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Abstract—A novel application, employing the strategy of 
Active Disturbance Rejection Control and an Extended State 
Observer, is proposed to control the rotor shaft position of 
NASA’s High Speed Shaft (HSS) Flywheel using active 
magnetic bearings. The robustness of the control is 
demonstrated in a frequency domain analysis and in 
simulations to be a major improvement of controls recently 
studied at NASA.  
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I. INTRODUCTION 
 

or long-duration space applications, such as the space 
station, batteries are required to supply power during 
the periods when the solar arrays are in eclipse. The 

expensive maintenance and replacement requirements of 
batteries have prompted investigation into flywheel energy 
storage devices as an alternative to current battery 
technology. The flywheel rotors achieve high energy 
densities by being driven to rotational speeds in excess of 
60,000 rpm, necessitating the use of magnetic bearings 
[1][2]. 

 
Current research at the NASA Glenn Research Center 

(GRC) is focused on the High Speed Shaft (HSS), a flywheel 
system capable of reaching speeds up to 100,000 rpm.  The 
suspension of the flywheel rotor is achieved by means of 
opposing sets of electromagnets in the radial direction, 
between which the rotor is positioned (Figure 1, [4]). The 
position of the rotor in the air gap can be controlled via 
magnetic forces which are regulated by adjusting the magnet 
coil voltage. The magnetic forces exert attractive forces on 
the rotor shaft which is coated with ferromagnetic material. 
Because of the attractive nature of the magnetic forces, 
magnetic bearings are inherently unstable and require closed-
loop control.  

 
1Numerous advanced controller design approaches have 

been proposed for this type of application. Hubbard [5] used 
linear-quadratic design in his pendulous supported flywheel. 
Stanway [6] used eigenstructure assignment for the control 
of suspension systems for rotating machinery within a 
magnetic field. Sinha [7] considered sliding mode control of 
a rigid motor using magnetic bearings. Salm [8] 
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demonstrated modal control of a flexible rotor. Matsumura 
[9] used an integral type servo-controlled design via solution 
of a linear quadratic regulator problem for a horizontal rotor-
magnetic-bearing system. And Hung [10] considered 
magnetic bearing control using fuzzy logic.  

 
These proposed controllers are often of such a complexity 

that the tuning process is rendered quite difficult. The PID 
controller, however, because of its ease of tuning, has been 
the only controller used at GRC for flywheel levitation [3]. 
Recently, a PD controller, supplemented with an observer 
for velocity feedback, was studied and shown to reduce 
noise and control effort [4]. However, the observer required 
additional tuning, and the robustness of the observer against 
variations in plant parameters was poor. The combined 
control system was also poor at rejecting a constant force 
disturbance. 

 

 

Figure 1.  Schematic: HSS Flywheel module 
components 

 
 
Based on the plant model developed in [4], a novel 

application, employing the strategy of Active Disturbance 
Rejection Control (ADRC) and an Extended State Observer 
(ESO) [11][12][14][19], is proposed to control the rotor 
shaft position. Using only one tuning parameter, the ESO 
requires minimal tuning effort. A frequency-domain analysis 
shows that the combination of PD/ESO feedback results in 
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robust performance against variations in plant parameters. It 
is also capable of rejecting constant force disturbances.  
 
The  plant model of the magnetic bearing is introduced in 
Section II. The ESO is developed in Section III and analyzed 
in IV. Time-domain simulation results are shown to validate 
the frequency-domain analysis in Section V. In Section VI, 
the controller is applied to a three-degrees of freedom rotor 
vibration model, which is nonlinear and time-varying. 

 
 

II. MAGNETIC BEARING MODEL 
 

As illustrated in Figure 1, two radial magnetic bearing are 
used in NASA’s HSS module, one attached to each end of 
the rotor. We will only concern ourselves with a simplified, 
single degree-of-freedom system in the controller design. In 
such a case, the mechanical system can be modeled as a 
single-input, single output (SISO) plant, where the output is 
the position and the input the actuation force of the magnets. 
The results can be extended in a straightforward manner to a 
multiple degrees-of- freedom system, which is briefly 
discussed in Section VI.  

 
The position transfer function of the rotor can be obtained 

from the physical model of the electromechanical 
components. If the rotor is assumed to be rigid and damping 
assumed to be negligible, the plant can be represented by a 
mass-spring system. The corresponding force diagram is 
shown in Figure 2 [4]. 

