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Abstract: An output regulation problem can be converted

into a stabilization problem thanks to an appropriately de-

signed internal model. In literature, the successful construc-

tion of an internal model relies on the linear observability

condition of the steady state generator. This paper defines the

global observability property of the steady state generator,

under which the output regulation problem is solved for a

more general class of systems.

I. INTRODUCTION

The robust output regulation problem is concerned with

designing a control law for an uncertain plant such that

the closed-loop system satisfies two requirements. The first

one is the closed-loop stability, and the second one is the

asymptotic tracking and disturbance rejection, i.e., to have

the output of the closed-loop system asymptotically track

a class of reference inputs in the presence of a class of

disturbances. Here both the reference inputs and disturbances

are generated by an autonomous exosystem. This problem

for linear systems can be traced back to 1970s in [2], [3],

and [4], among others. A salient outcome of this research

is the internal model principle which enables the conver-

sion of the output regulation problem into an eigenvalue

placement problem for an augmented linear system. In the

last two decades, the robust output regulation problem for

nonlinear systems was pursued by quite a few people in

[1], [7], [8], [11], and [13], from locally, semi-globally

to globally. Various solvability conditions have been given

which impose assumptions on the solution of the regulator

equations. An analogue development for nonlinear systems

is that an internal model enables the conversion of the robust

regulation problem into a robust stabilization problem for an

augmented system. In particular, a systematic framework on

this conversion was developed in [7].

The crucial step of applying the systematic framework

is the design of an appropriate internal model. Essentially,

an internal model works as an observer of the steady state

generator which reproduces the steady state/input. Therefore,

the successful design of an internal model relies on a certain

observability condition of the steady state generator. The

condition was first studied in [8] which requires the solution

of the regulator equations be a polynomial in the exogenous

signal. Later, a different immersion condition was given in
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[1]. It was further shown in [5] that, either the polynomial or

the immersion condition implies a trigonometric polynomial

condition. Essentially, all three conditions are equivalent, and

they guarantee the existence of a linear observable steady

state generator.

A milder assumption that allows the solution of the

regulator equations to be non-polynomial nonlinearity was

given in [7]. With this assumption, a nonlinear steady state

generator is given for reproducing the steady state/input.

Motivated by the linear case, an internal model is designed

under the linear observability assumption on the steady state

generator. It is also because only the linear observability is

examined that a certain nonlinear term remains in the internal

model. This nonlinear residue may cause some controller

design difficulties which will be discussed in this paper.

It has been known that the fundamental mechanism for

the robust output regulation is the conversion into a robust

stabilization problem for an augmented system. Specifically,

the aforementioned nonlinear residue may complicate the

stabilizer design for the resulted augmented system. In the

existing results, the nonlinear term is assumed to be globally

Lipschitz with a given Lipschitz constant (see, e.g. [7]). In

other words, the nonlinear term in the internal model is as-

sumed to be dominated by the linear vector field. Therefore,

the stability property of the internal model can be dominated

by its linearization. It turns out that this stability property

is necessary for the solvability of the stabilization problem

for the augmented system. Otherwise, when the incremental

rate of the nonlinear residue doesn’t satisfy the Lipschitz

condition, the stabilization problem of the augmented system,

or the output regulation problem of the original system, is

not solved.

This paper aims to find a condition under which we can

get rid of the nonlinear residue in the internal model. We

have revealed that the nonlinear residue exists because the

internal model is designed on the linearly observable part

of the steady state generator. This observation motivates us

to look for the global observability property of the steady

state generator. In this paper, we define a global observability

property, and further construct a linear internal model based

on the globally observable steady state generator. As a result,

the incremental assumption on the nonlinear residue become

trivial. In this sense, the robust output regulation can be

studied for a more general systems with non-polynomial

nonlinearities.

The remaining sections are organized as follows. In Sec-

tion II, we give the problem formulation and revisit the linear

and nonlinear steady state generators with linear observ-

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

ThB18.2

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3034



ability. In Section III, the global observability/detectability

condition is defined under which the global robust output

regulation problem for a class of nonlinear systems is solved.

