# Planning a finite time transition from a non-stationary to a stationary point without overshoot 

Johann Reger*


#### Abstract

The problem of planning a finite time transition of a trajectory from a non-stationary point to a stationary setpoint is addressed. As opposed to standard approaches, where the transition functions are polynomials, the specific choice of non-analytic function proposed may easily be trimmed to show no overshoot and only an adjustable undershoot during transition. The main result is a recursive formula for a simple parametrization of the transition function, as needed in tracking problems. Two examples underscore the ease of the approach.


## I. Introduction

Consider the problem of planning the transition of a time function $y(t)$ on a finite time interval $t \in\left[t_{1}, t_{2}\right]$. Let $t=t_{1}$ be the time associated with $r$ left boundary conditions (BC)

$$
\begin{equation*}
y^{(i)}\left(t_{1}\right):=\left.\frac{d^{i} y}{d t^{i}}\right|_{t=t_{1}}=\underline{y}_{i}, \quad i=0,1, \ldots, r-1 \tag{1}
\end{equation*}
$$

Correspondingly, at $t=t_{2}$ let $y(t)$ satisfy $r$ right BC

$$
\begin{equation*}
y^{(i)}\left(t_{2}\right):=\left.\frac{d^{i} y}{d t^{i}}\right|_{t=t_{2}}=\bar{y}_{i}, \quad i=0,1, \ldots, r-1 \tag{2}
\end{equation*}
$$

A straight-forward idea for tackling this problem is to use polynomials for meeting the $2 r \mathrm{BC}$ of (1) and (2). The least degree polynomial shows degree $2 r-1$ and is uniquely determined by the BC. Polynomials with degrees larger than $2 r-1$ that meet the BC may be found, as well. Various approaches of polynomial kind are exposed in [8], for example. An approximate optimization-based approach presents [4]. For the planning of transitions between stationary points see [5], where a simple to use formula for the transition polynomial is given. An input shaping approach by means of polynomials with additional exponential decay is derived in [7]. Recently, trajectory generation received attention within the different inversion-based approaches to the control of systems with internal dynamics [1], [2], [6], [3].

In this paper, let the task be confined to the planning of the transition from a non-stationary point of $y(t)$, as specified in (1), to a stationary point as given by the right BC

$$
\begin{equation*}
y\left(t_{2}\right)=\bar{y}_{0}, \quad y^{(i)}\left(t_{2}\right)=0, \quad i=1, \ldots, r-1 \tag{3}
\end{equation*}
$$

being a special case of the right BC (2).
It turns out that in the case of planning from non-stationary to stationary points there are decisive drawbacks when employing polynomials: Primarily, there is no a priori criterion to decide whether the transition polynomial resulting from the BC in (1) and (2) will show an overshoot or undershoot.

[^0]Standard methods as calculating the set of zeroes with respect to the polynomial's first time derivative give a posteriori insight, only. Secondly, it is a well-known fact that large absolute values of $\underline{y}_{i}$ and $\bar{y}_{i}$ give rise to polynomials with very large degree, accompanied by the problem of a wavy transition in course of time.

Hence, the proposal of this paper is to refrain from polynomials, and rather employ a particular non-analytic function. A formula for the recursive parametrization of this function is provided that may easily be trimmed to show no overshoot and just a reduced undershoot when adjusting one single parameter.
The paper is organized as follows: Section II contains the derivation of the parametrization of a non-analytic function, adequate for solving the above-stated transition problem on a unity time interval. Section III provides the main result that holds for arbitrary time intervals. The paper ends with a discussion and some examples in Section IV.

## II. Parametrization of a Non-Analytic Transition Function

Consider the transition function

$$
\begin{equation*}
y(t)=\left(c_{0}+c_{1} t+\ldots+c_{r-1} t^{r-1}\right) e^{\frac{-1}{(t-1)^{n}}}+\bar{y}_{0} \tag{4}
\end{equation*}
$$

with even exponent $n \in\{2,4,6, \ldots\}$ and real coefficients $c_{i}, i=0,1, \ldots, r-1$. It is not difficult to show that the ansatz (4) satisfies the stationary right BC (3) in a limit sense

$$
\begin{equation*}
\lim _{t \rightarrow 1} y(t)=\bar{y}_{0} \quad \text { and } \quad \lim _{t \rightarrow 1} y^{(i)}(t)=0, i=1,2, \ldots \tag{5}
\end{equation*}
$$

which implies that $y(t)$ given in (4) is non-analytic at $t=1$.
The coefficients $c_{i}$ serve to satisfy the left BC (1) at the time instant $t_{1}=0$. In a next step, the result to be obtained at time instants $t_{1}=0$ and $t_{2}=1$ may then be generalized to arbitrary instants of time $t_{1}<t_{2}, t_{1}, t_{2} \in \mathbb{R}$.

