore, a flat

output is given by y f = x1. Consequently, the differential

parameterization of the states and of the input results to

(x1,x2) = (y f , ẏ f ), u = (s0 − y f )

√
m

k
(ÿ f + g) (82)

A reference trajectory has been planned which lifts up the

load from an initial position x0 to a final position xe with

x0 = (−4mm,0
mm

s
), xe = (−2mm,0

mm

s
) (83)

From (80) it can be deduced that the linearization of the

tracking error dynamics about the reference trajectory has

the structure

∆ė =

[
0 1

ac0
(t) 0

]

∆e +

[
0

bc(t)

]

∆u. (84)

The feedback laws for exact linearization, feedforward lin-

earization and differential operator representation for the

derived choice of parameters result to (see (18)–(19), (35)–

(36), (39), (29)–(34))

uel = (s0 − y f )

√
m

kc

((ÿ∗f − ã1e2 − ã0e1)+ g) (85)

u f l = (s0 − y∗f )

√
m

kc

((ÿ∗f − ã1e2 − (ac0
(t)+ ã0)e1)+ g) (86)

udor = u∗ +
1

bc(t)

(
−ã1e2 − (ac0

(t)+ ã0)e1

)
(87)

(where the identity e =∆e was used in (87)). The parameter

k has been replaced in the feedback laws (85)–(87) by kc to

indicate that, in case of parameter uncertainty, kc and k do

not necessarily have to be equal. The ãi are chosen for all

feedback laws according to the specification

(s+ p)2 !
= s2 + ã1s+ ã0 (88)

with p = 100. In Figure 1 the dependence of the feedback

laws (85)–(87) on the error e1 is shown for the operation

point xe, when e2 = 0. The feedback laws (85), (87) for

exact linearization and differential operator representation

do almost coincide whereas the feedback law (86) for

the feedforward linearization shows the strongest curvature.

However, it can be seen that, as predicted by relation (50),

the slopes at e1 = 0 are equal. If e1 = 0 and only e2 is varied

the controller signals are almost coincident for all feedback

laws. In Figure 1 also the exact linearizing feedback law is

shown for different values of the parameter kc. The effects of

the different feedback laws can be observed in Figure 2. It

shows the resulting trajectories, for the case when the plant

parameter k deviates from the value of kc, which has been

used for the controller design. If k > kc a steady state

deviation with e1 > 0 results at the final operation point xe.

When looking at Figure 1 it can be observed that in this

case u f l < uel ,udor. This explains the slightly lower deviation

for the feedforward linearization in this case. With similar

arguments the slightly bigger steady state deviation for the

feedforward linearization can be explained for the case when

k < kc. Although the feedback laws seem to exhibit quite
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different properties, the resulting trajectories in Figure 2 do

not deviate strongly.

When only x1 is available for measurement, output feed-

back has to be used. In Figure 3 the resulting trajectories

for this case are shown. For the estimation of the feedback

laws (85), (86) the state x2 (i.e. ẏ f ) has been replaced by

the estimate x̂2 of a nonlinear tracking observer of the kind

(66), which is of order two. It should be mentioned at this

point that even with the considerations in [5] it is necessary

to estimate x2 in order to achieve an asymptotically stable

tracking error dynamics using the feedback law (86). For

the feedback law udor an estimate using a first order linear

output feedback according to (75)–(76) has been used. The

root of ∆(D) in (78) and the poles in the observer normal

form of (67) have all been set to −200. It can be observed

that when output feedback is used, the resulting trajectories

deviate by far more from the reference trajectory than in

the case of state feedback. The lower order of the dynamic

output feedback which was derived on the basis of the

differential operator representation seems to yield, at least

for the considered example, better robustness with respect

to parameter variations, although the feedback law udor is

purely linear. A more detailled investigation of the robustness
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Fig. 1. Dependence of the feedback laws on e1
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Fig. 3. Trajectories when output feedback is used

properties could be done using the methods proposed in

[18] which has been extended to investigate controllers with

output feedback in [19].

VIII. CONCLUSIONS

This contribution pointed out the differences and relations

between three different flatness based tracking controllers.

These results may clearly be extended to MIMO systems

based on the results in [20]. It has furthermore been shown

that in the case when not all states can be measured the im-

plementation of an output feedback may have more influence

on the robustness properties of the resulting controller, than

the used feedback law.
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[1] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
nonlinear systems: introductory theory and examples,” Int. J. Control,
vol. 61, pp. 1327–1361, 1995.

[2] P. Martin, R. M. Murray, and P. Rouchon, “Flat systems,” Bastin, G.

und M. Gevers (Hrsg.): Plenary Lectures and mini courses, European

Control Conference, Brussels, Belgium, pp. 211 – 264, 1997.
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