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Abstract
This paper attempts to automate and replace human
guidance in the control of a K-9 unit by modeling that
guidance from observation. The ultimate research goal
seeks to contribute toward the autonomous command
of a trained K-9 unit by analyzing the movement and
the behavior of the dog as it responds to command
tones. Specifically, GPS and command signal informa-
tion (from a human trainer) is recorded as a canine fol-
lows (or fails to follow) instructions as it moves toward
a destination. The data is then processed into training
instances and used as training data for a General Re-
gression Neural Network (GRNN). Then, the network
is used to classify previously unseen test instances to
determine if the behavior at that moment is normal or
anomalous (in need of correcting tones). Both repre-
sentation of training instances and the system parame-
ters of the GRNN are optimized using a simple Evolu-
tionary Hill-Climber (EHC). Given even fairly limited
initial data for training, the system performs well, pro-
ducing relatively few false positives and false negatives
in classification.

1. INTRODUCTION

Trained canines have historically proven very ef-
fective in a wide range of potentially dangerous secu-
rity applications such as tracking and the detection of
people, drugs, and explosives. However, canine units
generally require the guidance of humans with some
expertise in order to perform their tasks. Specifically,
most trained canines act as an augmentation to exist-
ing human teams, rather than autonomous units in and
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of themselves. Relatively autonomous units, such as
robots, suffer from a number of deficiencies such as lim-
ited sensors and often weak navigation intelligence. Ca-
nines have sophisticated senses and automatically per-
form their own obstacle avoidance.

The ultimate goal of this research is to develop al-
gorithms which utilize information available from sen-
sors on-board the canine to provide command and con-
trol signals for the purpose of autonomously directing
the dog to waypoint(s). Once the dog is deployed for
a given path, all command information should be pro-
duced using data collected on the system, without the
need for human guides or trainers. The specific con-
tribution of this work is to attempt to automatically
identify anomalous behavior in the canine (as a human
trainer would do), using GPS and sensor information.

In essence, determining whether or not a canine is
behaving correctly at any given time can be considered
a modeling problem, where the model is that of a hu-
man trainer. A human trainer can quickly identify the
heading, location, distance to destination, and other pa-
rameters and make a decision whether or not the canine
needs to adjust course. In order to automatically de-
termine whether or not the dog is behaving correctly, a
control algorithm needs to be able to process informa-
tion regarding location, heading, and movement behav-
iors much like a human observing the dog would. In
this work, a GRNN [1] was utilized on processed data
gathered on-board the canine and then used to classify
future, unseen behaviors by modeling the commands
given by a human trainer.

Neural Networks have been used for a wide vari-
ety of control and modeling problems, both in tradi-
tional vehicles [2] and in animals [3, 4]. The GRNN
has proven to be capable at classifying accurately even
with relatively few training instances and with incom-
plete data (in this case, since the range of possible loca-
tions and behaviors of the dog is infinite, the data will
always be incomplete).

The remainder of this paper is organized as follows.
In Section 2, our methods of data collection from the
canine are discussed, as well as information concern-
ing the training of the canines themselves. In Section 3,
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the GRNN classifier algorithm is discussed in some de-
tail, along with issues regarding their implementation.
In Section 4, the optimization method (an Evolution-
ary Hill-Climber) used to find the best parameters for
the classifier is discussed. Data representation is ex-
plained in Section 5. In Section 6 and Section 7, experi-
ments and discussion are given to validate the approach.
Finally, in Section 8 some conclusions are drawn and
some areas for our continuing work are given.

