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Abstract
This paper presents a recursive control design method
for multi-input, block-feedforward linear systems with
delays in the input and in the interconnections between
the state blocks. The controller is of predictor type,
which means that it contains finite integrals over past
state values. This design method is a generalization of
the well known model reduction approach for systems
with input delay. A recursive procedure replaces delay
terms with non-delay ones step-by-step from the top of
the cascade structure down. Controller gains are com-
puted for the proxy system without delays, while the
construction guarantees the same closed loop poles for
the delay system and the proxy one.

1. Introduction
In this paper we develop a recursive method to design
controllers for linear, block-feedforward systems with in-
put and state delays. The method is a generalization of
the well known approach to control systems with input,
but no state delay of the form

ẋ(t) = Ax(t) +

l
∑

i=0

Biu(t− τi) (1.1)

where x ∈ ℜn and u ∈ ℜm. For this class of systems, the
problem can be reduced to control design for the system
without delay,

ẋ(t) = Ax(t) + Bdu(t) , Bd =
l

∑

i=0

e−AτiBi (1.2)

The feedback control u = −Kx for (1.2) can now be
obtained by a control design method of choice, assuming
that the pair (A,Bd) is stabilizable. The fact that the
spectrum of A − BdK coincides with that of (1.1) with
the control

u(t) = −K

(

x(t) +

l
∑

i=0

∫ τi

0

e−AθBiu(t + θ − τi)dθ

)

(1.3)
provides the stabilizing feedback for (1.1) and a finite
spectrum assignment for the closed loop system (see [5]).
This method applies even if there is a distributed de-
lay in u and/or the matrices A and Bi are time varying
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[5, 2]. Note that when there is only one delay τ , a simple
manipulation shows that u(t) = −KAx̃(t + τ |t), where
KA = Ke−Aτ and x̃(t+ τ |t) is the predicted value of the
state x at time t+τ , based on the information up to time
t (values of u applied after t do not impact x(t + τ) be-
cause of the input delay). For this reason the control law
of the form (1.3) is often referred to as “predictor-like”
or “predictor-type” while the method is known as the
model reduction (see [3], Section 4.2 and the references
therein).

The model reduction technique does not work if state
delay is also present. Indeed, control design for systems
with state and input delays has been identified in [8] as
one of the remaining largely open problems. In this pa-
per, state delay is allowed under a structural constraint
on delay dependent terms. That is, we consider multi-
input systems with state and input delays having the
following block-feedforward structure:

ẋ =















A1 ∗ ∗ . . . ∗
0 A2 ∗ . . . ∗
0 0 A3 . . . ∗
...

...
...

0 0 0 . . . Ap−1















x +















∗
∗
∗
...
∗















u (1.4)

The entries “∗” designate delayed terms. In other words,
if we denote delay operators by µi (that is, µix(t) =
x(t − τi), i = 0, . . . , l), a “∗” in (1.4) denotes a term of

the form
∑l

i=0
Diµi for some matrices Di of appropriate

dimensions. The method of this paper also works for
distributed delays, but, to reduce notational complexity,
only discrete delays are considered. Just like the model
reduction method, our generalized predictor imposes no
restrictions on the matrices Ai (i.e. they are allowed to
have unstable modes) or on the delays τi (i.e. they need
not be commensurate).

To design a controller for (1.4), we propose a recur-
sive method, based on the spectrum equivalence result
(observation) from [4]. In this paper the result is rein-
terpreted in a form that allows removal of delays from
subsystems that grow larger at each recursion step. The
delays are replaced by a matrix exponent factor in a
fashion similar to the model reduction technique. The
matrix exponent at each step depends on the matrix ex-
ponents from previous steps. After p − 1 steps, all the
delays will have been removed and a “proxy” non-delay
system obtained. A controller for the proxy system can
be designed using one of the standard techniques (pole
placement, LQR, H∞, etc). The spectra for the orig-
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inal delay system and the delay-free proxy system are
made the same by augmenting the proxy controller with
predictor integrals similar to those in (1.3). Certain ro-
bustness properties of the delay and the proxy systems
turned out to be equivalent as shown in Remark 2 and
Section 4.