In view of the left BC (1), the coefficients $c_{i}$ may be determined by equating $y^{(i)}(0)=\underline{y}_{i}, i=0,1, \ldots, r-1$.

In the first place, observe that

$$
\begin{equation*}
y(0)=c_{0} e^{\frac{-1}{(-1)^{n}}}+\bar{y}_{0} \stackrel{!}{=} \underline{y}_{0} \Rightarrow c_{0}=\left(\underline{y}_{0}-\bar{y}_{0}\right) e \tag{6}
\end{equation*}
$$

Thereafter, for $i=1,2, \ldots$ determine the $i$-th time derivative

$$
\begin{align*}
& y^{(i)}(t)=\sum_{\nu=0}^{i}\binom{i}{\nu}\left(\frac{d^{i-\nu}}{d t^{i-\nu}} \sum_{\mu=0}^{r-1} c_{\mu} t^{\mu}\right)\left(\frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{(t-1)^{n}}}\right) \\
& =\sum_{\nu=0}^{i}\binom{i}{\nu}\left(\frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{(t-1)^{n}}}\right) \sum_{\mu=i-\nu}^{r-1} c_{\mu} \frac{d^{i-\nu}}{d t^{i-\nu} t^{\mu}} \\
& =\sum_{\nu=0}^{i}\binom{i}{\nu}\left(\frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{(t-1)^{n}}}\right) \sum_{\mu=i-\nu}^{r-1} \frac{\mu!}{(\mu+\nu-i)!} c_{\mu} t^{\mu+\nu-i} \tag{7}
\end{align*}
$$

and for adaption to the left BC (1), for any $i=1,2, \ldots, r-1$ at $t_{1}=0$ we have to require that

$$
\begin{align*}
\underline{y}_{i} \stackrel{!}{=} & \lim _{t \rightarrow 0} y^{(i)}(t)=\sum_{\nu=0}^{i}\binom{i}{\nu}\left(\lim _{t \rightarrow 0} \frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{(t-1)^{n}}}\right) \\
& \sum_{\mu=i-\nu}^{r-1} \frac{\mu!}{(\mu+\nu-i)!} c_{\mu}\left(\lim _{t \rightarrow 0} t^{\mu+\nu-i}\right) \\
= & \sum_{\nu=0}^{i}\binom{i}{\nu}\left(\lim _{t \rightarrow 0} \frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{(t-1)^{n}}}\right)(i-\nu)!c_{i-\nu} \\
= & \sum_{\nu=0}^{i} \frac{i!}{\nu!} c_{i-\nu}\left(\lim _{t \rightarrow-1} \frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{t^{n}}}\right) \tag{8}
\end{align*}
$$

which together with equation (6) is a linear system of equations that allows to solve for the $r$ unknown coefficients $c_{i}$ in terms of the $\mathrm{BC} \underline{y}_{i}, i=0,1, \ldots, r-1$, in a unique way.

The triangular structure of equation (8) suggests to exploit a simple recurrence scheme. Indeed, rewriting (8) yields

$$
\begin{align*}
\underline{y}_{i} & =i!c_{i}\left(\lim _{t \rightarrow-1} e^{\frac{-1}{t^{n}}}\right)+\sum_{\nu=1}^{i} \frac{i!}{\nu!} c_{i-\nu}\left(\lim _{t \rightarrow-1} \frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{t^{n}}}\right) \\
& =\frac{i!}{e} c_{i}+\sum_{\nu=1}^{i} \frac{i!}{\nu!} c_{i-\nu}\left(\lim _{t \rightarrow-1} \frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{t^{n}}}\right) \tag{9}
\end{align*}
$$

Thus, with (6) we derive the recurrence $(i=0,1, \ldots, r-1)$

$$
\begin{equation*}
c_{i}=e\left(\frac{\underline{y}_{i}}{i!}-\sum_{\nu=1}^{i} \frac{c_{i-\nu}}{\nu!} \lim _{t \rightarrow-1} \frac{d^{\nu}}{d t^{\nu}} e^{\frac{-1}{t^{n}}}\right), c_{0}=\left(\underline{y}_{0}-\bar{y}_{0}\right) e . \tag{10}
\end{equation*}
$$

The derivatives on the right hand side of (10) may be evaluated further. To this end, use the chain rule

$$
\begin{equation*}
\frac{d f(t)}{d t}=f(t) \frac{d g(t)}{d t}, \quad f(t)=e^{g(t)}, g(t)=\frac{-1}{t^{n}} . \tag{11}
\end{equation*}
$$