 

Figure 2: Force diagram for rotor position model 
 

The position of the rotor, x, can be controlled by the 
actuator force, F, which is generated by the electromagnets. 
The functional relationship between magnetic coil current 
and output magnetic force is usually known with a high 
degree of accuracy. Following the analysis in [4], the 
magnetic force is the control input signal. In actual 
implementation, the magnetic force can easily be converted 
into a control current or voltage signal. From Figure 2, the 
differential equation for the rotor dynamics is given by, 

 
            bmx K x F− =&& ,                  (2.1) 
 

where m is the mass of the rotor, and Kb is the value of the 
experimentally determined stiffness constant. By taking the 
Laplace transform of (2.1), one can obtain the open-loop 
position transfer function, 

                              ( )
( ) 2

1

b

X s
F s ms K

=
−

                          (2.2) 

 
which has poles at /bK m± . The presence of a pole in the 
right half-plane renders the system unstable, so closed-loop 
control must be applied in order to stabilize it. The physical 
significance of the closed-loop control is that the resulting 
system has an adjustable,  positive stiffness  and damping 
factor.  

 
III.  CONTROL STRATEGY 

 
As emphasized repeatedly in [4], the observer gains are 

difficult to tune because of their sensitivity to variations in 
plant parameters. During the operation of the flywheel, the 
actual parameter values of the plant may change because of 
variations in rotor imbalance, friction, coil resistance, and so 
on. Classical observer design, which relies on the exact 
model of the plant, is very sensitive to changes in plant 
parameters, and this, in turn, may affect the stability of the 
observer. 

  
Recently, an innovative observer design, the Extended 

State Observer (ESO) has been developed [11][12][14], 
which relaxes the requirement of the exact knowledge of the 
plant. This greatly reduces the sensitivity of the observer to 
the values of the plant parameters. The ESO estimates real-
time variations in the plant parameters and compensates for 
them online. In the seminal papers by Miklosovic and Radke 
[15] [16], the PD/ESO controller was extended to a wide 
class of systems. 

 
The following mathematical development applies to any 

second-order plant, whether linear or non-linear, and can be 
generalized to systems of arbitrary-order [17].   

 
A more general form of the second-order plant in 

Equation (2.1) is given by 
 
          ( ), ,x f x x t bu= +&& & ,                   (3.1) 
 

where the position, x, now denotes the output of the plant, 
and u denotes the control input of the plant, the force F. The 
control input gain, b, can be identified as 1/b m=  from 
equation (2.1). The function f represents the remaining terms 
in the differential equation. This function is referred to as a 
generalized disturbance [12]. If the generalized disturbance 
can somehow be cancelled, the plant in (3.1) would reduce 
to a simple, double-integrator plant. The goal of ESO design 
is to estimate the generalized disturbance, and to compensate 
for it in real-time, so that the system is forced to behave like 
a double-integrator plant. 

 
The key to ESO design is to interpret the generalized 

disturbance f as an additional state of the dynamical system. 
For a second-order system, the number of states would now 
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increase from two to three. The states variables for the ESO 
are chosen as follows: 

                                       fx
xx
xx

=
=
=

3

2

1

&                                    (3.2) 

 
The inclusion of f as an additional third state is what 

motivated the name Extended State [11]. The extended state 
representation of the system dynamics can be derived 
directly from (3.1), 
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where h is the time derivative of  f. The corresponding state 
space model is 

                           

u h
y
= + +
=
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Cx

&
                             (3.4) 

 
where the matrixes are  
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Based on (3.4), the ESO is constructed as follows [12]:      
       

                   
( )
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The states of this observer correspond to the estimated 

values of the quantities,
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which yields the desired estimate for the generalized 
disturbance 3x f= . The observer gain vector L can be 
denoted as  

                        [ ]1 2 3, , Tβ β β=L                              (3.8) 
 

and the observer gains can be computed following the 
parameterization technique introduced in [12]: 

 
         2 3

1 2 33 , 3 ,o o oβ ω β ω β ω= = =              (3.9) 

When substituted into the matrices into (3.8) and (3.6), the 
result is 
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(3.10) 

We note that the A and B matrices are constant and do not 
depend on a detailed knowledge of the plant. This feature 
enables one to choose the observer gains without such 
knowledge and is one of the reasons why the ESO is less 
sensitive to variations in plant parameters than classical 
observers.  

