
 

 

 

 

  

Abstract— In a steel plant, reheating furnaces are used for 

heating the steel slabs to a temperature of approximately 1200 

C before rolling. Reheating furnaces consumes a lot of energy 

in steel plants. For competitive advantage it is important to 

improve the heating quality of slab and reduce the energy 

consumption as much as possible. This paper explores the 

potential of nonlinear model predictive control techniques to 

improve the temperature control of the metal slabs in a hot 

mill reheat furnace, and particularly whether or not these 

control techniques can be exploited to reduce the energy 

consumption. An example of actual furnace operation is 

presented to show the effectiveness of the proposed scheme. 

I. INTRODUCTION 

n a steel manufacturing process, metal sheet is produced 

through rolling process of steel blocks (slabs). The slabs 

are obtained from continuous casting of refined steel and 

stored for later use. The slabs are then reheated by the 

furnace to a temperature of approximately 1200 C before 

entering the rolling section, otherwise a product with 

unacceptable metallurgical properties could result [12]. 

Usually the required drop-out temperature at the end of 

such process must belong to a range determined by the 

following treatment process. 

Normally, a reheat furnace is divided into three burner 

zones: preheating, heating and soaking chambers. The slabs 

are heated approximately to the desired temperature in the 

preheating and heating zones. The temperature uniformity 

through the slabs is achieved in the soaking zone. There can 

be in the order of 30 slabs in the furnace at one time. At 

discrete-time intervals, a 'cold' slab is charged in the 

furnace and a hot slab is pushed out. The hot slab then is 

transported to the mill to be rolled. The temperature of the 

slabs is controlled by varying the zones temperatures and 

the furnace temperature is controlled by varying the gas 

flow of the burners of the chamber.  

Traditionally the speed of the slabs through the furnace 

and the temperature levels in the furnace are regulated 
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manually, so that each slab being discharged from the 

furnace comes as close as possible to its target temperature 

[1]. Although manual control gives satisfactory 

performances when the furnace operates in steady state, a 

typical reheating furnace does not operate in such a 

consistent manner. Slabs vary greatly in composition, 

dimension, and in processing requirements and mill delays, 

whether planned or unplanned, also influence the travel of 

the slabs through the furnace. All these events produce 

divergence from nominal operating conditions and generate 

variations in the slabs mean temperatures. This means that 

the heating capabilities of the furnace must be adjusted as 

accurately as possible and therefore manual control is not 

the most efficient way to operate such furnaces.  

In current systems, the emphasis is often put on the 

heating quality while the energy saving is seldom taken into 

account [2][7][8][9]. Today's steel industry presents 

significant challenges to keep operations competitive and it 

is of increasing concern that much fuel may be wasted in 

the operation of a reheat furnace due to improper control. 

In this paper, the problem of guarantee temperature 

requirements as well as minimizing fuel consumption for 

the reheating furnace is tackled employing a nonlinear 

model based predictive controller. This paper is organized 

as follows: In section 2 a dynamic model of the reheating 

furnace using energy balances is presented. Section 3 then 

describes the nonlinear predictive control algorithm 

employed. Finally, some simulation results and concluding 

remarks are given in sections 4 and 5. 

II. MODEL OF THE FURNACE 

A mathematical model representing the dynamic 

behaviour of the reheat furnace process can be obtained by 

considering the heat and mass balance conditions within the 

reheat furnace. In line with previous results, 

[2][3][4][10][11][13], it is assumed that heat and mass is 

convectively transported along the length direction (x-

direction) of the furnace by the steel slabs and the exhaust 

gasses, respectively. It is also assumed that heat is 

continuously exchanged along the x-direction between the 

exhaust gasses and the steel slabs and between the exhaust 

gasses and the furnace walls, and that the heat and mass 

continuously produced by the gas burners mounted along 
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the length direction of the furnace is mixed homogeneously, 

and instantaneously, with the existing exhaust gas. It is 

further assumed that the heat and mass produced by the gas 

burners in each of the furnace heating zones is equally 

distributed along the length of the zone and that the exhaust 

gas can be considered incompressible. It is finally assumed 

that a small amount of heat escapes through the furnace 

walls to the outside environment. The heat balance 

conditions that results from these assumptions are depicted 

in Figure 1. 

