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Abstract— In this paper we first prove sufficient conditions
for a continuous function of a diffusion process to be a
super- or sub-martingale. This result is then used to create
piecewise polynomial super- and sub-martingale bounds on
option prices via a polynomial optimization problem. The
polynomial optimization problem is solved under a sum-of-
squares paradigm and thus uses semi-definite programming.
The results are tested on a Black-Scholes example where a
piecewise polynomial function of degree four in both the stock
value and time is used to compute upper and lower bounds.

I. INTRODUCTION

The connections between martingales and option pricing

theory are well established. In particular, the fundamental

theorem of asset pricing asserts that for no arbitrage to exist,

the discounted price of an option must be a martingale under

the so-called risk neutral measure [6]. This result allows

options to be priced by computing expectations, and has

led to the successful use of Monte-Carlo methods in option

pricing theory.

In recent years researchers have developed alternative

computational methods that compute hard bounds on option

prices via optimization methods (as opposed to soft bounds

that accompany Monte-Carlo methods). Work in this area

includes [13], [1], [2], [7], [11]. These results share a

common root in generalized Chebyshev bounds, and most

can be interpreted as static arbitrage bounds using special

securities with monomial payoffs. An exception is [11] which

allowed certain discrete time dynamic strategies.

This paper presents a new optimization based hard bound

approach that uses martingale theory to construct bounds.

We first derive conditions under which a continuous function

(not necessarily C2) is a super- or sub-martingale. This result

allows us to construct super- and sub-martingale bounds on

an option price via piecewise polynomial functions. The use

of piecewise polynomial functions allows us to optimize

the bound via a polynomial programming problem that is

replaced by a sum-of-squares formulation using the software

package SOStools [10]. Thus, semi-definite programming is

ultimately used to compute the bound.

The paper is organized as follows. In Section II we set up

the problem and review basic facts from martingale pricing.

In Section III we develop some theoretical preliminaries.

Section IV presents the main theorem that gives sufficient

conditions for a continuous function to be a super- or sub-

martingale. Section V uses the main theorem to justify the

use of piecewise polynomial functions in an optimization
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problem that computes hard upper or lower bounds. Numer-

ical results for the Black-Scholes setup are given in Section

VI. Conclusions are discussed in Section VII.

II. PROBLEM SETUP AND MARTINGALE PRICING

For simplicity of exposition, we present the results for

an option on a single underlying asset. However, it may be

easily verified that all the results in this paper are directly

applicable to options on multiple underlying assets.

We consider the risk neutral pricing problem where under

the risk neutral measure Q, the underlying asset S(t), t ∈
[0,T ] satisfies the stochastic differential equation

dS = a(S, t)dt +b(S, t)dz(t) (1)

where z(t) is a standard Brownian motion. We assume that

(i) a(S, t) and b(S, t) are continuous on R× [0,T ].
(ii) There exists an M such that ‖a(S, t)‖ ≤ M(1+‖S‖) and

‖b(S, t)‖ ≤ M(1+‖S‖) for all (S, t) ∈ R× [0,T ].
(iii) For each c, there exists Kc such that ‖a(S1, t) −

a(S2, t)‖ ≤ Kc‖S1 − S2‖ and ‖b(S1, t) − b(S2, t)‖ ≤
Kc‖S1 −S2‖ whenever ‖S1‖ ≤ c, ‖S2‖ ≤ c.

Under these conditions, (1) has a pathwise unique solution

which is a Markov diffusion process (See Chapter 5, [4]).

A. Martingale Pricing

Let c(S, t) be the value of a European call option with

expiration T and strike price K. By the fundamental theorem

of asset pricing [3], the value of this option at time 0 with

S(0) = S0 is given by

c(S0,0) = e−rT E0,S0

[

(S(T )−K)+
]

. (2)

where Et,St [·] denotes the expectation under Q conditional

upon time t and price S(t) = St . In particular, the quantity

e−r(T−t)c(S(t), t) (3)

is a Q-martingale.

Furthermore, assuming that c(S, t) ∈ C2,1, then by the

Feynman-Kac theorem [8], c(S, t) satisfies the Black-Scholes

partial differential equation

ct +a(S, t)cS +
1

2
b2(S, t)cSS − rc = 0, c(S,T ) = (S−K)+

(4)

where ct = ∂c
∂ t

, cS = ∂c
∂S

, and cSS = ∂ 2c
∂S2 .

For simplicity (and without loss of generality) in what

follows we assume that r = 0. Thus, c(S, t) is a Q-martingale.
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B. Approach via Super- and Sub-Martingales

To explain our basic approach, consider the problem of

computing an upper bound on c(S0,0). Now, any super-

martingale satisfying V (S,T ) ≥ (S − K)+ will provide an

upper bound via

V (S0,0) ≥E0,S0
[V (S(T ),T )]≥E0,S0

[

(S(T )−K)+
]

= c(S0,0).

