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Abstract— In the prior work of the author and his coworkers,
Gibbs sampling was proposed for coordination of autonomous
swarms, where convergence results were only obtained for
sequential sampling with additional requirement of modest
global communication. In this paper the convergence behavior
is investigated under parallel Gibbs sampling, where all mobile
nodes update their locations simultaneously. It is established
that, with a pairwise Gibbs potential, parallel Gibbs sampling
and annealing minimizes a modified potential energy, where the
extent of modification is determined by the maximum travel
range of each node within one time step. This is the first
convergence result for parallel sampling algorithms for Gibbs
random fields with configuration-dependent neighborhood sys-
tems, and it provides justification for Gibbs sampling as a viable
method for swarming control. The latter is further illustrated
with simulation results.

I. INTRODUCTION

Rapid technological advances have made it possible to
build and deploy a large number of mobile robots or un-
manned vehicles at an affordable cost. Networks of such
autonomous vehicles can have a multitude of military and
civil applications, ranging from surveillance and recon-
naissance, to search and rescue, to weather forecast, and
to oceanography. It is intriguing to endow big groups of
autonomous vehicles (called autonomous swarms in this
paper) with emergent properties, i.e., to achieve global goals
(e.g., pattern formation, rendezvous, or maximum coverage
area) through distributed, limited, local communication and
computation. This is dictated by the otherwise prohibitive
cost for centralized coordination of large-scale networks, and
by the need to ensure robustness against single-node failures.

Recent years have witnessed significant advances in the
area of multi-agent coordination and control, where tools
from control and dynamical systems theory and algebraic
graph theory are applied to formally analyze or synthesize
interaction rules for mobile agents. It is notable that a
number of convergence results accommodating time-varying
communication topology have been obtained [1]–[5]. Despite
the progress made, most results provide only convergence to
local minima of potential or objective functions [5]–[8], and
global objectives are achievable only if initial configurations
are sufficiently close to the desired ones. There are a few
results on global convergence [1], [2], [4]; however, they all
require global connectedness of the network (to some varying
degrees), which is not guaranteed by the algorithms.

Baras and Tan [9] proposed a Markov random fields
(MRFs)-based framework for the coordination of au-
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tonomous swarms with the goal of achieving global ob-
jectives using purely local interactions. In that approach
vehicles are allowed to move on a discretized lattice, and
the moving decisions are made through Gibbs sampling
based on local information perceived by individual vehicles.
The neighborhood systems associated with swarm MRFs
vary with configurations. This represents a key difference
from classical MRF theory [10], [11], which deals with
only fixed neighborhood systems. In the prior work of the
author and his coworkers [12], rigorous convergence proof
was only obtained for sequential Gibbs sampling (updating
one node at a time) with an additional assumption that global
communication is available for forwarding relevant informa-
tion to newly selected node at each time step. Sequential
sampling, however, is not feasible in practice: 1) it takes too
long to complete one round of updating for large vehicle
networks, and 2) it requires explicit indexing of nodes,
which is often impossible due to dynamic addition/removal
of nodes. The global communication requirement, despite
the limited information transmitted, defeats the goal of full
decentralization.

This paper concerns the convergence behavior of swarm-
ing control algorithms based on parallel Gibbs sampling,
where nodes update their locations simultaneously. For the
important case of pairwise Gibbs potentials, an explicit
expression is derived for the (unique) stationary distribution
of swarm configurations under fixed-temperature sampling,
which takes a quasi-Gibbsian form. We further characterize
the convergence behavior of the swarm configuration under
an appropriate annealing schedule. In particular, it is shown
that parallel annealing minimizes an energy function modi-
fied from the original Gibbs potential energy, and the extent
of modification is determined by the maximum travel dis-
tance Rm per time step for each node. Interpreted physically,
the result implies that more frequent information exchange
(smaller Rm) leads to configurations closer to states which
minimize the original energy function.

The result is the first of its kind for parallel Gibbs
sampling algorithms for MRFs with configuration-dependent
neighborhood systems. It provides an explanation for the
promising simulation results observed first in [9], and offers
justification and guidance on using Gibbs sampling as a
viable, decentralized method for swarming control.