The steady state heat flow conditions within the furnace 

can be obtained by considering a small section, with length 

∆x, of the furnace. Within this section of the furnace the 

steady state heat flow conditions are given by,  
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where Qg(x) denote the heat flow carried by the exhaust 

gas, Qs(x) denote the heat flow carried by the steel slabs, 

Qs(x, ∆x) denote the average heat flow per unit of length, 

from x to x+∆x, absorbed by the steel slabs, 

* ( , )
a
Q x x∆ denote the average heat flow per unit of length, 

valid from x to x+∆x, brought into the furnace by air 

(consumed by the gas burners), 
* ( , )
f

Q x x∆ denote the 

average heat flow per unit of length, from x to x+∆x, 

brought into the furnace by the gas burner fuel, 
* ( , )
c
Q x x∆  

denote the average heat flow per unit of length, from x to 

x+∆x, produced by combustion of the air and the gas burner 

fuel, * ( , )
w
Q x x∆  denote the average heat flow per unit of 

length, from x to x+∆x absorbed by the furnace walls, 

* ( , )
o
Q x x∆ denote the average heat flow per unit of length, 

from x to x+∆x, that escapes through the furnace walls to 

the outside environment and where the variable x denote 

the position in the length direction of the furnace. Equation 

(1), from above, states that under steady state conditions 

the heat transported to the furnace walls by the exhaust 

gasses is equal to the amount of heat escaping to the outside 

environment. Equation (2) states that the amount of heat 

added to the steel slabs in a small section of the furnace is 

equal to the difference in heat flow at the boundaries of the 

section. Equation (3) finally states that the amount of heat 

added to the exhaust gasses in a small section of the furnace 

is equal to the amount of heat produced by the gas burners 

and the amount of heat absorbed by the furnace walls and 

steel slabs.  

In order to determine the heat flows in (1)-(3), the 

temperatures of the steel slabs, the furnace wall and the 

exhaust gasses must first be established. Expressions that 

relate the heat flows to the furnace wall temperature, the 

slab temperature and the exhaust gas temperature can be 

found in [14]. 
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Figure 1   Energy balance in a generic section of the furnace 

III. MODEL PREDICTIVE CONTROLLER SCHEME 

The proposed control scheme splits the control 

calculation into a steady-state optimization followed by a 

dynamic optimization as shown in Figure 3. A similar 

scheme is adopted in many industrial model predictive 

control technologies such as Dynamic Matrix Control, 

SMC-Idcom, and RMPCT, in which optimal steady-state 

targets are computed for each input and output and then 

passed to a dynamic optimization to compute the optimal 

input vector [5]. In these technologies, the local steady-

state optimization uses a linear steady-state model that may 

be obtained by linearizing a nonlinear model of the plant at 

each control execution or may simply be the steady-state 

version of the linear dynamic model used in the dynamic 

optimization. 

On the contrary, in the control scheme here proposed the 
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local steady-state optimization is carried out employing a 

nonlinear process model. The control law is computed in 

two steps. First, a steady state operating point that is 

optimal with respect to fuel-consumption versus furnace 

throughput is chosen, having information on the current 

economic value of final product and on the current cost of 

input variables (fuel flows). The cost function is nonlinear, 

because of the use of a nonlinear model. The optimization 

is carried out subject to input and output constraints. These 

are in the form of nonlinear inequality and equality 

constraints, so that the optimal set-points are computed by 

solving a nonlinear programming problem. 

In the second step, a control trajectory is chosen over a 

control horizon which is predicted to bring the plant to the 

desired steady state computed by the nonlinear 

optimization. A linear model derived linearizing the non 

linear process model around the current operating point is 

used in the dynamic optimization step. Again, constraints 

on the drop-out temperature and inputs are imposed. The 

problem is formulated in terms of a quadratic problem and 

solved using a quadratic programming approach. 