A similar argument shows that any sub-martingale satisfying

V (S,T ) ≤ (S−K)+ will give a lower bound.

Our computational approach will be to search for super-

and sub-martingales that are piecewise polynomial. But first

we need convenient characterizations of these super- and

sub-martingales that allow for computation and optimization.

In particular, our piecewise polynomial super- and sub-

martingales will not be everywhere C2,1. Thus, we prove

a result that provides sufficient conditions for a continuous

function to be a super- or sub-martingale. This condition

is then used as a constraint in our optimizations, which

are conveniently solved using a sum-of-squares polynomial

programming approach.

The next two sections develop the theory behind our

computational approach. We begin with preliminary facts and

results that are used in the proof of the main theoretical result

in Section IV.

III. THEORETICAL PRELIMINARIES

As preliminaries for the main theoretical result, we review

conditions for Dynkin’s formula to hold, provide a general-

ization of the standard Newton-Leibnitz calculus formula,

and prove a simple result on the extension of functions.

A. Diffusions and Dynkin’s Formula

Following the development on page 128-129 of [5], from

the assumptions of (i), (ii), and (iii) in Section II, we can

further assert that for each m = 1,2, . . ., there exists a constant

Cm (depending on m and T ) such that

E0,S0
‖S(t)‖m ≤Cm(1+‖S0‖

m), 0 ≤ t ≤ T (5)

Let C
2,1
p denote the space of f ∈C2,1 such that f , ft , fx, fxx

satisfy the polynomial growth condition

‖ f (x, t)‖ ≤ k(1+‖x‖m), ∀(x, t) ∈ R× [0,T ] (6)

for some constants k and m. Then it follows that f (S(t), t)∈
C

2,1
p satisfies Dynkin’s formula,

Et1,S1
[ f (S(t2), t2)]−f (S1, t1) = Et1,S1

[

∫ t2

t1

A f (S(τ),τ)dτ

]

,

(7)

where A is the differential operator

A f = ft +a(S, t) fx +
1

2
b(S, t)2 fxx. (8)

See [5] page 129 for more details.

Now, by (6), for f ∈ C
2,1
p , ‖A f (x, t)‖ ≤ k(1 + ‖x‖m) for

some k and m. Coupling this with (5) guarantees the absolute

integrability of the right hand side of (7). Therefore Fubini’s

theorem [12] justifies an exchange of the expectation and

integral. Hence, one may assert from (7) that the generator

is given by

lim
h↓0

Et,S(t) [ f (S(t +h), t +h)]− f (S(t), t)

h
= A f (9)

for all f ∈C
2,1
p .

The characterization of the generator in (9) is important

since we will use a condition based on the generator A to

characterize super- and sub-martingales in the main theorem.

B. Generalization of Newton-Leibnitz Formula

Since we will be dealing with functions that are only

continuous, we will need the following result from [15].

Lemma 3.1: Let g ∈C[0,T ]. Extend g to (−∞,+∞) with

g(t) = g(T ) for t > T , and g(t) = g(0) for t < 0. Suppose

there is a ρ ∈ L1(0,T ) such that

limsup
h→0

g(t +h)−g(t)

h
≤ ρ(t), a.e. t ∈ [0,T ]. (10)

Then

g(β )−g(α) ≤
∫ β

α
limsup

h→0+

g(τ +h)−g(τ)

h
dτ, (11)

for 0 ≤ α ≤ β ≤ T .

For a proof of this result, see [15], page 270.

C. Result on extension of functions

The final preliminary result is on the extension of func-

tions. We will need to lower and upper bound our continuous

function by a C
2,1
p function that lies in the domain of the

generator. The following lemma allows us to do this in a

global manner. We give only the upper bound extension,

with a lower bound extension following in exactly the same

manner.

Lemma 3.2: Let V (x, t)∈Cp for (x, t)∈ R× [0,T ] (that is,

V (x, t) satisfies the bound in (6)). Extend V (x, t) to (x, t) ∈
R×R by V (x,τ) = V (x,T ) for τ > T and V (x,τ) = V (x,0)
for τ < 0. Let f ∈ C2,1 such that f ≥ V in an open set

O containing (x0, t0). Then there exists an open set O ′

containing (x0, t0) with O ′ ⊂O and a function f̃ ∈C
2,1
p such

that f̃ = f in O ′ and f̃ (y,τ) ≥V (y,τ) for all (y,τ).

Proof: Define the function g by

g(x, t) = M + k(1+‖x‖m) (12)

where k and m≥ 2 correspond to the bound in (6) for V (x, t),
M = max(y,τ)∈B2(x0,t0)V (y,τ), and B2(x0, t0) is the closed ball

of radius 2 centered around (x0, t0). Thus g(x, t)≥V (x, t) for

all (x, t), and g(x, t) ∈C
2,1
p .