The remainder of the paper is organized as follows. In
Section II, the background on MRFs is reviewed and the
application of MRFs to modeling of autonomous swarms
is described. Analysis of the parallel sampling algorithm is
carried out in Section III. Simulation results are presented in
Section IV. Finally Section V provides concluding remarks.
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II. MRFS AND APPLICATION TO SWARMING CONTROL

A. Review of Classical MRFs and Gibbs Sampling

MRFs form a natural generalization of Markov processes
with the temporal index replaced by a spatial index, and
provide a framework for investigating local interactions.
Initially proposed by Ernst Ising with an attempt to explain
ferromagnetism [13], MRFs have since been applied to
the study of statistical physics, biology, economics, and
sociology [10], and in particular, to image processing and
computer vision with great success [11], [14].

1) MRFs: Let S be a set of sites indexed by s. A random
field is a collection X = {Xs}s∈S of random variables, with Xs

taking values in Λs, the phase space for site s. A realization
x = {xs}s∈S of X is called a configuration or state. A
neighborhood system on S is a family Γ = {Γs}s∈S, where
Γs ⊂ S is the set of neighbors for site s satisfying s /∈ Γs

and r ∈ Γs ⇔ s ∈ Γr. The neighborhood system induces an
undirected graph with vertices s ∈ S, and an edge exists
between s and r if and only if r ∈ Γs. A set C ⊂ S is called a
clique if all elements of C are neighbors of each other. The
random field X is called a Markov random field (MRF) with
respect to the neighborhood system Γ if, ∀s ∈ S,

P(Xs = xs|Xr = xr,r �= s) = P(Xs = xs|Xr = xr,r ∈ Γs). (1)

The righthand side of (1) is often referred to as the local
characteristics of the MRF.

A potential U is a family {UA : A⊂ S} of functions on the

configuration space, where UA(x) depends only on xA
�
= {xs :

s ∈ A}; with a bit of notation abuse, we will write UA(xA)
�
=

UA(x). If UA = 0 whenever A is not a clique or a singleton, U
is called a nearest-neighbor potential. If UA = 0 whenever A
is not a pair or a singleton, U is called a pairwise potential.
Given a potential U , the energy H(x) is defined as

H(x) = ∑
A⊂S

UA(x). (2)

A random field X is called a Gibbs random field if

P(X = x) =
e−H(x)/T

Z
, with Z =∑

z
e−H(z)/T . (3)

T has the interpretation of temperature in the context of
statistical physics. The Hammersley-Clifford theorem estab-
lishes the equivalence between an MRF and a Gibbs field,
which provides a tangible, convenient characterization of
MRFs through potentials.

2) Gibbs Sampling: While a Gibbs field describes the
system behavior at the thermodynamic equilibrium, direct
evaluation of (3) and related ensemble averages is often
impossible due to the high cardinality of the configuration
space (the latter rendering the computation of Z intractable).
Markov Chain Monte Carlo (MCMC) methods, such as the
Metropolis algorithm [15] and the Gibbs sampler [16], can
generate Markov chains on the configuration space, with (3)
as the limiting probability measure. Take the Gibbs sampler.
Pick a site s. Given the current configuration x, one updates
it to a new configuration y by replacing xs with ys, where

ys is obtained by sampling the local characteristics of (3) at
site s:

P(Xs = ys|XS\s = xS\s) =
e−H(ysxS\s)/T

∑zs e
−H(zsxS\s)/T

, (4)

where S\s �
= {r ∈ S : r �= s} is the set of all sites except s.

Note that the evaluation of (4) involves only {x r : r ∈ Γs} for
a Gibbs field with nearest-neighbor potential. One can update
all sites sequentially in a prescribed order, which generates
a (homogeneous) Markov chain with transition probabilities
P(x,y). P satisfies the detailed balance equation:

P(x)P(x,y) = P(y)P(y,x), (5)

implying that the Gibbs measure P(x) is the (unique) sta-
tionary distribution for the Gibbs sampling-induced Markov
chain.

3) Stochastic Relaxation: The Gibbs distribution (3) de-
pends on the temperature T . The lower T is, the higher
probabilities for lowest-energy configurations. In the limit
of T → 0, (3) produces probabilities concentrating solely
on configurations of minimum energy. Taking the idea of
simulated annealing [17], Geman and Geman proposed de-
creasing T gradually during Gibbs sampling and established
the convergence to the lowest-energy configurations [16].

