
 

 

 

  

Abstract— Cascaded nonlinear predictive controller for 

induction motor drive is presented. The load torque, 

considered as an unknown disturbance, is rejected using a 

disturbance observer. First, a nonlinear multivariable 

predictive controller is applied to track electromagnetic torque 

and rotor flux norm trajectories. Then, a speed predictive 

control strategy is carried out from the electromechanical 

equation of the machine. Both controllers are applied in a 

cascade structure to induction motor. The prediction model is 

carried out via Taylor series expansion using Lie derivatives 

for nonlinear model. The derived predictive law minimizes a 

quadratic performance index of the predicted tracking error 

for multivariable system and a predicted error for speed 

control. The implementation of the cascaded control law does 

not need an on line optimization and the tracking of desired 

trajectories is achieved successfully. The load torque observer, 

derived from the speed predictive control, is simplified to a PI 

structure. This observer structure guarantees the disturbance 

rejection and the robustness to parameters variations. 

Simulation results show the high performance of the proposed 

control scheme. 

I. INTRODUCTION 

NDUCTION motor (IM) compared to other types of electric 

machines, exhibits several advantages such as lower cost, 

reliability, simplicity and less maintenance. However, it is 

highly nonlinear multivariable and, contrary to DC motor 

for example, requires more complex methods of control. 

One of the most significant developments in the control 

area has been the field oriented control (FOC) proposed by 

Blaschke [1]. This technique is very useful except that it is 

very sensitive to parameters variation. To improve FOC, 

several techniques have been proposed such as full 

linearizing state feedback control based on differential 

geometric, direct torque control, sliding mode control, 

predictive control [2-4]. Even though, these techniques 

bring improvements to FOC, the research area is open 

especially for unknown disturbance compensation and 

robustness to machine parameter. 

Model based predictive control (MPC) has received a 
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great deal of attention and is considered by many to be one 

of the most promising methods in control engineering [5-7]. 

It has been extended to nonlinear system [8-10]. The 

predictive control is applied to induction motor drive with 

good performance for trajectories tracking [11-14]. 

However, the performance accuracy is affected by load 

torque, which is not always known in industrial 

applications, and the machine parameters uncertainties. To 

overcome this problem, an estimation of the load torque is 

done in this paper for compensation of its unknown 

variations, which constitutes the contribution of this work. 

The load torque observer can be derived from the predictive 

control law. The observer has PI structure, where the 

integral action allows the elimination of the steady state 

error and enhances the robustness of the control scheme 

with respect to model uncertainties and disturbances 

rejection. 

II. INDUCTION MOTOR MODEL 

The continuous time model of the IM is done in stator 

reference frame (α-β). Under the assumption of linearity of 

the magnetic circuit, the nonlinear affine form can be 

expressed as 
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Vector function f(x) is defined as follows 
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g is a constant matrix 
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The outputs to be controlled are the electromagnetic torque 

and the squared rotor flux norm 
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III. NONLINEAR PREDICTIVE CONTROL 

The optimal control is carried out through the 

minimization of the receding performance index defined as 
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The control weighting term is not included in the 

performance index (3). However, the control effort can be 

achieved by adjusting the minimum and maximum 

prediction times τ1 and τ2 respectively [9]. 

The τ-step ahead prediction of the system outputs is 

obtained via Taylor series expansion.  
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The following notation is used for the Lie derivative of 

the function hj(x) along a vector field f(x) = [f1(x) ...  fn(x)]T 
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Iteratively, we have  
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For torque output, the relative degree is r1=1 

 





++=

=

)()()()()()(

)()(

1111

11

21
tuhLtuhLhLty

hty

sgsg βα xxx

x

f
&

          (7) 

For rotor flux norm output, the relative degree is r2=2 
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The expansion of the induction motor outputs y(t+τ) in 

ri
th

 (with r1=1 and r2=2) order Taylor series under matrix 

form is 

 

( ))()()()( tTt uxHxYy +∏=+                                (9) 

where 

]*)2/(*[ 22

2

2222 ×××=∏ ITITI  
T

hLhLhLhh ])(0)()()()([)( 2

2

2121 xxxxxxY fff=  

T

gg

gg

hLLhL

hLLhL








=

)(00)(00

)(00)(00
)(

21

21

22

11

xx

xx
xH

f

f  

I.×. : identity matrix. 

 

The predicted reference yr(t+τ) can be approximated by 

Taylor series expansion, and given by 
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The performance index (3) can be simplified as 
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Then, the optimal nonlinear control law, which minimizes 

the receding horizon performance index (3), is given by 

 

( ) ( ))()()()()()(
1

xYYxHxHxHu r −∏∏=
−

tt
TT                (13) 

 

IV. SPEED PREDICTIVE CONTROL 

The mechanical dynamic of IM is described by 
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where, 
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TL is the load torque, which is considered as an unknown 

disturbance in the system dynamics. 

 

A simple predictive control algorithm is carried out for this 

system, which consists of applying a control that allows the 

tracking error of speed to reach zero. 
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The predicted speed ω(t+τ) is carried out by Taylor series 

expansion 
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Similarly, The predicted reference speed ωr(t+τ) is 

approximated as 
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The optimal control is carried out from (15), (16) and (17). 

It is given by 
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The cascaded control structure of IM system is obtained by 

using the torque, calculated from the speed control law, as 

reference torque for the nonlinear predictive controller 

developed above. Thus, the initial system can be 

decomposed into two subsystems in cascaded form. The 

inner loop incorporates torque-flux model and the external 

loop is the equation of the mechanical dynamics of motor. 