A numerical example is provided in Section IV, followed by

some concluding remarks in Section V.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

Consider a reference tracking and disturbance rejection

problem of a nonlinear system with an affine input described

as follows:

ξ̇ = φ(ξ, v, w) + b(w)u

e = ξ − q(v, w). (2.1)

In the system (2.1), ξ ∈ R
n is the state, u ∈ R

n the input,

e ∈ R
n the output representing the tracking error, v ∈ R

q

the exogenous signal representing the disturbance and/or the

reference input, and w ∈ R
s the unknown parameter vector.

The sign of b(w) ∈ R is known. In particular, we assume

b̄ > b(w) > b for a positive numbers b̄ and b. The exogenous

signal v is produced by an autonomous system described by

v̇ = Av (2.2)

where the matrix A is neutrally stable, that is, all the

eigenvalues of A are simple with zero real parts. The

control objective is to design an error output controller such

that the states of the closed-loop system are bounded, and

the tracking error asymptotically approaches to zero. This

control problem is concerned with asymptotic tracking and

disturbance rejection in addition to stability. However, for

the class of system (2.1) we can incorporate the tracking

objective into the disturbance rejection by using a simple

coordination transformation x = e. In the new coordinate,

the system (2.1) can be rewritten as follows:

ẋ = f(x, v, w) + b(w)u

e = x. (2.3)

We assume all functions in the setup are sufficiently smooth.

Now, the problem studied in this paper can be formulated as

follows.

Global Robust Output Regulation Problem (GRORP):

Consider the system (2.3), for given compact sets V ⊂ R
q

and W ⊂ R
s, find a state (x) feedback controller such that

the closed-loop system satisfies the following two properties:

(i) The trajectories of the closed-loop system starting from

any initial states exist and are bounded for all t > 0;

(ii) The trajectories described in (i) also satisfy

limt→∞ e(t) = 0.

Remark 2.1: The first solvability condition for the

GRORP is the existence of steady state/input. The steady

state is clearly defined as x(v, w) = 0 due to the aforemen-

tioned property (ii). The steady input is determined by the

equation

0 = f(0, v, w) + b(w)u(v, w). (2.4)

The above equation (2.4), together with x(v, w) = 0, are

called the regulator equations. The functions x(v, w) and

u(v, w) define the steady state and steady input, respectively.

Their solvability of the regulator equations is a necessary

condition for the solvability of the output regulation prob-

lem [9]. From (2.4), if b(w) > b, we have, u(v, w) =
−b−1(w)f(0, v, w).

To render the solvability of GRORP, an additional condi-

tion must be imposed on the solution of (2.4), i.e., u(v, w).
Before discussing the conditions, we cite the definition of

steady state generator as follows (see [7]).

Definition 2.1: The nonlinear system (2.2)-(2.3) is said

to have a steady-state generator (SSG) with the output y =
u(v, w), if there exists a triple {θ, α, β}, where θ : R

q+s 7→
R

r, α : R
r 7→ R

r, and β : R
r 7→ R

n for some integer r are

sufficiently smooth functions vanishing at the origin, such

that, for all trajectories v(t) of the exosystem, and w ∈ R
s,

θ̇(v, w) = α(θ(v, w))

y = β(θ(v, w)). (2.5)

A. A linear SSG

The first condition is given in [8] which requires the

solution of the regulator equations be a polynomial in v with

its coefficients depending, in general, on w. Later, a different

condition is given in [1] as follows. There exists a real vector

a ∈ R
r such that (to save the notation, we assume n = 1 in

the following expression)

Lr
Avu(v, w) − a1u(v, w) − a2LAvu(v, w) − · · ·

−arL
r−1

Av u(v, w) = 0 (2.6)

where

LAvu(v, w) =
∂u(v, w)

∂v
Av

Ll
Avu(v, w) =

∂Ll−1

Av u(v, w)

∂v
Av, l = 2, 3, · · · .

Also, it was shown that (2.6) holds if u(v, w) is a polynomial

in v. It was further shown in [5] that, either the polynomial

condition or (2.6) implies that u(v(t), w) is a trigonometric

polynomial of t. Thus, essentially, all three conditions are

equivalent, and they guarantee the existence of a linear steady

state generator.

To give the linear steady state generator, we define some

notations here. Let π(v(t), w) be a trigonometric polynomial

of t or a polynomial in v, and r the degree of its minimal

zeroing polynomial, define a notation

Lπ(v, w) = col

(

π(v, w), π̇(v, w), · · · ,
dr−1π(v, w)

dtr−1

)

.