 
When the extended state observer is properly designed, it 

will compensate for the generalized disturbance. Assuming 
accurate estimation of f and approximate knowledge of b, 
that is, 

                             3

0

ˆf x
b b
≈
≈

                                     (3.11) 

the compensated plant will be shown below to be a double-
integral plant, which is then easily controlled using a PD 
controller.  Using ADRC strategy, the control law is given 
by 

 
                                ( )0 3 0ˆ /u u x b= − ,          (3.12) 

 
where the term 

3x̂−  compensates for the generalized 
disturbance f, and the term 0u  is the PD control law given 
by  

                           ( )0 1 2ˆ ˆp du k r x k x= − −  .               (3.13) 
 

Here r is the set point, and pk  and dk  are the PD controller 
gains. Substituting (3.12) into (3.1) and assuming the 
conditions in (3.11), Equation (3.1) is approximated by a 
double-integrator plant controlled by 0u : 

 
                                            0x u≈&&                                

or, 
                                 ( )p dx k r x k x≈ − −&& &                   (3.15) 
 
The combined control law for the PD/ESO is, 

                    ( )1 2 3
0

1 ˆ ˆ ˆp du k r x k x x
b

⎡ ⎤= − − −⎣ ⎦              (3.16) 

The tuning of the PD controller can be simplified as 
follows. The Laplace transform of (3.15) gives the closed-
loop transfer function 

                                 ( )
( ) 2

p

d p

kX s
R s s k s k

=
+ +

              (3.17) 

where ( )X s  and ( )R s  are the Laplace transforms of x and 
r, resp. Using the transfer function of a standard second-
order system with critical damping, namely, 
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Equations (3.17) and (3.18) can be set equal to obtain the 
PD gains in terms of the parameter cω : 

 
                         2      and     2p c d ck kω ω= = .           (3.19) 

 
 

IV. FREQUENCY ANALYSIS OF THE PD/ESO 
 

The closed-loop stability and robustness of a control 
system is a main concern for new control algorithms. 
Because of the linear nature of the plant, the controller (PD), 
and observer (ESO), stability can be assessed using 
frequency-response methods.  In particular, the open-loop 
Nyquist and Bode diagrams are used in this case. 

 
Figure 3 shows the Nyquist plot of the open-loop transfer 

function of the plant with the stiffness and mass chosen as 
0.25bK = , 1m = , and the controller parameters set at 

0 105cω ω= =  and 0 1/b m= . As seen in (2.2), the open-
loop system has one RHP pole, so the counter-clockwise 
encirclement of –1 guarantees a stable closed-loop system 
under negative feedback.  Therefore, a Bode analysis is 
valid. 

 The Bode gain plot in Figure 4 intersects the 0dB line at a 
crossover frequency of 105 rad/s. The gain margin is 
relatively large near the crossover frequency. The Bode 
phase plot reaches its maximum at this frequency, exhibiting 
a locally symmetric peak that gives a phase margin of 31.9 
degrees.  
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Figure 3: Nyquist plot of LADRC open-loop gain 
 

Another concern, which was raised specifically in [4], is 
the robustness of the closed-loop system against variations 
in plant parameters. In particular, the stiffness constant is 
prone to vary [13] because of physical changes in the rotor, 
as well as changes in coil resistance, due to changes in 

temperature. The robustness against variations in the 
stiffness constant is assessed using Bode diagrams.  
 

The different plots in Figure 4 show the effect of changes 
in the stiffness constant as large as 17 times its original 
value, while keeping all other plant and controller 
parameters constant. The changes in bK  have only a 
minimal effect on the Bode plots. In particular, the shape 
remains identical in the vicinity of the crossover frequency. 
This fact demonstrates the robustness of the PD/ESO control 
loop in the presence of variations in plant parameters. 
 

-100

-50

0

50

100

150

 

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1

10
2

10
3

10
4

-270

-225

-180

-135

Ph
as

e 
(d

eg
)

Kb = 0.25

Kb = 2.25

Kb = 4.25

 

Figure 4: Effect of variation in stiffness constant Kb 
 

 
V. SIMULATION RESULTS – ONE DEGREE OF FREEDOM 

 
The objective of magnetic bearing control is to maintain 

the rotor at a steady-state position of 31 10  mx −= × . The 
rotor is assumed to be levitated at the steady state position. 
Adequate position sensor noise is added in all simulations. 

 
The simulation results presented in this section serve two 

purposes. The first simulation corroborates the frequency 
response analysis. It also shows that the PD/ESO control is 
more robust against variations in plant parameters than the 
classical PD/observer. The second simulation shows that the 
PD/ESO is capable of rejecting a constant force disturbance. 