The paper is organized as follows. Section 2 provides
the spectrum equivalence result that will be used in the
recursive method. The recursive predictor design is pre-
sented in Section 3. Section 4 contains an example with
simulation results.

2. Spectral equivalence result
The method proposed in this paper is based in the spec-
trum equivalence result of [4]. In its original form the
result applies to linear systems of the form

ẋ(t) = Fx(t) +
l

∑

i=0

Hiξ(t− τi)

ξ̇(t) = Aξ(t) + Bu(t)

(2.1)

where x ∈ Rnx , ξ ∈ Rnξ , u ∈ Rm and 0 = τ0 < τ1 <

. . . < τl. In [4] it was shown that any stabilizing control
v0 = −Kxx−Kξξ for the cascade system with no delay

ẋ = Fx +
∑l

0
Hie

−Fτiξ

ξ̇ = Aξ + Bv0

(2.2)

provides a control law

u = −Kx

(

x +

l
∑

i=0

∫ τi

0

e−FθHiξ(t + θ − τi)dθ

)

−Kξξ

(2.3)
that stabilizes (2.1). Moreover, the two systems – (2.2)
with the control v0 and (2.1) with the control (2.3) –
have the same closed loop poles.

For this paper we need the result extended to the
class of systems

ẋ(t) = Fx(t) +

l
∑

i=0

Hiξ(t− τi)

ξ̇(t) = Aξd(t) + Bu(t)

(2.4)

where A is a linear functional acting on the present and
past values of ξ (ξd(t) denotes the state trajectory over
the interval [t− r, t], r ≥ τl) of the form

Aξd(t) =

l
∑

i=0

Aiξ(t− τi) +

∫ r

0

Λ(θ)ξ(t− θ)dθ

The control law we consider is also modified – instead
of the simple gain matrix Kξ in (2.3) we employ a func-
tional Kξ having the same form as A:

Kξξd(t) =

l
∑

i=0

Kξiξ(t− τi) +

∫ r

0

Υξ(θ)ξ(t− θ)dθ

With these changes, the closed loop system takes the
form

ẋ(t) = Fx(t) +

l
∑

i=0

Hiξ(t− τi)

ξ̇(t) = −BKx

(

x(t) +

l
∑

i=0

∫ τi

0

e−FθHiξ(t + θ − τi)dθ

)

+(A−BKξ)ξd(t)
(2.5)

With the Laplace transform of

∫ τi

0

e−FθHiξ(t+θ−τi)dθ

given by (sI − F )−1(e−Fτi − e−sτiI)Hiξ(s), the charac-
teristic polynomial of (2.5) is

χ(s)= det









sI − F −
∑l

0
Hie

−sτi

BKx
sI −A(s) + BKξ(s) + BKx

×(sI − F )−1
∑l

0
(e−Fτi − e−sτiI)Hi









(2.6)

where A(s) =

l
∑

i=0

Aie
−τis +

∫ r

0

Λ(θ)e−θsdθ and Kξ(s) =

l
∑

i=0

Kξie
−τis +

∫ r

0

Υ(θ)e−θsdθ. Using the well known

identity for determinants of block matrices

det

[

A B

C D

]

= detA det(D − CA−1B)

we find that the terms with e−sτiHi in χ(s) cancel out
and we have

χ(s) = det(sI − F ) det(sI −A(s) + BKξ(s)

+BKx(sI − F )−1
∑l

0
e−FτiHi) =

= det

[

sI − F −
∑l

0
e−FτiHi

BKx sI −A(s) + BKξ(s)

]

(2.7)

In other words, the “predictor-type” feedback term

Kx

(

x +
∑l

0

∫ τi

0

e−FθHiξ(t + θ − τi)dθ

)

compensates

for the effect of delays in the x-dynamics and the
design can proceed as if the interconnection term is
∑l

0
e−FτiHiξ, that is, without time delay. The method

that handles delays in A(s) and Kξ(s) will be described
in the next section.