B. Modeling Autonomous Swarms by MRFs

Inspired by the MRFs’ capability in modeling local in-
teractions, Baras and Tan introduced the concepts of MRFs
and Gibbs sampling into the context of autonomous swarms
[9]. Consider a group of mobile vehicles moving in 2D
or 3D space, which is discretized into a lattice. For ease
of presentation, each cell is assumed to be square with
unit dimensions. A vehicle is assumed to be a point that
moves from the center of one cell to that of another. Each
vehicle has a sensing range Rs: it can sense the locations of
obstacles and other vehicles within distance Rs. It also has an
interaction range Ri ≤ Rs: the moving decision of a vehicle
is only influenced by vehicles within the distance Ri, which
form its set of neighbors. In addition, each vehicle can travel
by at most Rm ≤ Rs within each time step. The distances on
the lattice are defined using the Euclidean norm based on
the center locations of cells.

The Ri-neighborhood relations induce a graph structure,
where the vehicles form the vertices of the graph and an
edge exists between two vehicles if and only if they are
neighbors of each other. An MRF is then defined on this
graph, where each vehicle s is a site. Define the set of sites

S
�
= {1, · · · ,Nv}, where Nv is the total number of vehicles.

The set of lattice cells within Rm from vehicle s form the
phase space Λs. In particular, xs (or ys, zs, etc.) will denote
the center location of the cell in which node s resides.
A potential U is defined to reflect the coordination/control
objectives, from which the energy H can be evaluated.

The MRF defined for an autonomous swarm, a swarm
MRF for short, is fundamentally different from a traditional
MRF in that the latter has a fixed, prescribed neighborhood
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system. The neighborhood system for a swarm MRF, on
the other hand, is determined by the distances between
vehicles and varies with the swarm configuration. We will
denote by Γs(x) the set of neighbors of node s given the
configuration x. The interaction graph is thus a proximity
graph [18] or a state-dependent dynamic graph [19], which
is typical for multi-agent networks. Consequently, a number
of challenges arise in the study of swarm MRFs since the
classical MRF theory does not apply directly. First, even
with sequential sampling, the detailed balance (5) no longer
holds and the Gibbs distribution is no longer the stationary
distribution. Second, due to feasibility considerations, one is
interested in a swarm MRF’s convergence behavior under
parallel sampling, which is very involved even for classical
MRFs [11]. Xi et al. [12] conducted analysis for a special
sequential sampling scheme with an assumption on limited
global communication. In this paper we consider the case of
parallel sampling with purely local interactions.

III. ANALYSIS OF PARALLEL GIBBS SAMPLING SCHEME

A. Parallel Sampling Algorithm

Let n denote the index of time steps. Let X(n) = x =
(x1, · · · ,xS) be the current swarm configuration. Let Fs(x)

�
=

{zs : ‖zs − xs‖ ≤ Rm} be the set of accessible cell locations
for node s given the configuration x, determined by the

mobility constraint. Let F(x)
�
= {z : ‖zs − xs‖ ≤ Rm,∀s} be

the set of configurations that are accessible from x within
one time step. Under parallel Gibbs sampling, all nodes
will simultaneously update their locations based on the
configuration x at time n; in particular, the node s will move
from xs to ys at time n+1 with probability

PT
s (xs,ys) =

⎧⎪⎨
⎪⎩

e−
H(ys ,xS\s)

T

∑zs∈Fs(x) e−
H(zs ,xS\s)

T

if ys ∈ Fs(x)

0 if ys /∈ Fs(x)

. (6)

For simulated annealing, the temperature variable T will be
a function of the time step n. The following assumptions are
made:

– (A1) The total number N of lattice cells is bounded;
– (A2) Ri +Rm ≤ Rs;
– (A3) U is a nearest-neighbor and pairwise potential.

Remark 3.1: (A1) requires that the mission space be
bounded; it is a reasonable assumption and allows one to
conclude the convergence to a unique stationary distribution
under constant-temperature sampling. (A2) implies that a
node s at xs sees who would be its neighbors if it moves
to ys ∈ Fs(x) while other nodes stay put. In (A3) considering
a nearest-neighbor potential enables local evaluation of (6),
or local interactions among nodes. Requiring a pairwise
potential is critical for the theoretical results of this paper.
On the other hand, the class of pairwise potentials can
cover a number of interesting problems in swarming, such
as rendezvous, dispersion, and formation control.