2. Data Collection

Experimental studies through the Auburn Univer-
sity Canine and Detection Research Institute have al-
ready been performed on the ability of a human to com-
mand the K-9 to specific locations. In these exper-
iments, a single tone was issued over a radio to in-
form the dog that the direction being pursued was cor-
rect (normal behavior heading toward a pre-determined
goal). Once the dog made a wrong turn, the tone would
be deactivated (hereafter referred to as “anomalous be-
havior”) and the dog would begin to pursue other di-
rections until the tone was reactivated. When asked
to make one direction change during the course (ei-
ther to turn left or to turn right), the K-9 made the
correct decision 76 out of 79 times. When asked to
make multiple direction changes (in one path) while
following the static tone to a designated location and
to then return to home base also following the static
tone, the K-9 correctly completed 189 out of 206 total
trials (one trial consisted of multiple direction options
and direction changes). The results from this current
work have revealed that dogs can be trained to obey au-
dible direction-oriented commands relayed wirelessly
over long distances consistently and reliably for rela-
tively lengthy periods of time with no human contact or
intervention.

In later experiments, a GPS/INS radio in conjunc-
tion with an IMU, Magnetometer, and Accelerometer
located on the K-9 unit (shown in Figure 1) wirelessly
communicated to a laptop data on acceleration, veloc-
ity, latitude, longitude, and heading. This information
was recorded as the dog was commanded by a human
trainer from a start position to a known goal. Each
time, the path was in the same general area (an open
field), but the paths were not the same (differing start
locations and destinations). The pathways were fairly
straight and had only limited obstacles (changes in ele-
vation, holes in the ground, etc.) A corresponding tone
(“on” for normal or “off” for anomaly) that was be-
ing produced by the trainer was recorded alongside the
GPS/INS data. An example trial is shown in Figure 2,
where the x-marks represent the dog going off path and

Figure 1. Remotely Commanded K-9 with Ra-
dio and GPS/INS Receiver

Figure 2. Example of a K-9 Path and Command
Tones

the tone being turned off. This was repeated for a total
of seven trials (each trial represents a single path from
start to destination). The data collected from these tri-
als was collected into text files which were processed
for the purposes of training data in a neural network. In
essence, the algorithm is modeling the human trainer in
order to determine whether or not a canine’s behavior
is normal (in need of no change in tone) or anomalous
(needs a change in tone).

3. The General Regression Neural Network
(GRNN)

Neural networks in general attempt to emulate the
biological neural networks in the brain, which depend
on massive parallelism and interconnectivity in order to
process information quickly.
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A GRNN is a one-pass learning algorithm which
attempts to approximate a continuous variable that is
dependent on many representative vector training in-
stances. This is advantageous over many other neu-
ral network strategies which require iterative learning,
since they often require many iterations in order to pro-
duce workable solutions [1]. In practice, any analysis
system to be deployed on an embedded system with rel-
atively low computational resources should be made to
be as simple and efficient as possible.

A complete description of the GRNN would be out-
side of the scope and contribution of this paper, but
the interested reader is referred to [1]. A brief descrip-
tion follows. Elements of training instances x1...xn are
passed into the network and collected into pattern units
(where each unit represents a single training instance).
The output from the pattern units is collected in the
summation units (as described below) and then the out-
put of the summation units is ultimately collected to
provide an estimate for Ŷ corresponding to an unseen
input vector X .

Each training instance in the GRNN consists of a
vector X (consisting of training elements or “attributes”
x1...xn) and a desired output Y . In order to provide an
estimate of the value of Ŷ for an unseen instance X is
calculated in (1):

Ŷ (X) =
∑

n
i=1 Yi ∗ exp(−Ci

σ
)

∑
n
i=1 exp(−Ci

σ
)

(1)

where n is the number of all training instances, Yi is
the desired output (in other words, the actual value ob-
served in training) for a given training instance vector,
σ is a constant parameter of the GRNN, and the value
of Ci is the Euclidean distance between X and a given
training instance vector, as shown in (2):

Ci =
p

∑
i=1
|X j−Xi j| (2)

where X j represents a single element of the training in-
stance vector, Xi j represents the corresponding element
in the instance to be classified, and p is the number of
elements in the vector.