3. Recursive predictor design
Starting with the system given by (1.4), we augment
the state vector by adding an integrator at each input
to convert input delays into state delays. The approach
also works without state augmentation, but by adding
integrators we avoid a major source of sensitivity for the
subsequently designed closed loop system (see Remark 1
below). Thus, we consider a block feedforward structure
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with delays in the interconnections between blocks:

ż1 = A1z1 +
∑l

i=0
D1iz̄2(t− τi)

ż2 = A2z2 +
∑l

i=0
D2iz̄3(t− τi)

...

żp−1 = Ap−1zp−1 +
∑l

i=0
Dp−1iz̄p(t− τi)

żp = Apzp + Bv

(3.1)

Each block state zj belongs to ℜnj , z̄T
j = [zT

j , . . . , zT
p ]T

and, as before, the delays 0 = τ0 < τ1 < . . . < τl

are not assumed to be commensurate. State augmen-
tation with integrators results in Ap = 0 and B = I,
but we consider the general case because the control de-
sign method makes no use of the special structure of the
zp-subsystem.

Now we apply the spectrum equivalence result of
Section 2 to construct a feedback that achieves a fi-
nite spectrum for the closed loop system. The design
process consists of several stages. First, starting at the
top (z1 block), the delays τi are removed recursively from
the top down and replaced with e−Fjτi factors (index
j corresponds to the step number and the matrices Fj

are constructed recursively). When all delays are re-
moved/replaced, the second stage consists of designing
a control law for the proxy (non-delay) system. In the
third stage, this linear control law is augmented with a
set of predictor integrals using the matrices Fj generated
by the recursive procedure.

To start the recursion we compare (2.4) to (3.1) and
note that they are in the same form if we equate z1

with the state x, z̄2 = (z2, . . . , zp) with ξ, F1 = A1,
and H1i = D1i. Now, following the spectral equivalence
approach, we replace the delays in the z1 dynamics with
e−F1τi :

ẋ1 = F1x1 +
∑l

i=0
e−F1τiH1iz̄2

ż2 = A2z2 +
∑l

i=0
D2iz̄3(t− τi)

...

żp = Apzp + Bv

(3.2)

Note that now the block of states z2 does not appear
delayed any more in the dynamics of the system. In the
subsequent steps we shell remove the delays from the
blocks z3, z4, etc, down to zp.

In the second step, the pair (z1, z2) is equated to
the top of the cascade structure in (2.4), x2 = (z1, z2),

and ξ = z̄3. With the partition of
∑l

0
e−F1τiH1i =

[E12 . . . E1p] corresponding to that of z̄2 we define

F2 =

[

F1 E12

0 A2

]

(3.3)

H20 =

[

E13 . . . E1p

D20

]

and H2i =

[

0

D2i

]

1 ≤ i ≤ l

(3.4)

Again, we replace the delay terms from the second block
with matrix exponents to obtain

ẋ2 = F2x2 +
∑l

i=0
e−F2τiH2iz̄3

ż3 = A3z3 +
∑l

i=0
D3iz̄3(t− τi)

...

żp = Apzp + Bv

(3.5)

Following this procedure we recursively construct
matrices Fj and Hji and replace all delays by matri-
ces e−Fjτi . After p− 1 steps we obtain a system with no
delays:

ẋp−1 = Fp−1xp−1 +
∑l

i=0
e−Fp−1τiHp−1iz̄p

żp = Apzp + Bv
(3.6)

If the pair of matrices

Fp =

[

Fp−1

∑l
i=0

e−Fp−1τiHp−1i

0 Ap

]

, Hp =

[

0

B

]

is controllable (or at least stabilizable), a control law

vp = −Kz = −K1z1 −K2z2 − . . .−Kpzp (3.7)

that stabilizes the system (3.6) can be found using any
of the well established methods for linear (non-delay)
systems. Using the feedback gains from (3.7) we directly
obtain the control law for (3.1) by using the formula

v = −

p
∑

j=1

Kjzj −

p−1
∑

j=1

K̂j

l
∑

i=0

∫ τi

0

e−Fjθ

×Hji z̄j+1(t + θ − τi)dθ

(3.8)

where K̂j = [K1 K2 . . . Kj ]. The stability of the closed
loop system is assured by the following result.