With (A3), (6) can be rewritten as

PT
s (xs,ys) =

1(ys ∈ Fs(x))
e−

U{s}(ys)+∑t∈Γs(ys ,xS\s)U{s,t}(ysxt )

T

∑zs∈Fs(x) e
−

U{s}(zs)+∑t∈Γs(zs ,xS\s)U{s,t}(ysxt )

T

,(7)

and its local computability is obvious. In (7), 1(·) denotes
the indicator function.

The transition kernel PT (x,y)
�
= Prob(Xn+1 = y|Xn = x)

can be obtained from (7):

PT (x,y) = ∏
s∈S

PT
s (xs,ys) = 1(y ∈ F(x)) ·

e−
∑s∈S

(
U{s}(ys)+∑t∈Γs(ys ,xS\s)U{s,t}(ysxt )

)
T

∑z∈F(x) e
−

∑s∈S

(
U{s}(zs)+∑t∈Γs(zs ,xS\s)U{s,t}(zsxt )

)
T

(8)

= 1(y ∈ F(x)) · e−
H̃(x,y)

T

∑z∈F(x) e
− H̃(x,z)

T

, (9)

where H̃(x,y)
�
= ∑s∈S

(
U{s}(ys)+∑t∈Γs(ys,xS\s)U{s,t}(ysxt)

)
.

The denominator of (8) is derived from that, for y ∈
F(x), PT (x,y) is proportional to H̃(x,y), and that
∑z∈F(x) PT (x,z) = 1.

Define further

H(x,y)
�
= H̃(x,y)+∑

s∈S

U{s}(xs)

= ∑
s∈S

⎛
⎝U{s}(ys)+U{s}(xs)+ ∑

t∈Γs(ys,xS\s)
U{s,t}(ysxt)

⎞
⎠ . (10)

It is easy to see that (9) continues to hold with H̃(x,y)
replaced by H(x,y), since all that does is to multiply both
the numerator and the denominator by a common factor
e−∑s∈SU{s}(xs)/T .

Lemma 3.1: For y ∈ F(x), the function H is symmetric,
i.e., H(x,y) = H(y,x).

Proof. A key observation is that t ∈ Γs(ys,xS\s) ⇒ s ∈
Γt(xt ,yS\t), i.e., node t being a neighbor of node s for the
configuration (ys,xS\s) implies that node s is a neighbor of
node t for (xt ,yS\t). One can then write

H(x,y)

= ∑
s∈S

⎛
⎝U{s}(ys)+U{s}(xs)+ ∑

t∈Γs(ys,xS\s)
U{s,t}(ysxt)

⎞
⎠

= ∑
s∈S

(
U{s}(ys)+U{s}(xs)

)
+∑

t∈S
∑

s∈Γt(xt ,yS\t )
U{s,t}(ysxt)

= ∑
t∈S

⎛
⎝U{t}(yt)+U{t}(xt)+ ∑

s∈Γt(xt ,yS\t )
U{t,s}(xtys)

⎞
⎠

= H(y,x).

�
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B. Stationary Distribution Under Constant-T Sampling

Parallel Gibbs sampling produces a Markov chain X(n) for
the swarm configuration. We first characterize the stationary
distribution of X(n) for a fixed temperature T . This can then
be used to analyze the limiting behavior as T → 0 during
simulated annealing.

Theorem 3.1: Let the assumptions (A1)− (A3) hold. Un-
der parallel Gibbs sampling with a fixed T , the swarm
configuration X(n) has a unique stationary distribution Π T :

ΠT (x) =
∑z∈F(x) e

−H(x,z)
T

∑x′∑z∈F(x′) e
−H(x′ ,z)

T

. (11)

Furthermore, starting from any distribution ν ,

lim
n→∞

νPn
T →ΠT , (12)

where PT represents the transition matrix determined by (9).
Proof. For a constant T , X(n) generated under Gibbs sam-

pling is a homogeneous Markov chain with transition matrix
PT . From (A1), there exists a finite integer τ > 0, such
that, given any two configurations x and y, the probability
of reaching y from x within τ sampling steps is positive. In
other words, PT has a strictly positive power P τ

T . Hence the
Markov chain X(n) is ergodic and has a unique, stationary
distribution [20]; furthermore, (12) follows.