The effectiveness of a Neural Network depends on
[5]:

1. The presence of learnable characteristics in the
training instances

2. The number of training set instances

3. The representativeness of the training set

4. System parameters of the Neural Network

Our classifier attempts to carefully address each of
the above factors. Learnability is believed to be present
given that our devices attempt to capture the same in-
formation that a human uses to guide the canine visu-
ally. While limited, the current training data consists of
a number of instances of both normal and anomalous
behavior. Further, since the data comes from actual ca-
nines attempting to follow paths, the data seems likely
to be representative of the problem. The system param-
eters (including which attributes to use and the system
parameter for the GRNN) are optimized using a sim-
ple evolutionary method (described in Section 4) in a
fashion that would be done off-line in a real system.
In other words, the system would be optimized prior to
deployment to avoid the computational cost in an actual
embedded system.

3.1. Rationale

Although GRNNs can be more memory intensive
than other neural network strategies (since each training
instance essentially forms one “neuron” and all train-
ing instances are stored and used in the classification of
new instances), the training data in this case remained
compact enough to be viable for practical use. Even be-
fore optimizing the training data based on attributes (as
described in Section 4), the worst case for memory us-
age during classification was approximately memory =
traininginstances ∗ numberelements ∗ elementsize. In
concrete terms, this was a worst case of about 36,400
bytes (the embedded device that will be used for the
controller has about 400K of memory free for applica-
tions). Post-optimization, the memory usage dropped
to roughly half of that worst-case value. The primary
motivation for choosing a GRNN in this early phase
was to train the classification algorithm quickly (a ma-
jor advantage of the GRNN) and to discover which at-
tributes available from the sensors were most useful (as
described in Section 4). GRNNs also tend to perform
reasonably well even when presented with fairly lim-
ited training data (they still perform regression well, as
shown in [1]). In our case, the physical devices used
to collect the training data was no longer available for
us until a new sensor pack unit for the dog was fabri-
cated. This meant that for the time being, the modelling
effort had to be performed with existing data. In the
continuing work for this project, other machine learn-
ing techniques are being developed and applied.
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Figure 3. Evolutionary Hill-Climber
t = 0
Initialize candidate solution i
Evaluate i
while (i’s fitness < desired fitness)

choose a step location
evaluate step location
if step yields better fitness

replace i with new individual

4. The Evolutionary Hill-Climber Algo-
rithm (EHC)

In order to discovery an appropriate value of the
GRNN system parameter σ and to determine which at-
tributes from the training instances should be included
(in other words, what elements comprise the vector X
in Section 3), a simple Evolutionary Hill-Climber was
utilized.

4.1. Algorithm Description

Traditional deterministic Hill-Climbing method-
ologies tend to inadequately deal with complex search
spaces and instead get stuck at local minima [6]. In-
stead, stochastic methods of search often prove prefer-
able in instances where there exists no guarantee of
smoothness or of singular maxima in the function to
be optimized [7]. In optimizing σ and the attributes
for the GRNN, there are no such guarantees. The Evo-
lutionary Hill-Climber (EHC) as outlined in Figure 3,
based loosely on the Random-Mutation Hill-Climber
described in [8], first randomly creates a single candi-
date solution consisting of a chromosome with a num-
ber of values corresponding to parameters being opti-
mized (in this case, the σ value and whether or not to
include each of the thirteen possible attributes described
later). Initial values are chosen from within the allow-
able range dictated by the problem type (in this case,
the range of values for the σ was chosen from the range
(0,1.0] and each of the attributes could either be con-
sidered “included” or “not included”). This candidate
solution is then evaluated by a fitness function and the
fitness is assigned to that individual.

On each iteration, a single Uniform Mutation
(taken from the range [-1,1]) is added to the σ value,
multiplied by the mutation amount δ (chosen to be 0.25
for these experiments) and the starting value of the gene
itself. There is small chance (0.15, for each attribute)
that an attribute bit will be reversed (effectively deleting
or adding an attribute from consideration). This new
candidate solution is then evaluated. If the new can-

didate solution has better fitness than the previous, the
previous is replaced. However, if the new candidate so-
lution has worse fitness than the previous, it is rejected.