Proposition 1 The closed loop system (3.1), (3.8) has
the same finite spectrum as the non-delay system (3.6)
with the control (3.7).

Proof: The spectrum of the closed loop system (3.6),
(3.7) is given by the roots of the characteristic polyno-
mial χ(s):

χ(s) = det







sI − Fp−1 −
l

∑

i=0

e−Fp−1τiHp−1i

BK̂p−1 sI −Ap + BKp






(3.9)

Now we go back from the bottom to the top, in each
step restoring delay terms (instead of e−Fjτi factors) and
augmenting the control law with predictor terms. Thus,
in the first bottom-up step we replace e−Fp−1τiHp−1izp

with Hp−1izp(t− τi) and augment the control law vp,

vp−1 = vp − K̂p−1

l
∑

i=0

∫ τi

0

e−Fp−1θHp−1izp(t + θ − τi)dθ
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to obtain

ẋp−1 = Fp−1xp−1 +
∑l

i=0
Hp−1izp(t− τi)

żp = −BK̂p−1

(

xp−1 +
∑l

i=0

∫ τ1

0
e−Fp−1θ

×Hp−1izp(t + θ − τi)dθ) + Apczp

(3.10)

where Apc = Ap − BKp. The characteristic polynomial
of (3.10) is

χp−1(s) =

det









sI − Fp−1 −
∑l

0
Hp−1ie

−sτi

BK̂p−1

sI −Apc + BK̂p−1(sI − Fp−1)
−1

×
∑l

0
(e−Fp−1τi − e−sτiI)Hp−1i









(3.11)
Direct application of the spectral equivalence result pro-
vides χp−1(s) = χ(s).

For the second bottom-up step note that delayed
zp states only affect the lowest zp−1 block of the xp−1-
dynamics in (3.10) (see (3.4) for the form of matrices
Hji and note that Hj0 multiplies states with no delay).
Based on this observation we rewrite (3.10) as

ẋp−2 = Fp−2xp−2 +
∑l

i=0
e−Fp−1τiHp−2iz̄p−1

˙̄zp−1 = −BK̂p−2xp−2 + Ap−1z̄p−1d

(3.12)

where

Ap−1z̄p−1d =









Ap−1zp−1 +
∑l

i=0
Dp−1izp(t− τi)

(Ap −BKp)zp −BKp−1zp−1 −BK̂p−1

×
∑l

0

∫ τi

0
e−Fp−1θHp−1izp(t + θ − τi)dθ









Thus, as in the (bottom-up) step one, we replace
e−Fp−1τiHp−2iz̄p−1 with Hp−2iz̄p−1(t− τi) and augment
the control law with

vp−2 = vp−1+K̂p−2

l
∑

i=0

∫ τi

0

e−Fp−2θHp−2iz̄p−1(t+θ−τi)dθ

(3.13)
The characteristic polynomial of this new system is

χp−2(s) =

det









sI − Fp−2 −
∑l

0
Hp−2ie

−sτi

BK̂p−2

sI −Ap−1(s) + BK̂p−2(sI − Fp−2)
−1

×
∑l

0
(e−Fp−2τi − e−sτiI)Hp−2i









Using the spectral equivalence result we have that
χp−2(s) is equal to the characteristic polynomial of
(3.12). Then, because (3.12) is just a repackaged version
of (3.10), χp−2(s) = χp−1(s) = χ(s). Continuing with
the bottom up procedure we obtain that the character-
istic polynomial of the closed loop system (3.1), (3.8) is
equal to χ(s) and, thus, the system is stable and has a
finite spectrum. This completes the proof of the propo-
sition.

Remark 1 The approach described above can be ap-
plied directly (without the addition of integrators at each
input) by using [5] Proposition 2.1. The set of deter-
minants (χ(s), χp−1(s), . . .) would have the term “sI”
in the (p, p) block entry replaced by “I”. The spectral
equivalence results remains unaffected by this change.