The only thing remaining to be shown is the explicit form
of ΠT . Denote the denominator in (11) as ZT . For y ∈ F(x),

ΠT (x)PT (x,y) =
∑z∈F(x) e

−H(x,z)
T

ZT
· e−

H(x,y)
T

∑z∈F(x) e
−H(x,z)

T

=
e−

H(x,y)
T

ZT
(13)

=
∑z∈F(y) e

−H(y,z)
T

ZT
· e−

H(y,x)
T

∑z∈F(y) e
−H(y,z)

T

= ΠT (x)PT (x,y), (14)

where Lemma 3.1 is used in (13). If y /∈ F(x), PT (x,y) =
PT (y,x) = 0 and (14) still holds. It is then straightforward
to show that ΠT is indeed a stationary distribution:

∑
y
ΠT (y)PT (y,x) = ∑

y
ΠT (x)PT (x,y)

= ΠT (x)∑
y

PT (x,y)

= ΠT (x),

since ∑y PT (x,y) = 1. �

C. Convergence under Annealing

Let τ be the minimum integer such that all entries of
Pτ

T are strictly positive. Note that the definition of τ is
independent of T . In annealing, the temperature T (n) will
drop as a function of time n.

Theorem 3.2: Let the assumptions (A1)− (A3) hold. Let
H be defined as in (10). Define

∆ �
= max

x
max

y,z∈F(x)
|H(x,y)−H(x,z)|.

Let T (n) be a cooling schedule such that

T (n) = Tk, τk ≤ n < τ(k+1), (15)

where {Tk} is a sequence decreasing to 0 and satisfying

T (k) ≥ ∆
lnk

. (16)

Then for any initial distribution ν on the swarm configura-
tion,

1)
lim
k→∞

νQ1 · · ·Qk →Π0, (17)

where Qi
�
= Pτ

Ti
, and Π0 represents the limit of ΠT ,

(12), as T → 0;
2) Define m0 = minx minz∈F(x) H(x,z). The support M of

the limiting distribution Π0 is

M = {x : H(x,z) = m0 for some z ∈ F(x)}. (18)
Proof. Claim 1) concerns the characterization of the limit-

ing behavior of ‖νQ1 · · ·Qk −Π0‖1, where ‖ ·‖1 denotes the
1-norm of a vector. The proof uses the contraction property
of the Markov kernel Qk, which is where the annealing
schedule (16) comes in. The full proof follows closely the
steps in proving Theorem 3.2 in [12], and is omitted here
for the interest of brevity.

To establish the support of Π0, one can rewrite ΠT as

ΠT (x) =
∑z∈F(x) e

−H(x,z)−m0
T

∑x′∑z∈F(x′) e
−H(x′ ,z)−m0

T

. (19)

As T → 0, e−
H(x,z)−m0

T approaches 0 if H(x,z) �= m0, and
approaches 1 otherwise. As a result, the numerator of Π 0(x),
expressed as in (19), will be nonzero if and only if x ∈ M .
Claim 2) follows by noting that the denominator of Π 0(x) is
always positive and finite. �

Remark 3.2: Theorem 3.2 establishes the convergence be-
havior of the parallel annealing algorithm for swarm MRFs.
The algorithm produces limiting configurations x ∗ that, with
perturbation up to Rm, achieve the minimum of H, a modified
version of the original energy function H. Note the close
connection between H and H; in particular, H(x,x) = 2H(x).
In many cases, e.g., the rendezvous problem, the result-
ing configurations will be precisely characterized by Rm-
perturbation of minimal-energy states (in terms of H). While
the latter statement may not be rigorous for general cases,
the author conjectures that the distance (properly defined)
between achieved and desired configurations will still be
related to the one-step moving range Rm.

Remark 3.3: Given the speed constraint of a vehicle,
Rm is related to the physical time between n and n + 1,
which can be translated to how frequently the vehicles
observe/communicate with neighbors for making moving
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decisions. Theorem 3.2 thus reveals an interesting tradeoff
between the optimality and the cost for information gather-
ing.

IV. SIMULATION RESULTS

Simulation has been further performed to corroborate the
analysis and verify the effectiveness of the parallel sampling
algorithm. Two examples are presented next: 1) rendezvous,
and 2) line formation, both on a 50× 50 square lattice.
While (16) provides a guidance in choosing the annealing
schedule, it is often too conservative. In the simulation, we
have adopted schedules of the form: T (n) = T0/ ln(n), where
T0 is chosen empirically.