The overhead associated with the EHC is quite low
on each iteration, requiring only a handful of elemen-
tary operations. The primary motivation for adding or
deleting attributes is to generate a minimal set of at-
tributes which will provide the most accurate results.
Having fewer attributes has the added benefit of reduc-
ing the complexity of the GRNN each time it is used to
classify.

4.2. Fitness Function

In order to evaluate the fitness of a candidate solu-
tion, the GRNN is run with the indicated attributes and
value of σ on test instances that were not used as train-
ing data. The fitness formula is given by:

f itness = C− (3∗ fn + fp) (3)

In (3), C is the number of instances correctly clas-
sified by the GRNN, fn is the number of false nega-
tives (anomalies incorrectly identified as normal behav-
ior), and fp is the number of false positives (normal
behaviors incorrectly identified as anomalies). The fit-
ness function was biased against false negatives in or-
der to promote networks that more effectively identified
anomalous behavior in the canine.

In order to break ties in cases where the success
rates for two candidate solutions were equal, the av-
erage distance from the desired output to the resultant
output over all the test cases was used.

5. Representation of Instances

What information and how that information is rep-
resented obviously effects the ability of the system to
correctly classify behaviors. This section discusses the
raw data from the device on the canine and the pro-
cessing done to that data to make it most useful to the
GRNN.

5.1. Raw Data

Many times a second (approximately 60 Hertz), the
mobile system reports the measurements (the entire set
of which is referred to as an “entry”), as shown in Table
1.

For the purposes of offline training, only about one
in ten measurement entries were taken to be processed
as training data for the GRNN, essentially reducing the
sample rate from the sensor data to 6 Hertz. In prac-
tice, the changes in the recorded values was low enough
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Name Units
ax, ay, az g
gx, gy, gz (deg/s)
velocity (m/s)
heading (deg)

latitude, longitude (deg)
signal unitless

Table 1. Raw Measurements

due to the dog’s relatively low speed that it was unnec-
essary to record at the maximum rate possible. Further,
it was undesirable to record large amounts of redundant
data due to memory concerns. It is also worth noting
that even if the dog’s behaviors could be classified faster
than this, it is undesirable to issue the command tones
given to the dog too rapidly because it will cause the
K-9 confusion.

In all, there were 7 slightly different paths (each
of which took between 20 and 35 seconds for the
dog to travel) that were measured which produced be-
tween 200 and 350 raw entries (differing paths differed
slightly in length). Of those seven, two contained no
anomalous behavior while the other five all contained
some anomaly which caused the tone to be removed
while the dog found the new path.

5.2. Data Processing

In order to produce training instances, the raw data
was processed into a series of derived metrics. The
transformations were made using only data available at
the point of the measurement (no future knowledge) and
were generally differences between two raw data entries
to illustrate potential anomalies through unusually large
or small changes. For example, very large changes in
velocity might be significant. Additionally, three de-
rived metrics were utilized. The first is the Distance (D)
in degrees between the current latitude and longitude
and the coordinates of the destination (the value could
be converted to meters, but since the data will ultimately
be normalized this conversion would make little differ-
ence and require more computation). The second is the
Readings Since Improvement (RSI), which is the num-
ber of readings that have passed since the Distance has
decreased, which provides some indication of whether
or not the dog is making progress toward the known
destination. Finally, the Deviation from Desired Head-
ing (DEV) in degrees shows the difference between the
current heading and the ideal heading which would lead
the dog to the goal (calculated using the current coordi-
nates and the destination coordinates). A summary of
all 13 metrics is provided in Table 2, where the ∆ sym-

bol indicates the attribute is the absolute value of the
difference between the attribute in the current raw data
instance and the attribute in the previous raw data in-
stance.

Name Units
∆ax, ∆ay, ∆az g
∆gx, ∆gy, ∆gz (deg/s)

∆velocity (m/s)
∆heading (deg)

∆latitude, ∆longitude (deg)
D (deg)

RSI unitless
DEV (deg)

Table 2. Processed Metrics

All of the metrics were normalized (using the high-
est known values of a given attribute as the maximum)
for input into the GRNN.