For control purposes the furnace process can be viewed as 

having four inputs; the furnace speed, uv(t), and three gas-

flow inputs, u1(t), u2(t), u3(t), corresponding to the fuel flow 

in the pre-heating zone, the fuel flow in the heating zone 

and the fuel flow in the soaking zone, respectively. The 

measurable outputs from the furnace process are the slab 

temperatures, the gas temperatures and furnace wall 

temperatures at various locations along the length of the 

furnace. The most important of these temperature outputs is 

the slab temperature at the end of the soaking zone; the 

drop-out temperature, Td(t).  

In order to meet the desired quality targets the drop-out 

temperature, Td(t), should remain in the range from 1200 

degree Celsius to 1250 degree Celsius. In order to prevent 

damage to the furnace the gas-temperatures must never 

increase beyond 1300 degree Celsius. The manipulated 

variables are finally constrained by the following physical 

constraints: 
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IV. CONTROL OBJECTIVE 

The objective in this paper is to maximize the profit of 

the furnace operations whilst ensuring that the product 

quality remains within acceptable limits. These objectives 

can be expressed in terms of constrained optimization 

problem that employs a linear costing term, 
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where the term cproduv(t) represents the income derived 

from the furnace operations and where the term 

cfuel(u1(t)+u2(t)+u3(t)) represents the cost associated with 

the furnace operations. The parameters cprod and cfuel are 

constants that relate the furnace speed to product income 

and fuel flows to fuel costs. The constraints in the above 

optimization problem ensure that the product quality is 

maintained within acceptable levels and that physical 

constraints are satisfied.  

A. Static Optimization 

The following nonlinear discrete time model structure 

can be used to characterize the dynamic behaviour of the 

reheat furnace: 
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( ) ( )d
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where the states x(t, corresponds to temperatures of the 

gas, steel slabs and the furnace wall at different locations in 

the furnace, the output Td(t) corresponds to the drop-out 

temperature at discrete time intervals and input 

u(t)=[uv(t),u1(t),u2(t),u3(t)]
T
 corresponds to the furnace 

speed and the fuel flows.  

At steady state conditions, (xss,uss), a process exhibits 

only negligible change over an arbitrarily long period when 

undisturbed, and therefore,  

 

( , )ss ss ssx f x u=  (7) 

 

The objective of the static optimization problem is to 

find steady state operating conditions, (xss,uss), that 

maximize the production profit. By taking into account the 

quality targets, formulated as constraints, this leads to the 

following constrained nonlinear optimization problem:  
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where 
maxvu is a constant parameter. By solving the above 

nonlinear optimization problem, one obtains a steady state 

operating condition that maximizes the production profit 
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whilst ensuring that the product quality targets are met (this 

is enforced by the bottom equality constraint).  

B. Dynamic Optimization 

The predictive control problem is formulated here as a 

regulatory problem that may be stated as follows:  

 

At each time instant, t, find an optimal control 

sequence,U(t)=[u(t)
T
,u(t+1)

T
…,u(t+Nu-1)

T
]
T
, over a control 

horizon Nu, such that optimal steady state operating 

conditions are reached in the shortest possible time and as 

efficiently as possible.  

 

The optimization problem is reduced to the minimization 

problem 
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The cost function J(U(t)) is expressed as sum of three 

terms: 

 

1 2 3( ( )) ( ( )) ( ( )) ( ( ))J U t J U t J U t J U t= + +  (10) 

 

where 

 
2

1
1 2 1

1 1

0 2 3

1
2

2 2

0

1

3

0

3

( ) ( ( )
( ( )) ( )

( ) ( ))

( ( )) ( ( ))

( ( )) ( ( 1) ( ))

( ( 1) ( ))

u

u

ss

u

N
v

ss

i

N

v v

i

N
T

i

c u t i c u t i
J U t q J u

u t i u t i

J U t q u u t i

J U t u t i u t i

Q u t i u t i

−

=

−

=

−

=

 + − + 
= −   + + + +  

= − +

= − − − −

− − − −

∑

∑

∑

 (11) 

 

The first term ensures that the system is driven toward 

the optimal steady state operating conditions. The second 

term ensures that the furnace speed quickly approaches its 

steady state optimum whilst the third term penalizes 

excessive actuator adjustments.  