Now, let b(x, t) be a C∞ cutoff function that is 1 on the

compact set Bε(x0, t0) and zero outside B2ε(x0, t0) where

ε > 0 is chosen so that B2ε(x0, t0) ⊂ O .

Then letting

f̃ (x, t) = f (x, t)b(x, t)+g(x, t)(1−b(x, t)) (13)

with Bε(x0, t0) satisfies the theorem. �

We are now ready to prove the main theoretical result.
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IV. MAIN THEORETICAL RESULT

The following theorem gives sufficient conditions for

a continuous function to be a super-martingale (the cor-

responding result for a sub-martingale follows easily by

flipping inequalities). It justifies the computational approach

taken later in the paper.

Theorem 4.1: Let S(t) satisfy (1) and the conditions (i),

(ii), and (iii), and assume that V (x, t) ∈Cp. Let the support

of S(t), t ∈ [0,T ] be contained in the set A ⊆ R. Assume that

for any point (x, t) ∈ A, there exists a function f ∈C2,1 such

that f (x, t) = V (x, t) and for some open set O containing

(x, t) we have

f (y,τ) ≥V (y,τ), ∀(y,τ) ∈ O (14)

with

A f (x, t) ≤ 0. (15)

Then V (S(t), t) is a super-martingale and satisfies

V (S0,0) ≥ E0,S0
[V (S(T ),T )] . (16)

Proof: At any point (St , t) ∈ A consider the C2,1 function

f (St , t) from the theorem satisfying V (St , t) = f (St , t) and

f ≥ V in some open set O . By Lemma 3.2 we can replace

f by a C2,1 function f̃ that globally satisfies f̃ ≥V .

Note that at (St , t), f̃ satisfies

lim
h↓0

Et,St

[

f̃ (S(t +h), t +h)
]

−f̃ (St , t)

h
= A f̃ = A f ≤ 0. (17)

Furthermore, since globally f̃ ≥V , we have that

Et,St
[V (S(t+h),t+h)]−V (St ,t)

h

≤
Et,St [ f̃ (S(t+h),t+h)]− f̃ (St ,t)

h
.

(18)

Thus, combining (17) and (18), gives

limsup
h↓0

Et,St [V (S(t +h), t +h)]−V (St , t)

h
≤ 0. (19)

Now, by Fatou’s lemma [12] for t0 < t,

limsuph↓0

Et0 ,St0
[V (S(t+h),t+h)]−Et0 ,St0

[V (S(t),t)]

h

≤ Et0,St0

[

limsup
h↓0

Et,S(t)[V (S(t+h),t+h)]−V (S(t),t)

h

]

≤ 0.

Finally, letting g(t) = Et0,St0
[V (S(t), t)], one may note that

g(t) satisfies the assumptions of Lemma 3.1. Thus

Et0,St0
[V (S(t), t)]−V (St0 , t0) ≤ 0 (20)

showing that V (S(t), t) is a super-martingale. Setting t0 = 0

gives (16). �

With this theoretical result in hand, we now proceed to

developing an optimization based bounding approach that

uses piecewise polynomial functions.

V. A NUMERICAL OPTIMIZATION APPROACH

We can use Theorem 4.1 to construct upper and lower

bounds on option prices via piecewise polynomial super- and

sub-martingales. As before, we present the case of S(t) being

one dimensional with the multidimensional case following

along similar lines.

Our approach is to search over piecewise polynomial

V (S, t) that satisfy the conditions of Theorem 4.1. To con-

struct such a piecewise polynomial V (S, t), we first select

”break” points for S, denoted a1 < a2 < ... < an+1 and let

the support of S(t) be a subset of [a1,an+1]. V (S, t) is then

pieced together as

V (S, t) = f (i)(S, t), S ∈ [ai,ai+1], t ∈ [0,T ] (21)

for i = 1, . . . ,n where each f (i) is a polynomial in S and t.

Now, in order to make V (S, t) continuous, we require that

f (i−1)(ai, t) = f (i)(ai, t), t ∈ [0,T ], i = 2, . . . ,n. (22)

Additionally, following the conditions of Theorem 4.1 we

need to guarantee that at every point a C2,1 function exists

that is locally an upper bound on V . At points where V (S, t) is

twice continuously differentiable, we can use the polynomial

f (i)(S, t) = V (S, t) itself. At boundary points, we can require

the derivative condition

f
(i−1)
x (ai, t) > f

(i)
x (ai, t), t ∈ [0,T ], i = 2, . . . ,n (23)

which guarantees that both f (i−1) or f (i) are locally upper

bounds.