6. Experiments

In order to evaluate the classifier system, the data
from the 7 trials was divided into two groups: a training
set and a larger testing set. The training set consisted
of the results of a single trial (340 processed instances,
which included some anomalous behavior) and the test-
ing set consisted of the remaining 6 trials (roughly 250
processed instances each, some trials did not contain
anomalies). Two different experiment types were run:
one using trial-specific parameters and the other using
general parameters optimized over all the trials.

6.1. Trial-Specific Parameters

In these experiments, the EHC was run to optimize
the attributes and parameters for specific trials. In other
words, parameters were discovered for each of the 6
trials in order to minimize classification error (as de-
scribed in Section 4.2). Optimizing over a specific path
has the benefit of providing a nice improvement in ac-
curacy, as would be expected from tailoring the param-
eters. However, it has the disadvantage of losing gener-
ality. In other words, using path-specific parameters on
a different path will generally perform badly. In many
applications, however, path-specific parameters would
be the ideal choice. For example, if a canine were to
be used to routinely check a path around an airport for
drugs, then path-specific parameters would be prefer-
able since generally the goal would be to minimize error
even at the cost of generality.

In order to optimize the GRNN parameters, the
EHC was given 500 cycles. In Table 3, the results of the
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Trial σ attributes total correct SR FN FP fit
2 0.1488 ∆ax,∆gy,∆gz,∆lat.,∆long.,ED,RSI 250 228 0.912 1 21 204
3 0.0379 ∆velocity, ∆lat.,∆long.,D 215 183 0.851 13 19 125
4* 0.0262 ∆heading, ∆long.,D,RSI,DEV 204 204 1.0 0 0 204
5 0.1091 ∆long.,D,RSI,DEV 284 246 0.866 17 21 174
6* 1.0 ∆long.,D,RSI,DEV 322 322 1.0 0 0 322
7 0.0970 ∆ax, ∆az, ∆gy,∆gz,∆velocity,∆long.,RSI,DEV 230 210 0.913 9 11 172

Table 3. Path-Specific Parameter Results

optimization, alongside the results of running the opti-
mized GRNNs are shown. The “Trial” column indicates
which path was used as the test set (there is no other sig-
nificance to the trial number). An asterisk (*) indicates
that the given trial did not contain anomalies (hence,
none should be detected). The σ column indicates what
value of σ passed to the GRNN yielded the results
shown. The “attributes” column shows which attributes
were included in the GRNN calculations. Columns “to-
tal” and “correct” indicate the total number of instances
and the raw number that were classified correctly. The
value of “Success Rate,” “FN,” and “FP” indicate the
percentage of correct classifications, the number of false
negatives, and the number of false positives, respec-
tively. The value of “fit” is given by (3).

In general, the method gives fairly good results
given the limited amount of training data available.
Even in the worst cases (Trials 3 and 5), the accuracy
was still over 0.85 with relatively few false positives
and false negatives - in both those trials, enough anoma-
lous instances were identified such that a control sys-
tem could recognize it as something other than an out-
lier. In Trials 2 and 7 (both with anomalies), the ac-
curacy improved even more, exceeding 0.90, and there
were very few false negatives. An example test trial
(Trial 7) is shown in Figure 4, where the thick line in-
dicates the path that the dog actually traveled along,
the small crosses indicate the points where the human
trainer ended the tone (indicating the dog needed to cor-
rect itself), and the small x’s indicate where the GRNN
indicated that the tone should be dropped. The GRNN
makes only a few relatively isolated errors near the end
of the dog’s path, which could likely be resolved with
increased training data or by only changing the tone
given a certain number of anomaly’s detected. In the
remaining trials (which contained only normal behav-
ior), no false positives were detected at all.