In doing so, we may refer to Leibniz' rule for differentiating products again, hence

$$
\begin{equation*}
f^{(\nu+1)}(t)=\sum_{i=0}^{\nu}\binom{\nu}{i}\left(\frac{d^{\nu-i}}{d t^{\nu-i}} f(t)\right)\left(\frac{d^{i+1}}{d t^{i+1}} g(t)\right) \tag{12}
\end{equation*}
$$

and shifting $\nu \rightarrow \nu-1$ it follows that

$$
\begin{equation*}
f^{(\nu)}(t)=\sum_{i=0}^{\nu-1}\binom{\nu-1}{i} f^{(\nu-i-1)}(t) g^{(i+1)}(t), \quad \nu=1,2, \ldots \tag{13}
\end{equation*}
$$

where the $\nu$-th time derivative of $f(t)$ is expressed in terms of lower order derivatives in form of a recurrence. Finally, recalling (11) it remains to evaluate

$$
\begin{align*}
& g^{(i+1)}(t)=\frac{d^{i+1}}{d t^{i+1}}\left(\frac{-1}{t^{n}}\right)=(-1) \frac{d^{i+1}}{d t^{i+1}} t^{-n} \\
& \quad=(-1)(-n)(-n-1)(-n-2) \cdots(-n-i) \frac{1}{t^{n+i+1}} \\
& \quad=(-1)^{i} \frac{(n+i)!}{(n-1)!} \frac{1}{t^{n+i+1}} . \tag{14}
\end{align*}
$$

A consequence is the recurrence

$$
\begin{align*}
f^{(\nu)}(t) & =\sum_{i=0}^{\nu-1}\binom{\nu-1}{i} \frac{(n+i)!}{(n-1)!} \frac{(-1)^{i}}{t^{n+i+1}} f^{(\nu-i-1)}(t) \\
f^{(0)}(t) & =e^{\frac{-1}{t^{n}}} \tag{15}
\end{align*}
$$

which at $t=-1$ yields

$$
\begin{align*}
f^{(\nu)}(-1) & =\sum_{i=0}^{\nu-1}\binom{\nu-1}{i} \frac{(n+i)!}{(n-1)!}(-1)^{n+1} f^{(\nu-i-1)}(-1) \\
f^{(0)}(-1) & =1 / e \tag{16}
\end{align*}
$$

to be solved until index $\nu=r-1$, as indicated by (10).

## III. Main Result

Simple steps of manipulation show that a possible transition function, which satisfies the $2 r \mathrm{BC}$ of (1) and (3) at arbitrary instants of time $t_{1}$ and $t_{2}$, reads

$$
\begin{equation*}
y(t)=\underline{y}_{0}+(1 / e)\left(\frac{t_{2}-t_{1}}{t_{2}-t}\right)^{n} \sum_{i=0}^{r-1} c_{i}\left(\frac{t-t_{1}}{t_{2}-t_{1}}\right)^{i} \tag{17}
\end{equation*}
$$

with coefficients $c_{i}$ that result from the recurrence

$$
\begin{align*}
& c_{i}=e\left(\frac{\underline{y}_{i}\left(t_{2}-t_{1}\right)^{i}}{i!}-\sum_{\nu=1}^{i} \frac{c_{i-\nu}}{\nu!} f^{(\nu)}(-1)\right)  \tag{18}\\
& c_{0}=\left(\underline{y}_{0}-\bar{y}_{0}\right) e \tag{19}
\end{align*}
$$

where the values of $f^{(\nu)}(-1)$ follow from (16).

## IV. Discussion and Examples

In order to find a minimal parameter $n=n_{\text {min }}$ subject to which no overshoot occurs for $t \in\left(t_{1}, t_{2}\right)$, note that with the coefficients $c_{i}$ determined as above, the necessary condition $\frac{d}{d t} y(t)=0$ for an extremal point may be written as

$$
\begin{align*}
& \sum_{i=0}^{r-1} c_{i}\left(t-t_{1}\right)^{i}\left(t_{2}-t_{1}\right)^{r-1-i} \times \\
& \quad\left(i\left(t_{2}-t\right)^{n+1}-n\left(t_{2}-t_{1}\right)^{n}\left(t-t_{1}\right)\right)=0 \tag{20}
\end{align*}
$$

In the main, two cases need to be distinguished:

1) When increasing $n$ starting from 2 , given the bottom-up-transition $\underline{y}_{0}<\bar{y}_{0}$ and $\underline{y}_{1}>0$ (top-down-transition $\underline{y}_{0}>\bar{y}_{0}$ and $\underline{y}_{1}<0$ ), then $n_{\text {min }}$ is the first number for which the polynomial in (20) shows no zeroes in $\left(t_{1}, t_{2}\right)$. Thus, the overshoot as depicted in the plots of Figure 1 can be avoided by increasing $n$.
2) When increasing $n$ starting from 2 , given the bottom-up-transition $\underline{y}_{0}<\bar{y}_{0}$ and $\underline{y}_{1}<0$ (top-down-transition $\underline{y}_{0}>\bar{y}_{0}$ and $\underline{y}_{1}>0$ ), then $n_{\text {min }}$ is the first number for which the polynomial in (20) shows one single zero in $\left(t_{1}, t_{2}\right)$. In this case, besides avoiding an overshoot, one may additionally reduce the undershoot by a further increase of the parameter $n$ until the undershoot falls below a specified bound, as shown in the lower plots of Figure 1 (see arrows).