 

V. LOAD TORQUE COMPENSATION 

 

The accuracy of the speed control law for trajectory 

tracking needs the knowledge about the load torque. Since 

TL is an unknown variable, it should be estimated in the 

controller as 
LT̂  in order to eliminate the effects of 

disturbance. 

In this paper, a load torque observer is introduced for 

estimating TL. In order to simplify the design of the 

observer, since there is no information about the load torque 

and the observer period in the actual system is short enough 

compared with the variation of TL, it is possible to make the 

following assumption: 

 

0=
dt

dT L                                                                         (19) 

It follows from (14) that 
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An initial disturbance observer is given by 
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where p0 is a parameter to be chosen. 

 

The observation error is given by 
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Then, the error dynamics is given by 
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p0 must be chosen negative such that the system 
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is exponentially stable. 

 

The load torque TL is replaced by its estimation 
LT̂ in the 

control law (18) 
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Then, the control law (25) is embedded into the disturbance 

observer (21) 
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Integrating (26), we get 
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The load torque disturbance observer has a PI structure, 

which compensates the unknown load torque and enhances 

the robustness for the speed tracking. 
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VI. ROTOR FLUX ESTIMATOR 

The rotor flux estimator, used in this work, is carried out 

from the Kalman filter (KF) applied to the 4
th

 order discrete 

linear time varying model depending on the measured speed 
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w(k) and v(k) are independent noises with covariance 
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Discrete time Kalman filter equations 
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The matrices A, B and C are carried out from the 

discretization of the continuous model of induction motor. 
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where 

          Ts is the sampling time. 

 

Fig. 1 shows the proposed control scheme for the 

induction motor drive. 

 

 

 

 

 

 

 

 

 

VII. SIMULATION RESULTS 

The simulations have been carried out to verify the 

performance of the proposed cascaded controller. The 

details about the motor are given in appendix.  

The digital model of the motor is run with sample time             

Ts = 1 µs. The modulation time of the SV PWM is Tm = 100 

µs. The information about the rotor speed is assumed to be 

known by measurement, the rotor flux is estimated by 

Kalman filter with sample time Ts = 5 µs. The sample time 

of the controller is Ts = 100 µs, the prediction times for 

inner controller are chosen as τ1 = 0, τ2 =10*Ts= 1 ms and 

for external controller τ=50* Ts= 5 ms and p0= -5. 

First, the machine controlled by the cascaded control law 

is run with the nominal values of the machine parameters. 

The tracking performances for rotor speed and rotor flux 

norm are shown in Fig. 2 and 3 respectively. The noise, 

shown in flux estimation, occurs from the different sample 

times used in simulation. Fig. 4 gives the estimation of the 

load torque. As shown in results, the tracking performance 

is achieved successfully.  
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Fig. 1.  Block diagram of cascaded nonlinear predictive control for 

induction motor drive 

Fig. 2.  Rotor speed and speed error responses of induction motor drive 

 
Fig. 3.  Rotor flux norm and flux error responses of induction motor drive 
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Then, in case of mismatched model, the rotor resistance 

(Rr) is varied as shown in Fig. 5. This variation is not taken 

into account when the control law is carried out. The 

nominal value of the rotor resistance is used in the control 

law computation. The same prediction times as above are 

used in this simulation. The tracking performances for 

speed and flux norm with smooth speed reference are 

shown in Fig. 6 and 7 respectively, and Fig. 8 gives the 

estimated load torque. These results show that the 

robustness to Rr variation is achieved by this controller. 

However, the accuracy of the load torque estimator is 

decreased in this case. It can be seen that the response 

performance of the system is good even though the 

parameter variation is not adapted on line. 

VIII. CONCLUSION 

A cascaded nonlinear predictive control algorithm with a 

load torque disturbance observer of an induction motor 

drive has been proposed. The nonlinear predictive 

controller is developed for multivariable system of the 

induction motor in order to track electromagnetic torque 

and rotor flux norm. It constitutes the inner loop of the 

system. The external loop is dedicated to speed tracking 

with a simple predictive controller. It has been shown that 

this kind of control is effective for solving the control 

problem of induction machines. Although the predictive 

control belongs to optimal control, it does not need an on-

line optimization and trajectories tracking is successfully 

achieved. The load torque disturbance, considered as 

unknown, is estimated by a simple observer and has a PI 

structure. Faster load torque disturbance compensation is 

guaranteed, and robustness with respect to machine 

parameter is enhanced with this cascade structure control 

design. An appropriate and simple choice of the tuning 

parameters provides a robust controller, very well adapted 

for trajectories tracking problem. 

 
Fig. 4.  Load torque estimation 

 
Fig. 5.  Rotor resistance variations 

Fig. 6.  Rotor speed and speed error responses of induction motor 

drive of mismatched model 

Fig. 7.  Rotor flux norm and flux error responses of induction motor drive 

of mismatched model 

Fig. 8.  Load torque estimation for mismatched model 
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TABLE I 

MACHINE  AND CONTROLLER PARAMETERS 

Symbol Quantity 

isα , isβ stator currents 

βα
φφ

rr
,  rotor fluxes 

ω  rotor speed 

usα ,  usβ  stator voltages 

Rs , Rr  stator and rotor resistances 

Ls , Lr , Lm stator, rotor and mutual inductances 

Tr = Lr / Rr rotor time constant 

p poles pair number 

J inertia 

fr,  friction coefficient 

TL load torque 

σ leakage coefficient 

τ1 , τ2 minimum and maximum prediction times 

p0 disturbance observer gain 

Ts sampling time. 
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Rs = 8 Ω, Rr = 3.6 Ω, Ls = 0.47 H, Lr = 0.47 H, Lm = 0.44 H, p = 2,        

J = 0.06 kgm2, fr = 0.04 Nms 

1144


