
 
 

 

  

Abstract—This paper proposes a nonlinear adaptive 
back-stepping controller to damp the oscillations and 
improve the transient stability in multi-machine power 
systems. The designed controller is adaptive to unknown 
generator parameters. The proposed controller is designed 
based on a forth order nonlinear model of a synchronous 
generator and the automatic voltage regulator model is 
considered so as to decrease the steady state voltage error. 
The construction of both control law and associated 
Lyapunov function is consistently systematic within the 
design methodology. A 3-machine power system is used to 
demonstrate the effectiveness of the proposed controller over 
other two controllers: one is the conventional damping 
controller (power system stabilizer) and the other is the one 
designed by the feedback linearization technique.  

I. INTRODUCTION 
n power system, power system stabilizers (PSSs) have 
been extensively used in modern power systems as an 

efficient means of damping of the low frequency oscillations 
[1-6]. The design of conventional power system stabilizer 
(CPSS) is based on the linearized model of power system at 
a steady state operating point. The damping effect of these 
PSSs may no longer be satisfactory when the operating 
condition and system parameters change significantly. 

In the last decade, nonlinear control theory has been 
widely used to solve the transient stabilization problem in 
power systems [7-12]. The back-stepping technique in a 
single machine infinite bus (SMIB) power system has been 
utilized. In previous papers [8, 9], the back-stepping 
controllers increased the terminal voltage rise after a fault 
was cleared. This happened because the automatic voltage 
regulator (AVR) was not considered. Although the 
back-stepping design with a third order system model can 
be extended from SMIB systems to multi-machine systems 
[11-14], the controller design is all based on the 
assumption that parameters of generators are available for 
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implementation of the control law. In addition, although 
the design of the back-stepping controller is easier in the 
third order model than that of the fourth order model, it 
may result in a steady state voltage error when the AVR is 
not considered in the system model. 

In this paper, we propose a nonlinear adaptive 
back-stepping controller (ABC) design for multi-machine 
power systems. The adaptive control law is implemented 
based on the 4th order power system model including the 
unknown parameters. The AVR model is considered to 
decrease the voltage error of steady state. The stability of 
the proposed controller is verified by the LF and by 
MATLAB simulation package. 

This paper is organized as follows. Section Ⅱ describes 
the dynamic model of a multi-machine power system. 
Section Ⅲ introduces the design of proposed ABC by 
recursive procedure. The two test power systems are used 
to verify the performance of the proposed controller and 
the simulation results compared to two other controllers are 
shown in Section Ⅳ. Finally, we conclude the paper in 
Section Ⅴ. 

II. MULTI-MACHINE POWER SYSTEM MODEL 
In this section, the generator system using the one-axis 

model is considered in which the model of the automatic 
voltage regulator (AVR) is included. The thi  generator of 
an n-machine power system is described as follows:  

 

0 ( 1)i iδ ω ω= −                                                                                  (1)                         
1 ( ( 1))i mi ei i i

i
P P D

M
ω ω= − − −                                               (2)                          

' ' '
'

0

1 [ ( ) ]qi qi di di di fdi
d i

E E x x i E
τ

= − + − +                                   (3)                          

1 [ ( )]fdi fdi Ai refi ti fi
Ai

E E K V V u
T

= − + − +                               (4)                          

 
Where 1,...,i n=  ( n is the number of machines) and 

fiu is the control law. δ  denotes the rotor angle, ω  is the 

rotor angular speed, and 0ω  is the rated speed. '
qE  is the 
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transient EMF in quadrature axis and fdE  is the excitation 

field voltage. mP  and eP  are the mechanical and electrical 
power. tV  is the reference terminal voltage. M  is the 
inertia coefficient, and D  is the damping constant. dx   

and '
dx  are the direct axis reactance and transient reactance. 

dv ,  qv ,  di  and qi  are the d, q axis voltage and current. 

The power, voltage and current equations representing the 
power system network are described as follows: 

 

' '

di qi qi

qi qi di di

V i x

V E i x

=

= −
                                                                       (5) 

2 2
ti di qiV V V= +                                                                     (6) 

ei di di qi qiP V i V i= +                                                                       (7) 

'

1

( sin cos )
n

di qj ij ij ij ij
j

i E G Bδ δ
=

= −∑                                          (8) 

'

1

( sin cos )
n

qi qj ij ij ij ij
j

i E B Gδ δ
=

= +∑                                        (9)                                                

 
Where ijδ is the relative rotor angle for the thi generator 

with respect to the thj generator. All active and reactive 
loads are represented with a constant impedance model. 