A. Rendezvous

In the rendezvous problem, the potential is designed as,
for t ∈ Γs(x),

U{s}(xs) = 0

U{s,t}(xsxt) =
{

10 if ‖xs− xt‖ = 0
− 1

‖xs−xt‖ otherwise .

The first equation implies that there is no pre-specified
gathering point. By setting the potential of an overlapping
pair to be high in the second equation, the algorithm will
discourage multiple vehicles from occupying the same cell
and thus avoid over-crowding. Fig. 1 shows the snapshots
of swarm configurations at different times. The number of
nodes was Nv = 40. The parameters used in simulation were:
Rs = 13

√
2+2, Ri = 13

√
2, Rm = 2, and T0 = 5. While the

vehicles tended to form two clusters at n = 200, they suc-
cessfully managed to overcome the local minima of potential
energy and reached rendezvous at n = 650. This example
illustrates the advantage of the Gibbs sampling algorithm
over the traditional gradient-descent-type algorithm, which
would lead to multiple clusters at the steady state.

B. Line Formation

The vehicles are required to form a line that makes a 45 ◦
angle with respect to the horizontal axis. The potential is
designed as, for t ∈ Γs(x),

U{s}(xs) = 0

U{s,t}(xsxt) =

{
0 if ‖xs− xt‖ = 0

−|<xs−xt ,[1, 1]T >|√
2‖xs−xt‖ otherwise

,

where < · > indicates the inner product. The potential is
essentially a measure of distance between the angle made
by the line connecting a pair of neighboring vehicles and
45◦. The additive form of potential energy thus encourages
nodes to have more neighbors with desired angles and lead
to formation of a single line; overlapping nodes, however,
are discouraged since a connecting line is not well defined
in that case.

Fig. 2 shows that the potential design does lead to the
desired formation. Here 50 nodes were simulated, with Rs =
10

√
2+3, Ri = 10

√
2, Rm = 3, and T0 = 1. Starting from a

random initial configuration, the swarm was self-organized

0 50
0

20

40

0 50
0

20

40

0 50
0

20

40

0 50
0

20

40

(a) (b)

(c) (d)

Fig. 1. Snapshots of a swarm of 40 vehicles during rendezvous:
(a) Initial configuration; (b) n = 200; (c) n = 300; (d) n = 650.

first into several parallel line segments and finally into a sin-
gle line. Multiple simulation runs were carried out, starting
from different initial configurations. It is interesting to note
that, in all cases, the swarm converges to the diagonal line as
in Fig. 2. This can be explained by the fact that the diagonal
line is the only configuration that can accommodate 50
vehicles with minimum inter-vehicle separation larger than
zero, further supporting the global optimization capability
of the algorithm. The latter point can be further illustrated
with simulation results for 15 vehicles, shown in Fig. 3.
Depending on the initial condition, the swarm can evolve
into different 45◦ lines since these configurations would have
the same total energy.

Simulation was also performed to study the effect of
Rm on final configurations. While the analysis indicates
that with larger Rm, the discrepancy between the achieved
configuration and the desired one will be larger, it was not
clearly observed in simulation, possibly due to the limited
number of runs. More extensive simulation is underway for
better understanding of this issue.

V. CONCLUSIONS

In this paper the parallel Gibbs sampling algorithm for
swarming control was analyzed. The explicit expression
for the stationary distribution of swarm configuration was
derived for the special but popular case of pairwise potential,
and the convergence of the algorithm under appropriate
annealing schedule was established. It was found that the
algorithm minimizes a modified potential energy, where the
extent of modification is related to the moving range per
sampling step. Simulation results were further presented to
demonstrate the effectiveness of the algorithm.

Future work includes extending the analysis to nearest-
neighbor potentials of other forms, and to cases involving
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Fig. 2. Snapshots of a swarm of 50 vehicles self-organized into
a 45◦ line: (a) Initial configuration; (b) n = 10; (c) n = 40; (d)
n = 140.
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Fig. 3. A swarm of 15 nodes self-organized into different 45◦ lines:
Starting from (a), the swarm evolves into (b); starting from (c), the
swarm evolves into (d).

asynchronous sampling. We will also investigate the connec-
tion between the parallel Gibbs sampling algorithm, as the
time step goes to zero, and the diffusions approach proposed
by Tan [21].
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