It should be noted that the operator L is defined along the

specific exosystem (2.2). Now, let π(v, w) = u(v, w), and

τ(v, w) = Lπ(v, w), we have a linear steady state generator

τ̇ = Φτ, y = Ψτ (2.7)

where Φ is the companion matrix of the minimal zeroing

polynomial of π(v, w), and Ψ = [1 0 · · · 0]. It is clear that

the pair (Ψ, Φ) is observable.
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B. A linearly observable SSG

The following condition is first introduced in [7] which

is much milder than the aforementioned three conditions. It

allows a nonlinear steady state generator.

Assumption 1: There exist polynomials π1(v, w),
· · · , πℓ(v, w) and a sufficiently smooth function ρ vanishing

at the origin such that, for all trajectories v(t) of the

exosystem, and w ∈ R
s,

u(v, w) = ρ(τ(v, w))

τ(v, w) := col (Lπ1(v, w), · · · ,Lπℓ(v, w)) . (2.8)

Under Assumption 1, the system (2.3) has a nonlinear

steady state generator

τ̇ = Φτ, y = ρ(τ) (2.9)

where

Φ = block diag{Φ1, · · · , Φℓ}

with Φi being the companion matrix of the minimal zeroing

polynomial of πi(v, w). Let Ψ be the Jacobian matrix of ρ
at the origin and

̺(x) := ρ(x) − Ψx

be the nonlinear part of ρ(x). In literature, a controller for

the robust output regulation problem is designed under the

linear observability and nonlinear incremental conditions as

listed below.

(i) (Linear Observability Condition) The steady state gen-

erator (2.9) is linearly observable, i.e., the pair (Ψ, Φ)
is observable.

Remark 2.2: (i) Below we describe the observability and

detectability conditions in an alternative way. The descrip-

tions will be further extended to the global observability and

detectability conditions in the next section. The pair (Ψ, Φ)
is observable if and only if for any Hurwitz matrix M , there

exists a matrix N , such that, the Sylvester Equation:

TΦ − MT = NΨ (2.10)

admits a nonsingular solution T . The pair (Ψ, Φ) is de-

tectable if and only if there exists a pair (M, N) with M
Hurwitz, such that the Sylvester Equation (2.10) admits a

nonsingular solution T . Clearly, the observability condition is

stronger than the detectability condition. But, in a controller

design problem, it may suffice to have the latter.

(ii) We note that, for an arbitrary pair (M, N) with M
Hurwitz, the Sylvester Equation (2.10) always has a solution

T since Φ and M have disjoint spectrum. Moreover, for a

single input system, if (M, N) is controllable, and (Ψ, Φ)
is observable, the solution T to the Sylvester Equation is

nonsingular.

(iii) Let Ψ = [Ψ1, · · · , Ψℓ] with Ψi having the dimension

of Lπi(v, w). We have proved in [7] that if the polynomials

πi(v, w)’s are pairwise coprime, and the pairs (Ψi, Φi)’s are

observable, then (Ψ, Φ) is observable.

(ii) (Nonlinear Incremental Condition) For the matrices

M, N, T used in equation (2.10), the function ̺ satisfies

−2zTPN [̺(T−1(z + d)) − ̺(T−1d)]

≤ (1 − δ)‖z‖2, ∀z, d (2.11)

for some positive number δ. The matrix P is the solution

to the Lyapunov Equation PM + M TP = −I .

Remark 2.3: The inequality (2.11) puts an incremental

constrain on the nonlinear function ̺. We note that this

condition holds when
∣

∣̺(T−1(z + d)) − ̺(T−1d)
∣

∣ ≤ (1 − δ)‖z‖/(2‖PN‖).

Thus, (2.11) holds if ̺ is globally Lipschitz with a Lipschitz

constant L < ‖T‖/(2‖PN‖).