However, without the integrators, the model reduc-
tion approach may be very sensitive to round-off errors
in the implementation (see [8], Section 6.2 and the ref-
erences therein). The source of this sensitivity is the
additional dynamics created by dependence of u on the
integrals of past values of u (see equation (1.3)). Addi-
tion of integrators (input filters [6]) avoids this problem
for the model reduction and for this method.

Remark 2 In the special case when each block and the
input u in (3.1) are one-dimensional, it is easy to estab-
lish a relationship between robustness properties for the
closed loop system (3.1), (3.8) and its non-delay coun-
terpart (3.6), (3.7).

One familiar robustness measure is given in terms of
the gain and phase margins obtained by cutting the loop
at the plant input and considering the transfer function
from the plant input to the controller output (without
the minus sign). For the proxy system (3.6), (3.7) the
(open) loop transfer function is given by

Gp(s) = k(sI − Fp)
−1Hp (3.14)

where Fp and Hp = [0 0 . . . b]T are the state matrix and
the input vector in (3.6). The loop transfer function for
the delay system (3.1), (3.8) is

Gd(s) = κ(s)(sI −A(s))−1Hp (3.15)

where A(s) is the Laplace transform of the state ma-
trix in (3.1), Hp is the input vector (the same as in
(3.14)), and κ(s) is the Laplace transform of the feed-
back functional (3.8). Because of the upper triangu-
lar system structure det(sI − Fp) = det(sI − A(s)) =
∏p

j=1
(sI − Aj) and, from the main result of this paper,

det(sI − Fp + Hpk) = det(sI − A(s) + Hpκ(s)). Thus,
we can write

Gd(s) = det(sI −A(s))−1 κ(s) adj(sI −A(s))Hp

=
det(sI −A(s) + Hpκ(s)) −

∏p
j=1

(sI −Aj)
∏p

j=1
(sI −Aj)

= det(sI − Fp)
−1



det(sI − Fp + Hpk) −

p
∏

j=1

(sI −Aj)





= Gp(s)

where the transformations also exploit the fact that only
the last (p-th) entry of the vector Hp is non-zero. We
conclude that the delay system inherits the loop robust-
ness properties from the non delay system. In partic-
ular, if the LQR design is used for the latter, there is
a robustness guarantee for both systems that includes
( 1

2
,∞) gain margin and ±60◦ phase margin (see [1], Sec-

tion 5.4).
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4. An illustrative example
We have selected a simple feedforward system with
two delays to illustrate the recursive predictor design
method:

ż1(t) = z2(t− τ1)

ż2(t) = az2(t) + z3(t− τ2)

ż3(t) = u(t)

(4.1)

The (nominal) parameters assumed for controller design
are τ1 = 0.65, τ2 = 0.4, and a = 1. Hence, the open loop
system is unstable due to a pair or integrators and an
unstable pole at 1.

In the first step of the recursion, comparing (4.1) to
(3.1) provides A1 = F1 = 0 and H11 = [1 0],H12 = [0 0].
Thus, e−F1τ1 = 1, and we obtain:

ẋ1(t) = z2(t)

ż2(t) = az2(t) + z3(t− τ2)

ż3(t) = u(t)

(4.2)

For the second step, the prediction matrix F2 and the
interconnection matrix H22 (H21 matrix, corresponding
to τ1 is 0 at this step) are obtained from the top two
equations:

F2 =

[

0 1
0 a

]

, H22 =

[

0
1

]

Replacing z2 with x2 and using

e−F2τ2H22 =

[

e−aτ2 − 1

a
e−aτ2

]T

the system (4.2) is transformed into

ẋ1(t) = x2(t) +
e−aτ2 − 1

a
z3(t)

ẋ2(t) = ax2(t) + e−aτ2z3(t)

ż3(t) = u(t)

(4.3)

which is delay free and for which a preferred linear con-
trol design method can be applied (it is easy to check
that (4.3) is controllable for all a, τ2).