The optimization problem must satisfy constraints on 

both inputs and outputs. The input constraints are 

formulated as hard constraints, whereas the output 

constraints are soft constraints in order to avoid 

infeasibility of the solution. This is due to the fact that 

when the furnace starts up cold there is an initial time in 

which the furnace is warming up and the slabs temperatures 

are outside the boundary conditions. In the optimisation 

problem, this leads to infeasibility of the solution. A 

straightforward way to deal with infeasibility is to soften 

the output constraints, so that the hard bounds can be 

crossed occasionally in order to avoid infeasibility [6]. 

Constraints are softened introducing slack variables which 

are additional optimization variables defined such that they 

are non-zero only if the corresponding constraints are 

violated. With the addition of slack variables w the 

optimization problem (9) becomes: 
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where Np is the output prediction horizon. The weight, 

Q4, in the cost function (12) have to be chosen large enough 

such that the optimiser tries to keep the slack variables at 

zero if the original, hard constrained solution is feasible. 

So far, the optimisation problem (12) is non-convex due 

to the nonlinearity of the system dynamic (6). In order to 

recover the convexity of the optimisation problem the 

nonlinear model is replaced by linear model, which can be 

obtained by linearising the system (6) around an operating 

point (x0, u0): 
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The matrices A, B, C and D are the Jacobian matrices of 

the nonlinear model (28). 
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The states, inputs and outputs of the nonlinear system are 

related to the states, inputs and outputs of the current LTV 

system by the relationship 
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The dynamic optimization problem (12) subject to the 
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linear system dynamics (15) is reduced to a “standard” 

Linear MPC, formulated in terms of a quadratic problem 

and solved using a quadratic programming approach. 

V. SIMULATION RESULTS  

In the first case, we study a realistic, industrial scenario 

that has been supplied by an actual steel production 

company. The furnace speed maximum values changes in 

time and a series of both expected and unexpected halts 

takes place. From t=0 to t=5 hours vmax is limited to 0.002 

m/s, then at t=5 hours, there is an unexpected problem in 

the finishing mill and the furnace must stop production. 

Immediately after that, the finishing mill announces that the 

problem will be solved within 15 minutes. At t=5.25 the 

furnace is asked to produce maximally after t=8 hours and 

vmax is increased to 0.005 m/s. At t=10 hours a scheduled 

delay occurs, which lasts one hour, and is announced one 

hour in advance. This simulation scenario is shown in 

Figure 2.  

The corresponding plots of drop-out temperature, gas 

temperature in each section of the furnace and input 

variables are shown in Figure 4 The output response plots 

show that the the controller is able to maintain the drop-out 

temperature within the specified limits, despite the 

continuous changes in the speed constraints. No constraint 

violation was detected in the manipulated variables 

responses. The fluctuation of the fuel flux has significant 

impact on the energy saving. Because the controller can 

regulate the fuel flux in the on-line optimization, it is also 

an ideal energy saving technique. Taking the fuel flux 

change into account in the performance index is useful to 

make the fuel flux changes smoother, for large fluctuation 

of fuel flux is harmful to the combustion in the furnace. The 

profit over the simulation horizon is 7.7217e+005 euro. 
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VI. CONCLUSIONS 

In this paper, we have presented a model predictive 

control design procedure for the reheating furnace. 

Simulations illustrate that the proposed control strategy 

provides significant advantages in the operation of reheat 

furnaces, including:  

• Reduced fuel consumption. This benefit arises 

from the ability to control the slab heating at all 

time.  