With the linear observability condition, it is ready to revisit

the framework of converting the GRORP into a global robust

stabilization problem. With the notations

θ(v, w) := Tτ(v, w), β(θ) := ρ(T−1θ),

we can define an alternative steady state generator:

θ̇(v, w) = TΦT−1θ(v, w), y = β(θ),

and hence, an internal model candidate

η̇ = Mη + Nu − Nψ(η). (2.12)

In (2.12), we use

ψ(η) := β(η) − ΨT−1η,

or equivalently

ψ(η) := ̺(T−1η),

which is the nonlinear residue of β(η). Conducting the

coordinate transformation

ū = u − β(η)

z = η − θ − Nb−1(w)x

on (2.3) and (2.12) gives

ẋ = f(x, v, w) − f(0, v, w) + b(w)~(x, z, v, w) + b(w)ū

ż = Mz − Nψ(z + d) + Nψ(d) + ℓ(x, v, w) (2.13)

with the notations defined as follows:

~(x, z, v, w) := β(z + Nb−1(w)x + θ) − β(θ)

ℓ(x, v, w) := −Nψ(Nb−1(w)x + θ) + Nψ(θ)

+MNb−1(w)x − Nb−1(w)f(x, v, w)

+Nb−1(w)f(0, v, w)

d := Nb−1(w)x + θ.

In [7], we have proven that the GRORP is solved if the

global robust stabilization problem of the augmented system

(2.13) is solved. In the above development, because only a

linear observability condition is examined on the steady state

generator (2.9), we have to keep a nonlinear residue ψ(η) in

3036



the internal model (2.12). In fact, the internal model, with

η = θ, u = β(θ), is required to satisfy

TΦT−1θ = Mθ + Nβ(θ) − Nψ(θ).

The nonlinear residue ψ is further passed to the z−subsystem

in (2.13). It may cause some trouble in solving the stabiliza-

tion of (2.13). Therefore, the nonlinear incremental condition

has to be imposed on ψ such that the stability property of

the z−subsystem (in particular, the z−subsystem is robustly

input-to-state stable with state z and input ℓ) is dominated

by the linear Mz term (with a Hurwitz matrix M ). As

we will see in the example, if the inequality is violated,

the z−subsystem doesn’t have the stability property, which

becomes an obstacle in solving the stabilization problem of

(2.13).

III. A GLOBALLY OBSERVABLE SSG

In last section, we revisit the internal model design proce-

dure based on the linear observability/detectability condition

of the steady state generator. But, we are aware of a difficulty

caused by the nonlinear residue in the internal model. In this

section, we aim to define a global observability/detectability

condition, under which a linear internal model is successfully

constructed. Under the Assumption 1, we have a nonlinear

steady state generator (2.9), the global observability and

detectability conditions of (2.9) are given below, which are

motivated by the local counterparts in Remark 2.2.

Definition 3.1: The system (2.9) is said to be globally

observable if for any Hurwitz matrix M , there exists a matrix

N , such that, the differential equation

∂H(τ)

∂τ
Φτ = MH(τ) + Nρ(τ) (3.1)

admits a diffeomorphic solution H(τ) : R
r 7→ R

r.

The system (2.9) is said to be globally detectable if

there exists a pair (M, N) with M Hurwitz, such that the

differential equation (3.1) admits a diffeomorphic solution

H(τ) : R
r 7→ R

r.

Remark 3.1: If the system (2.9) is linearly observ-

able/detectable, the equation (3.1) holds with the linear part

of ρ(τ), i.e.,

∂H(τ)

∂τ
Φτ = MH(τ) + NΨτ.

Let T be the Jacobian matrix of H(τ) at a point τ = 0, this

equation further reduces to the Sylvester Equation (2.10).

When H(τ) is a diffeomorphism, its Jacobian matrix T is

nonsingular.

Under Assumption 1, if the steady state generator (2.9) is

global observable/detectable, we can design a linear internal

model as follows.

First, with the notations

θ(v, w) := H(τ(v, w)), β(θ) = ρ ◦ H−1(θ),

we can define another steady state generator

θ̇ = Mθ + Ny, y = β(θ). (3.2)

And a linear internal model is constructed based on (3.2) as

follows:

η̇ = Mη + Nu. (3.3)

Conducting the coordinate transformation

ū = u − β(η)

η̄ = η − θ

on (2.3) and (3.3) gives

ẋ = f(x, v, w) − f(0, v, w) + b(w)β(η) − b(w)β(θ)

+b(w)ū

˙̄η = Mη̄ + N(ū + β(η) − β(θ)) (3.4)

With another coordinate transformation

z = η̄ − Nb−1(w)x,

the system (3.4) is rewritten as follows:

ẋ = f(x, v, w) − f(0, v, w) + b(w)~(x, z, v, w) + b(w)ū

ż = Mz + ℓ(x, v, w) (3.5)

with

~(x, z, v, w) = β(z + Nb−1(w)x + θ) − β(θ)

ℓ(x, v, w) = MNb−1(w)x − Nb−1(w)f(x, v, w)

+Nb−1(w)f(0, v, w).