III. ADAPTIVE BACKSTEPPING CONTROLLER DESIGN 
In this section, we formulate the nonlinear adaptive 

backstepping controller for multimachine power systems.  
In order to transform system (1)-(4) into an appropriate 

representation form for the back-stepping design, let us 
denote the positive constants:  

 
1 0ia ω= , 1 /i mi ib P M= , 2 1/i ib M= , 3 /i i ib D M=  

' '
1 0( ) /i di di d ic x x τ= − , '

2 01/i d ic τ=  

1 1/i Aid T= , 2 /i refi Ai Aid V K T= , 3 /i Ai Aid K T=  

 
then system (1)-(4) is transformed into the following form: 
 

1 1 1 2i i i ix a a x= − +                                                               (10)                                                    

2 1 3 2 2 1 2*i i i i i i i ix b b x b F x θ= + − −                                              
(11) 

3 1 2 3 2 4* * *i i di i i i ix c i c x c x= − − +                                      (12)                                                 

4 1 4 2 3 3* * *i i i i i ti i fix d x d d V d u= − + − +                            (13)                                           

 

Where 
fu  is the control signal and iθ  is the unknown 

parameter which is estimated by the adaptive backstepping 
control design. 

 

[ ]
' ' '

1 2 3 4 [ ] , /i i i i i i i q fd i ii i
x x x x x E E D Mδ ω θ= = =  

' '
1

1
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Because it is possible to determine the rotor angle δ  and 

speed ω  with phasor measurement units (PMU) [16], the 
controller designed here use δ  and ω  as input. Then the 
output equation of the system (1)-(4) can be expressed by 

 
[ ]1 1 0 0i iy x=                                                                 (14)                          

 
In addition, the PMU can estimate the ac voltage and 

current, therefore, the voltage and the current at the 
generator bus are considered as measurable states. So, the 
flux observer can be used to estimate the unknown states 

3ix  and 4ix of every generator. 
 

3 1 2 3 2 4ˆ ˆ ˆi i di i i i ix c i c x c x= − − +                                                (15)                          

4 1 4 2 3 3ˆ ˆi i i i i ti i fix d x d d V d u= − + − +                                      (16)                          

 
It can be easily verified that 3 3 3ˆi i ie x x= −  and 

4 4 4ˆi i ie x x= − with 3ˆix  and 4ˆix  defined in (15)-(16) 
satisfy 

 
3 2 3 2 4i i i i ie c e c e= − +                                                           (17)                          

4 1 4i i ie d e= −                                                                       (18)                          
 
It is evident that equations (17) and (18) ensure the 

convergence of the estimates to the true state as t → ∞ .  
In the following section, we apply the backstepping 

procedure to design a controller for (10)-(14) based on 
observer (15)-(16).  

Step 1: define 1 1 10z x x= − , where 10x  is the rotor angle 
on the operating point. 

If we choose the LF candidate as 
 

1

2
1 / 2v z=                                                                          (19) 

2
1 1 1 1 1 1 1 1 2 1 1( 1 / )v z z z x z a z x z a= = = − + − +                       (20)                          
 
We can stabilize the subsystem (10) when the control 

law 2x  is viewed as 
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1 1 11 /z aα = −                                                                      (21) 
                                                                  

However 2x  is not a real control, therefore, define the 
new state 2z , which is to be regulated in step 2. 
Step 2: let us define 2 2 1z x α= −  and new LF candidate is 
defined as 
 

2

2
2 1 / 2v v z= +                                                                         (22)                                                                   

2 2
2 1 2 2 2 1 2 2 2( )v z z b z F z xα θ== − − − − −                               (23) 

                                                     
Where 2α is a stabilizing function which satisfies the 

inequality 2 0v ≤ when 1 2F α= . 
 

1
2 1 1 2 1 2 1

2 1

1 ( )a z z b x x
b x

α
α θ

∂
= + + − −

∂
                            (24)                                                

 
Here, 1F  is a virtual control, therefore the new 

stabilizing function should be designed. 
Step 3: define 3 1 2z F α= −  and new LF 
 

2 2
3 2 3 / 2 / 2v v z θ= + +                                                                  

(25)                                                                     
3
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α
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3
2

2 3 3 4 3
1

2
1 2 3 3 1 2 2
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i q ii
i

d q ii

z c i x g z x s
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α
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=
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∑
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Where 3α  is defined in (27) and s  is the nonlinear 

damping term which is used to counteract the destabilizing 
effect of the observer error 3e . 
 

3 2 3 2 2 3 3 1

3 1 2 3

1 1 2
1 2

1 2
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]

q ii d

q ii d

c i x g b z z x i x

i x g c i c x

x x
x x

α

α α α
θ

θ

= − + − + −

+ + − −

∂ ∂ ∂
− − + −

∂ ∂ ∂

      (27) 

 
Where 

1 2 3 1 3

1 1 2 3

ˆ[ /( *( )) 1]
ˆ1.0* ( ( ))

d q ii

d q ii

s i x c i x g k z

k sign i x c i x g
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To stabilize the error state 3e , the LF is augmented by 
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The corresponding derivative of 3v  is 
 

3
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The above stabilizing function '

3α  is defined as 
 
'

3 3 sα α= +                                                                         (31)                          
 
Step 4: define '

4 4 3ˆz x α= −  and new LF is introduced as 
 

2 2
4 3 4 1 2 3 4

1 2 1

1 1 ˆ( ( ))
2 2 (1 ) d q iiv v z i x c i x g e
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−
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The above 4α  is defined as follows. 
 