From a control law

v3 = −k1x1 − k2x2 − k3z3 (4.4)

for (4.3), we reconstruct the control for the original sys-
tem in two bottom-up steps1. First, to stabilize (4.2) we
would use

v2 = −[k1 k2]

([

x1

z2

]

+

∫ τ2

0

e−F2θ

×H22z3(t + θ − τ2) dθ) − k3z3

where we have changed x2 into z2 to remind ourselves
that we have returned back to the original equation for

1One can just use the formula (3.8), but we show the bottom-up
reconstruction to illuminate the main idea.

the second state. In the second (and the last) bottom-up
step we need to go from a stabilizing control for (4.2) to
a stabilizing control for (4.1). Thus, the final control law
is obtained by introducing a predictor for the z1 state via

u = v1 = v2 − k1

∫ τ1

0

e−F1θH11

[

z2(t + θ − τ1)
z3(t + θ − τ1)

]

dθ

Using the particular forms of the matrices Fj and Hji

we rewrite the control law as

u = −k1

(

z1 +

∫ τ1

0

z2(t + θ − τ1)dθ

+

∫ τ2

0

e−aθ − 1

a
z3(t + θ − τ2)dθ

)

−k2

(

z2 +

∫ τ2

0

e−aθz3(t + θ − τ2)dθ

)

− k3z3

(4.5)

For simulations, the integrals have been implemented by
the trapezoidal rule with ∆t = 0.05.

To find the controller gains for the non-delay, proxy
system (4.3), we have used the standard LQR method
to minimize

J =

∫

∞

0

xT (t)Qx(t) + u2(t)dt

with Q = diag{15, 10, 10}. The approach produced the
controller gains k1 = 3.9, k2 = 22.1, k3 = 6.1 and the
closed loop poles at p1 = −3.1 and p2/3 = −1 ± j0.5.
According to the main result of this paper, the system
with delay (4.1), (4.5) has the same closed loop poles.

The blue bold trace in Figure 1 shows the response
of the (nominal) closed loop system to set point com-
mand for z1. Note that set point regulation for z1 has
to overcome two delays τ1 and τ2, τ1 + τ2 = 1.05. With
ωB denoting the closed loop system bandwidth, we have
ωB(τ1+τ2) > 1. Hence, the controller tuning can be con-
sidered aggressive and it is of interest to look at the ro-
bustness properties of the controller. Figure 1 also shows
the closed loop system response with delay uncertainty:
green-dash trace shows the case in which both delays
are multiplied by 1.5 (in the system, but not in the con-
troller), and red-dash-dot trace shows the response with
both delays multiplied by 0.5.

Another aspect of the closed loop system robustness,
its gain and phase margins, has been addresses in Re-
mark 2 and is revisited for this example. The loop gain
for the system in Figure 2 is C(s)P (s), with P (s) being
the transfer function of the plant (system) and C(s) the
transfer function of the controller. The transfer function
from the disturbance d to the controller output y is

Gdy(s) =
C(s)P (s)

1 + C(s)P (s)

When d ≡ 0, the system in Figure 2 may represent
the system (4.1) with the controller (4.5) or the proxy
systen(4.3) with the controller (4.4). A sequence of step
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Figure 1: Response of the closed loop system to step input:
nominal case and the effect of delay uncertainty.
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Figure 2: The configuration used for loop transfer func-
tion comparison of the time delay system and
the non-delay proxy system.

changes for d is used to compare the responses of the
two closed loop systems. Figure 3 shows that they are
indeed the same (occasional small difference are prob-
ably caused by the discrete approximation of predictor
integrals in (4.5)). We conclude that, not only are the
poles of the delay and proxy closed loop system the same,
but also that the zeros of the loop transfer functions are
too. This confirms that the gain and phase margins for
the two systems are the same and also implies equivalent
robustness to input unmodeled dynamics and to a class
of parametric uncertainties (see [7], Section 3.2).

For this example, we have also noticed a correlation
between robustness properties of the delay and the proxy
systems to τ1 and τ2 (note that they are real state de-
lays for the former and just parameters for the latter).
The proxy system stability is independent of τ1 while
the delay system remains stable over a (wide) range of
τ1 between 0 and 6 (recall, the nominal value used for
the controller design is 0.65). Similarly, the proxy sys-
tem is stable for the parameter τ2 between 0 and 0.87
while the delay system is stable for the delay τ2 between
0 and 0.63 (the nominal value is 0.4).
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