Remark 3.2: We note that under the global observabil-

ity/detectablity condition, the nonlinear residue ψ(η) disap-

pears in the internal model (3.3) or the z−subsystem in (3.5).

In other words, the internal model goes back to the so called

canonical form used in [12] and [13]. It should be noted that

the existing linear internal models were constructed under

the linear steady state generator condition (existence of (2.7))

as we discussed in Section II.A. However, the linear internal

model (3.3) is constructed based on the nonlinear steady state

generator (2.9) allowing non-polynomial uncertainties in the

system (2.3).

Next, we will give the solvability condition for the sta-

bilization problem of the system (3.5), and hence for the

GRORP of the original system (2.3). In this paper, we don’t

put emphasis on the stabilization part. If fact, there has been

much progress on the global robust stabilization problem of a

variety classes of nonlinear systems. Here we only point out

that if the global robust stabilization of the original system

(2.3) is solvable, then, the GRORP problem of (2.3) is also

solvable. We note the former is a special case of the latter.

Specifically, we assume the global stabilization problem of

the original system (2.3) is solvable in the following sense

by straightforwardly cancelling the steady input using a

feedforward compensator.

Assumption 2: For the system (2.3), there exists a

global stabilizer u = κ(x) + u(v, w) with a sufficiently

smooth function κ(·) satisfying κ(0) = 0. In particular, there

exists a C1 function Ux(·) satisfying γ(‖x‖) ≤ Ux(x) ≤
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γ̄(‖x‖) for some class K∞ functions γ(·) and γ̄(·), such

that, along the trajectory of the closed-loop system,

dUx(x)

dt
≤ −χ(x)

for class K∞ function χ(·) satisfying

lim
s→0+

sup(χ−1(s2)/s) < +∞. (3.6)

Under the Assumption 2, if the steady state term u(v, w) is

exactly known, the GRORP is trivial by cancelling the steady

input term using a feedforward compensator. The internal

model technique is mainly used for handling the unknown

term u(v, w). The main result is summarized in the following

Theorem.

Theorem 3.1: Under Assumptions 1-2, if the steady state

generator (2.9) is globally observable/detectable, there exists

a sufficiently smooth function û(x) such that the GRORP for

the system (2.3) is solved by the controller:

u = β(η) + κ(x) + û(x), η̇ = Mη + Nu. (3.7)

Proof: Clearly, the nonlinear functions defined in (3.5)

satisfy ~(0, 0, v, w) = 0 and ℓ(0, v, w) = 0 for all v and w.

As a result, we have for v ∈ V and w ∈ W,

‖~(x, z, v, w)‖ ≤ ‖x‖~x(x) + ‖z‖~z(z)

‖ℓ(x, v, w)‖ ≤ ‖x‖ℓx(x)

for some smooth nonnegative functions ~x, ~z(x) and ℓx.

Let Uz(z) = 2zTPz, and its derivative along the system

(3.5) is

dUz(z)

dt
≤ 2

[

−‖z‖2 + 2zTPℓ(x, v, w)
]

≤ −‖z‖2 + ‖x‖2ω2(x) (3.8)

for ω(x) := 2‖P‖ℓx(x). Hence, using the changing supply

function technique [14], there exists a Vz(x) such that,

dVz(z)

dt
≤ −‖z‖2(1 + ~

2
z(z)) + ‖x‖2̟2(x).

Next, let ∆(x) := 1 + ̟2(x) + ~
2
x(x). From (3.6), there

exists S(x) such that (see [10])

S(x)χ(x) ≥ ∆(x)‖x‖2.

Using the changing supply function technique again, there

exists a Vx(x), such that, along

ẋ = f(x, v, w) − f(0, v, w) + b(w)κ(x),

its derivative satisfies

dVx(x)

dt
≤ −S(x)χ(x) ≤ −∆(x)‖x‖2.

Let ū = κ(x) + û(x) with û(x) to be determined later.

Then, along

ẋ = f(x, v, w) − f(0, v, w) + b(w)~(x, z, v, w)

+b(w)κ(x) + b(w)û,

we have

dVx(x)

dt
≤ −∆(x)‖x‖2 + 1/2‖

∂Vx(x)

∂x
b(w)‖2

+‖x‖2
~

2
x(x) + ‖z‖2

~
2
z(z) +

∂Vx(x)

∂x
b(w)û.