TABLE I
Left BC for the Parametrization of the Transition Function (17) As Depicted in Figure 2 and Figure 3

| left BC | $\underline{y}_{0}$ | $\underline{y}_{1}$ | $\underline{y}_{2}$ | $\underline{y}_{3}$ | $\underline{y}_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Figure 1 | 0 | 20 | 30 | 60 | 40 |
| Figure 2 | 0 | -15 | 200 | 100 | 40 |

Either of these cases is demonstrated resorting to an example transition from $t_{1}=0$ to $t_{2}=2$ subject to $r=5$ nonstationary BC at $t=t_{1}$ (see Table I). A stationary value of $\bar{y}_{0}=10$ shall be reached for both transitions at $t=t_{2}$.

Case 1 is illustrated in Figure 2: A calculation of the corresponding zeroes of (20) for $n=2,4,6, \ldots, 16$ yields that $n_{\text {min }}=8$, where no overshoot takes place, anymore. An increase of $n$ further accelerates the response.

Case 2 is illustrated in Figure 3: A calculation of the corresponding zeroes of (20) for $n=2,4,6, \ldots, 16$ yields that $n_{\text {min }}=6$, where no overshoot takes place, anymore. A further increase of $n$ helps accelerate the response and further reduces the undershoot. Such transitions resemble behaviors that are typical within the tracking of non-minimum phase systems.


Fig. 1. Dependency of overshoot and undershoot on left side boundary conditions-by increasing $n$ in the non-analytic transition (17) the depicted overshoots may be avoided and the undershoots (marked with arrow) are reduced

## Acknowledgments

This work was supported by a fellowship within the postdoc-program of the German Academic Exchange Service (DAAD), grant $\mathrm{D} / 07 / 40582$, and partially, by a postdoc scholarship of Max Planck Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany.


Fig. 2. Case 1: transition function (17) for left BC according to Table I; $n=2$ (black line), $n=4$ (red line), $n=6$ (blue line); for $n=8$ (green line) no overshoot occurs anymore; thin black lines show faster response when increasing $n$ (plotted are $n=10,12,14,16$ )


Fig. 3. Case 2: transition function (17) for left BC according to Table I; $n=2$ (black line), $n=4$ (red line); for $n=6$ (green line) no overshoot occurs anymore; increasing $n$ helps reduce the undershoot further (plotted are $n=8,10,12,14,16$ )

## REFERENCES

[1] D. Chen and B. Paden, Stable Inversion of Nonlinear Non-Minimum Phase Systems, International Journal of Control, vol. 64, no. 1, pp. 81-97, 1996
[2] S. Devasia, D. Chen, and B. Paden, Nonlinear Inversion-Based Output Tracking, IEEE Transactions on Automatic Control, vol. 41, no. 7, pp. 930-942, 1996
[3] K. Graichen, V. Hagenmeyer, and M. Zeitz, A New Approach to Inversion-Based Feedforward Control Design for Nonlinear Systems, Automatica, vol. 41, no. 12, pp. 2033-2041, 2005
[4] M. van Nieuwstadt and R. Murray, "Approximate Trajectory Generation for Differentially Flat Systems with Zero Dynamics", 34th IEEE Conference on Decision and Control, vol. 4., pp. 4224-4230, New Orleans, USA, 1995
[5] A. Piazzi and A. Visioli, Optimal Noncausal Set-Point Regulation of Scalar Systems, Automatica, vol. 37, no. 1, pp. 121-127, 2001
[6] A. Piazzi and A. Visioli, Optimal Inversion-Based Control for the SetPoint Regulation of Nonminimum-Phase Uncertain Scalar Systems, IEEE Transactions on Automatic Control, vol. 46, no. 10, pp. 16541659, 2001
[7] M. Sahinkaya, Input shaping for vibration-free positioning of flexible systems, Proc. Instn. Mech. Engrs., vol. 215, part I, pp. 467-481, 2001
[8] H. Sira Ramírez and S. Agrawal, Differentially Flat Systems, Marcel Dekker, 2004


[^0]:    * J. Reger is postdoc with the Systems and Control Theory Group, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany (email: reger@ieee.org)