6.2. General Parameters

In these experiments, the EHC was run to optimize
one set of attributes and parameters for all of the (non-
training) trials together. Parameters were discovered

only once to give the best average results over all trials.
The benefit of choosing general parameters is that they
generate better anomaly detection over a wider range of
paths. However, the best general parameters will often
perform worse on any individual path. General param-
eters would be preferable in a situation where either the
canine must deal with a wide variety of paths, the path
is dynamic in some way (such as an area with vehicles),
or simply the path itself is unseen, other than the coor-
dinates of the destination.

In Table 4, the results are broken down by trial for
comparison purposes. The column headings have the
same meaning, although it should be noted that the σ

and attributes are the same for all trials. While perfor-
mance is still fairly good, there is a roughly 0.05 drop in
SR across nearly all of the trials. There is also a moder-
ate increase in both false positives and false negatives.
It is worth noting that the best performing settings used
less than half of all of the available attributes, indicating
that the classification is largely dependent on the infor-
mation given by a few derived metrics.

7. Discussion

These results provide indication that the concept of
an “anomaly” (as defined by the tones given by a human
trainer) can be detected with a relatively high degree of
accuracy. The authors believe that as more trials are
gathered, the training data can be refined and expanded,
allowing for even greater accuracy for a larger variety
of paths. Further, it should be noted that in practice a
single instance being classified as “anomaly” should not
necessarily result in an immediate change of stimulus to
the canine. Rather, several “anomaly” classifications in
a short period of time should require a change in control
signals. This would ameliorate the impact of scattered
false positives and false negatives in practice. Another
important observation is that even a human trainer is
not completely accurate in identifying that the canine is
not behaving correctly, so some error is inherent in the
system.

With respect to performance, a single classification

2472



Figure 4. Sample Test Trial with both human trainer and GRNN Output

Trial σ attributes total correct SR FN FP fit
2 0.1234 ∆az,∆long.,D,RSI,DEV 250 215 0.860 4 31 172
3 0.1234 ∆az,∆long.,D,RSI,DEV 215 178 0.818 23 16 91
4* 0.1234 ∆az,∆long.,D,RSI,DEV 204 197 0.966 0 7 190
5 0.1234 ∆az,∆long.,D,RSI,DEV 284 230 0.810 27 27 122
6* 0.1234 ∆az,∆long.,D,RSI,DEV 322 322 1.0 0 0 322
7 0.1234 ∆az,∆long.,D,RSI,DEV 230 205 0.891 16 9 148

Table 4. General Path Parameter Results

operates in less than a second, even when file I/O is re-
quired. In an actual implementation, many classifica-
tions could be performed in a second. The optimization
routine takes considerably longer (on the order of min-
utes), but should be performed in an off-line fashion to
discover parameters once and then reuse them.

8. CONCLUSIONS AND FUTURE
WORKS

8.1. Conclusions

In this research, a method for classifying canine be-
havior as either normal or anomalous was presented. A
General Regression Neural Network was used on a set
of training data taken using a GPS/INS unit on-board
a dog being directed by a human trainer and then used
to predict the canine behavior in future trials. An op-

timization method, the Evolutionary Hill-Climber, was
discussed as a means to determine which attributes to
include in the training and to determine good system
parameters for the GRNN. Both path-specific and gen-
eral settings were presented and their results on several
test sets were shown. In general, path-specific results
were (unsurprisingly) better, but in many applications
general results might be more useful. Overall, the re-
sults prove to be quite promising and in the continuing
work the approach seems likely to yield higher accuracy
in emulating a human trainer.

8.2. Future Work

Currently, the project is still in relatively early
stages, but even preliminary results have been promis-
ing. Our continuing work includes:

• Conducting considerable additional trials to give
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increased training data which should improve the
accuracy of the network.

• Including paths with a series of waypoints in order
to model more sophisticated paths

• Optimizing which training instances to use to re-
move unnecessary training data and improve effi-
ciency

• Exploring alternate classification algorithms (Ra-
dial Basis Function Networks or Support Vector
Machines) to reduce overhead and improve accu-
racy

• Predicting continuous variables such as heading
and velocity based on the canines behavior and sig-
nal changes
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