4 3 2 3 3 4 1 4 2

3 3 3
3 1 3 4 1 2 3

31 2
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t
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∂ ∂ ∂
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2 2 2 3
2

1 (2 )z x x z
b

θ θ θ= − = − + −                                    (35) 

 
In order to stabilize the 4e , the LF (32) is expressed by 
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Therefore, we can design the control law fu as 
 

4fu α=                                                                              (38)                                                              
 

Then the stability of the control law (38) can be 
established by using the LF (36) whose derivative satisfies 
 

4
' 2 2 21
4 4 1 2 3 3

3 11
2

2 1 2 1 2 3 4

3 3 ˆ( ( ))
4 4

ˆ[3/(4(1 ) )]*( ( ))

i d q ii
i
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dv z e i x c i x g e
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< − − − + +
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Where  

1 1 2 3 1

2 1 2 3 2 1 2 1 3

ˆ( ( ))*3 / 4
ˆ( ( ))*(3 /(4(1 ) )) 3 / 4

d q ii

d q ii

c i x c i x g k

c i x c i x g k k k d k

= + +

= + + − +
 

 
With the application of the controller (38) and the 

parameter update laws (35), the closed loop system is 
globally asymptotically stable in sense of Lyapunov 
method. 

IV. TESTS AND RESULTS 
A 3-machine power system (Fig. 1) was studied to assess 

the performance of the proposed controller in this section. 
The details of the system are given in [17] and the 
excitation control input constraint was: 

 
5.0 . . 5.0 . .fdp u E p u− ≤ ≤                                                            (40) 

 
System responses of backstepping control are simulated 
and compared with two other control schemes: 

-  A conventional Lead-Lag PSS 
- A nonlinear controller designed by a direct feedback 

linearization technique 
 
The structure of conventional PSS considered here is 

shown in Fig. 2 and parameters of the PSSs used are tuned 
by optimal control method and listed in Appendix. 
Generator 2G and 3G in Fig. 1 were equipped with an ABC 
respectively. 

 
 

 
Fig.1. 3-machine 9-bus power system (--PSS installations)  
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Fig. 2. Structure of conventional Lead-Lag PSS 
 

To verify the efficiency of the proposed controllers, the 
following two cases are 

Case 1: For the normal operating condition, a 
three-phase short circuit fault occurred at line 6-9 at t=1.0 
seconds. The faulted line was tripped off after 100ms. 
After that the lines were reconnected at t=1.3 seconds.  

Case 2: For a 10% increase in loads with respect to the 
normal operating condition, a 100 ms three-phase fault 
occurred at the same location as in case 1. The fault was 
cleared with the tripping off of the faulted line without 
re-closing. 

 
Fig. 3. Response of angular speed for generator 2 and 3(case 1) 
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Fig. 4. Estimated parameter for generator 2 and 3 (case 1) 
 

The fault in case 1 was a temporary fault and the 
perturbation was a 6-cycle three-phase fault which did not 
change the states of the system too far from the initial 
values. The efficiency of the ABCs was verified as shown 
in figure 3. It can be seen that the oscillations were damped 
faster with the proposed controller than with the tuned 
PSSs and the FL controller. The estimation of parameters is 
indicated in figure 4. 

 
 
 
 

 
In Case 2, the system configuration in the pre-fault stage 

was quite different from that of post-fault stage. So this 
case can be used to check the transient stability responding 
to a large disturbance. The results are shown in figure 5. 
Meanwhile the damping of the proposed controllers could 
not be affected and the ABCs can still provided a 
satisfactory performance. Figure 6 showed the estimated 
parameters and the control inputs.  

V. CONCLUSIONS 
A systematic methodology for the design of a nonlinear 

adaptive back-stepping controller for a multi-machine 
power system was presented in this paper. In order to 
guarantee the postfault voltage is in a satisfactory level, the 
automatic voltage regulator is considered in design the 
nonlinear adaptive controller. With the adaptive design 
methodology, both the construction of the control law and 
the associated final LF were consistently systematic. 
Moreover, the unknown parameters in the system were 
estimated and compensated by the adaptive control scheme. 
So the proposed method offers a design tools to 
accommodate parameter uncertainties and system 
nonlinearities. The results obtained from the test power 
system validated the improvement in damping of 
oscillations with the proposed adaptive backstepping 
controller compared to the other two controllers. The 
simulations also confirmed that the proposed control law 
was adaptive to the parameter uncertainties.  

Fig. 6. Estimated parameter for generator 2 and 3 (case 2) 

Fig. 5. Response of angular speed  (case 2) 
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APPENDIX   

A. Parameters of the PSSs for the three-machine system  
Parameter Unit 2 Unit 3 

K 
T1 
T2 
T3 
T4 

2.2860 
0.0055 
0.0500 
0.4135 
0.0500 

3.1190 
0.0051 
0.0500 
0.2674 
0.0500 
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