• Increased furnace capacity. This is because the 

control system can respond quickly to changes in 

material flow and various delays. 

ACKNOWLEDGMENT 

The authors are grateful for the problem definition and 

models provided by Corus and in particular Julian Thorp 

(Corus RD&T, Swinden Technology Centre,), Jochem 

Groot and Jan Shuurmans. The authors are also grateful for 

the cooperation with Dr Andy Clegg of the Applied Control 

Technology Consortium of ISC ltd. The authors are finally 

grateful for financial support provided by the Engineering 

and Physical Science Research Council (EPSRC) Platform 

Grant, Industrial Non-linear Control and Applications 

GR/R04683/01.  

REFERENCES 

[1] P. Marino, A. Pignotti and D. Solis, “Control of pusher furnaces 

for steel slab reheating using a numerical model,” Lat. Am. Appl. 

Res.  vol. 34, no. 4, pp.249-255, Oct./Nov. 2004. 

[2] L. M. Pedersen and B. Wittenmark, “On the reheat furnace control 

problem,” Proc. of 1998 American Control Conference, 

Philadelphia, Pennsylvania, 1998. 

[3] H.S. Ko, J. S. Kim, T. W. Yoon, M. Lim, D.R. Yang and I. S. Jun, 

“Modeling and Predictive Control of a Reheating Furnace,” Proc. 

of 2000  American Control Conference, Chigago, Illinois, 2000. 

[4] A Kusters and G.A.J.M van Ditzhuijzen, “MIMO system 

identification of a slab reheating furnace,” Proc. of the 3rd IEEE 

Conf. on Control Applications, , Glasgow, Scotland, 1994. 

[5] S.J. Qin and T.A. Badgwell, “A survey of industrial model 

predictive control technology,” Control Engineering Practice, 

Vol. 11, No.7, pp. 733-764, 2003 

[6] J.M. Maciejowski, Predictive Control with Constraints, Prentice 

Hall, Englewood Cliffs, 2002. 

[7] R. J. Schurko, C. Weinstein, M. K. Hanne and D.J. Pellecchia, 

“Computer control of reheat furnaces: A comparison of strategies 

and applications,” Iron and Steel Engineer, May 1987, pp. 37-42. 

[8] L. Rixin and N. Baolin, “Mathematical model for dynamic 

operation and optimum control of pusher type slab reheating 

furnace,” Industrial Heating, March 1992, pp. 60-62. 

[9] P. Fontana, A. Boggiano, A. Furinghetti, G. Cabaras, and C. A. 

Simoncini “An advanced computer control system for reheat 

furnaces,”, Iron and Steel Engineer, 1983, pp. 55-83.  

[10] A. Jakliča, F. Vodea and T. Kolenkob, “Online simulation model 

of the slab-reheating process in a pusher-type furnace,” Applied 

Thermal Engineering, vol. 27, no. 5-6, April 2007, pp. 1105-1114. 

[11] P. Marino, A. Pignotti and D. Solis, “Numerical model of steel 

slab reheating in pusher furnaces,” Lat. Am. Appl. Res., vol.32, 

no.3, pp.257-261, Jul./Sept. 2002. 

1683



 

 

 

 

[12] M J Grimble, Industrial Control Systems Design, Wiley, 

Chichester 2001. 

[13] J. Schuurmans, “Reheat Furnace Control Challenge”, Technical 

Note, Corus Research, Development & Technology, Netherlands, 

2006. 

[14] L. Balbis, J. Balderud and M. J. Grimble, “Control of a Steel Slab 

Reheating Furnace Using Nonlinear MPC”, submitted for review 

to IEEE Trans. on Control Systems Technology. 

 

 

 

 

Static Optimizer

Nonlinear
Model

Dynamic Optimizer

Nonlinear
Process Model

Reheating
FurnaceLinear

Model

Drop-out

Temperature

Predicted Drop-out

Temperature
+

-

Model-Plant Output Error

Predicted Plant States

Targets
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