Finally, it suffices to choose

û(x) = −1/2b̄

[

∂Vx(x)

∂x

]

T

such that

1/2‖
∂Vx(x)

∂x
b(w)‖2 +

∂Vx(x)

∂x
b(w)û ≤ 0.

As a result, we have

d(Vz(z) + Vx(x))

dt
≤ −‖z‖2 − ‖x‖2

and the closed-loop system is globally asymptotically stable

(GAS).

IV. AN EXAMPLE

In this section, we give a numerical example to illustrate

the effectiveness of the controller proposed in Theorem 3.1.

For a 2-dimensional nonlinear system

ξ̇ =

[

v2 cos ξ2 − 6v1

sin ξ2 − ξ1

]

+ u

e = ξ − [v2 v1]
T,

our objective is to design an error feedback controller to

make the tracking error e asymptotically approach to zero.

The sinusoidal exogenous signal v is produced by an exosys-

tem (2.2) with

A =

[

0 1
−4 0

]

.

Letting x = e, the error system can be written as follows:

ẋ =

[

v2 cos(x2 + v1) − 2v1

sin(x2 + v1) − x1 − 2v2

]

+ u. (4.1)

First, we have the steady input u(v) from (4.1) satisfying

Assumption 1. In particular, we have u(v) = ρ(τ(v)) with

ρ(τ) =

[

2τ1 − τ2 cos τ1

2τ2 − sin τ1

]

, τ(v) = v.

Now, we have a steady state generator (2.9) with Φ = A and

Ψ =

[

2 −1
−1 2

]

.

It is clear that (2.9) is linearly observable. Specifically, pick

a pair of matrices

M =

[

−1 0
1 −0.5

]

, N =

[

1 1
0 −1

]

,

and we can solve

T =

[

1 0
−1.65 −0.71

]

from the Sylvester Equation. However, the nonlinear incre-

mental condition is not satisfied. In fact, the inequality (2.11)
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doesn’t always hold, e.g., for z = [−15 − 2]T and d = 0.

Moreover, we note the nonlinear incremental condition is

used to guarantee that the z−subsystem in (2.13) has a

certain stability property. In particular, the equilibrium point

z = 0 of the system

ż = Mz − Nψ(z + d) + Nψ(d)

should be GAS. However, the simulation with z(0) =
[−15 −2]T and d = 0 shows that the system is not GAS (see

Fig. 1). Therefore, the internal model candidate based on the

linear observability condition of the steady state generator

doesn’t work for this example.
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Fig. 1. The trajectory starting from z = (−15,−2) doesn’t converge to
the equilibrium point z = 0.

But, we can show that the steady state generator (2.9) is

globally detectable. In particular, with the parameters used

above, we can solve a diffeomorphism

H(τ) =

[

2τ1 − sin τ1

−1.65τ1 − 0.71τ2

]

from the differential equation (3.1). We note that the Ja-

cobian matrix of H(τ) is T given above. With this global

delectability property, we don’t need to verify the nonlinear

incremental condition. To construct the controller, it suffices

to verify the stabilization Assumption 2. With a feedforward

controller u = κ(x) + u(v), the system (4.1) becomes

ẋ =

[

v2 cos(x2 + v1) − v2 cos v1

sin(x2 + v1) − sin v1 − x1

]

+ κ(x).

When v ∈ V with V is compact set, it is easy to find a

function κ(x) to match the Assumption 2. From Theorem

3.1, a controller exists for the GRORP of the system (4.1).

The simulation results are plotted in Fig. 2 including the

profiles of the plant state ξ, tracking error e, and internal

model state η.

V. CONCLUSION

In this paper, we have introduced the concepts of global

observability and detectability of the steady state generator

in the robust output regulation problem. The concepts are

defined in term of a differential equation whose linearized

version is the Sylvester Equation. The internal model based

on a globally observable/detectable steady state generator

is effective for a more general class of nonlinear sys-

tems containing non-polynomial uncertainties. Obviously, the
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Fig. 2. Profiles of the plant state ξ, tracking error e, and internal model
state η.

solvability of the differential equation is more complicated

than the Sylvester Equation, which is an interesting topic in

the future work.
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