 
Under ideal circumstances, when the plant parameters 

remain constant during the operation of the flywheel, that is, 
if the stiffness remains constant, the PD/ESO and the 
PD/observer lead to very similar control performance. 
However, in more realistic circumstances, the actual value of 
the stiffness constant may vary over a large range during 
operation. 

 
In the first simulation, which is shown in Figure 5, the 

value of the stiffness constant was changed from its original 
value of Kb = 0.25 N/m to Kb = 4 N/m, while all controller 
parameters were left unchanged as in the preceding 
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discussion. Figure 6 shows the effect when a force 
disturbance, Fs = -0.001N is applied at 4 seconds. With the 
PD/ESO, the rotor recovers within 1 second to its steady-state 
position.  
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Figure 5: Rotor position control performance 

comparison (Kb = 4) 
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Figure 6: Performance comparison under constant 

force disturbance 
 
The variation in the value of the stiffness parameter 

affected the PD/observer, which exhibited a noticeable 
steady-state error when Kb = 4 N/m. The steady-state error of 
the PD/ESO was not noticeably affected as compared to the 
case when Kb = 0.25 N/m (above the noise level) by the 
change. This corroborates our previous frequency response 
analysis of the PD/ESO, demonstrating that it has low 
sensitivity to variations in plant parameters. Theoretically, a 
conventional PD controller is not capable of rejecting a 
constant disturbance without steady-state error. However, 
Figure 6 shows that in combination with the ESO, the PD is 
capable of rejecting a constant-force disturbance.  

 
 

VI. SIMULATION RESULTS – THREE DEGREES OF 
FREEDOM 

 
Even though the one degree of freedom rotor system model 
illustrates the fundamentals of dynamics and control of a 
flywheel, a higher degree of freedom model is often used to 
describe rotor vibrations. In this section, we present a three 
degree of freedom model based on a distributed three-mass 
point system (Figure 7). The flywheel rotor-bearing system 
is modeled by a simply supported flexible beam, which 
consists of three mass points, each of which is free to move 
up or down in one dimension. This model [18] is capable of 
describing synchronous rotor vibration, which is caused by a 
mass imbalance in the rotor.  
 

m1 m2 m3

x1 x2 x3

m1 m2 m3

x1 x2 x3

 
Figure 7: Simply supported beam modeled by three 

lumped masses 

The general equation of motion for this distributed system is  
 

        ( ) ( )t t+Mx + Cx + Kx = F + u Q&& &             (6.1) 

Where M is the mass matrix, C is the damping matrix and K 
is the stiffness matrix. For the system with three lumped 
masses, x is a vector of three degrees of freedom (x1, x2, 
x3), which gives the vertical displacement of the three 
masses in Figure 7. The terms on the right hand side of 
equation (6.1) are the rotor imbalance force F(t) and the 
control input u. An external force Q(t) may be included, 
which models the imbalance torque caused by the motor.  
The mass and damping matrix contain only diagonal 
elements. The cross-damping terms are negligible. The rotor 
imbalance forces are sinusoidal, and are of the form 

2
1 1 1 ( sin cos )f m e φ φ φ φ= ⋅ ⋅ +&& &  where e1 is the eccentricity of 

the first mass point, and φ  is the angular position of the 
rotor, and wφ =&  is the rotation speed. The equation of 
motion thus becomes nonlinear and time-varying 
  
    In the following simulation, the rotor is to reach an 
operating speed of w = 300 rad/s in 0.5 second, starting from 
zero initial speed. The following two graphs show that the 
vibration amplitudes associated with PD/ESO control are 
three to four times less than those of the PID control, 
confirming the superiority of PD/ESO for rotor vibration 
reduction. This is especially true at higher speeds. We also 
note that the output amplitudes of both controllers are very 
similar.  
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Figure 8: PID Control 
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Figure 9: PD/ESO Control 

 
VII. CONCLUSION 

 
The analysis and simulation results described above 

demonstrate that the PD/ESO is superior to the PD observer 
in both disturbance rejection and robustness. In the opinion of 
the authors, the HSS magnetic bearing control will 
significantly benefit from the implementation of the PD/ESO 
control system, because variations in plant parameters and 
disturbances are always present in a real bearing system. In 
addition, the PD/ESO is remarkably easy to tune. The 
parameterization technique has even further decreased the 
usual number of tuning parameters and greatly facilitated the 
tuning of the observer. Both factors have been a concern in 
NASA Glenn’s choice of controller design. The PD/ESO 
controller is also applied to a three-degree-of freedom 
distributed mass model and outperforms the PID in rotor 
vibration reduction.  
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