Finally, as long as

A f (i)(S, t) ≤ 0, S ∈ [ai,ai+1], t ∈ [0,T ], i = 1, . . . ,n (24)

then one can easily verify that V (S, t) defined in this manner

satisfies the conditions of Theorem 4.1 and is a super-

martingale. Hence, as long as V (S,T ) ≥ (S − K)+, then

V (S0,0) is an upper bound on the option price.

Our computational procedure for an upper bound is simply

based on minimizing over piecewise polynomial functions

satisfying the preceding conditions and upper bounding the

payoff function of the option at expiration. That is, define

the optimization problem Pu as

P
u =















































minV (S0,0)

V (S,T ) ≥ (S−K)+

V (S, t) = f (i)(S, t) S ∈ [ai,ai+1], i = 1 . . .n

A f (i)(S, t) ≤ 0, S ∈ [ai,ai+1], i = 1 . . .n

f (i−1)(ai, t) = f (i)(ai, t), t ∈ [0,T ], i = 2, . . . ,n.

f
(i−1)
x (ai, t) > f

(i)
x (ai, t), t ∈ [0,T ], i = 2, . . . ,n.

f (i) a polynomial , i = 1, . . . ,n
(25)

This is a polynomial program that computes an upper

bound on the call option price c(S0,0). In a completely

analogous manner, a lower bound optimization P l can also

be formulated as a polynomial optimization.

While this optimization problem is difficult, the inequal-

ities can be replaced by a more restrictive sum-of-squares

condition that then allows for semi-definite programming
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methods to be used [9]. Additionally, the freely available

software package SOStools [10] automates this process.

Details can be found in the SOStools manual [10].

In the following section, we solve the optimization prob-

lems Pu and P l and test the effectiveness of this super- and

sub-martingale based optimization approach on the familiar

Black-Scholes example.

VI. BLACK-SCHOLES NUMERICAL EXAMPLE

In this section, we use a Black-Scholes example with

the underlying asset following geometric Brownian motion.

We solve the upper bound optimization Pu as well as the

corresponding lower bound problem P l and explore the

tightness of the bounds compared to the actual Black-Scholes

solution.

A. Model

Let S(t) satisfy

dS = σSdz (26)

with σ = 0.30. We considered the pricing of a European call

options with strike price K = 1 and expiration time T = 0.4.

The optimization Pu was used to compute upper and

lower bounds. This optimization was solved using SOStools

[10] which linked to the semi-definite programming solver

SeDuMi [14].

Specifically, we constructed V (S, t) by piecing together

four polynomials: f (1)(S, t) on S ∈ [0,0.9], f (2)(S, t) on S ∈
[0.9,1], f (3)(S, t) on S∈ [1,1.1], and f (4)(S, t) on S∈ [1.1,∞).
Each of the polynomials was fourth order in S and t. (That

is, terms such as S4t4 were allowed, but not S5t.)

B. Upper Bounds Results

We first computed the upper bound for an at the money

option. That is, we selected S(0) = 1. This is the most

difficult selection for S(0) in terms of the tightness of the

bounds. Thus, the results of this section show the bounds

under the most challenging scenario.

Solving the optimization resulted in the polynomial func-

tions f (i), i = 1,2,3,4. At expiration, these functions (blue,

magenta, black, and cyan) along with the payoff of the

option (red) are shown in Figure 1. One can see that when

pieced together at the break points 0.9, 1, 1.1, the functions

f (i), i = 1,2,3,4 form a fairly tight upper bound on the

payoff function, especially around S(0) = 1. However, note

that each polynomial f (i) individually need not be an upper

bound on the payoff.

Figure 2 shows the upper bound piecewise polynomial

function at time 0. Thus, the piecewise polynomial function

is an upper bound on the Black-Scholes price of the option

(which is given by the green line). For S(0) = 1, the upper

bound and the Black-Scholes price are quite close, indicating

that the bound is fairly effective. Again, we emphasize that

pricing an at-the-money option leads to the loosest bound

and other initial conditions only lead to tighter bounds. For

reference, the upper bound value at-the-money is UB =
0.07996 while the Black-Scholes price is 0.0756.
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Fig. 1. Piecewise polynomial (fourth order in S and T ) upper bound on
the call option payoff (red). The upper plot shows the entire polynomial
functions (blue, magenta, black, and cyan) that are pieced together to
make up the upper bound super-martingale V (S(T ),T ). The lower plot is a
zoomed-in version of the piecewise polynomial function V (S(T ),T ) where
vertical lines show the breakpoints (0.9, 1, and 1.1) at which the polynomial
functions from the upper plot are pieced together.

C. Lower Bound Results

Lower bound results are given in Figures 3 and 4. This

time Figure 3 shows the piecewise polynomial function

creating a lower bound on the payoff of the option. Figure 4

shows the bound on the price at time 0 given by the piecewise

polynomial function in reference to the Black-Scholes price

shown in green. Again, we see that the piecewise polynomial

function provides a reasonably tight lower bound. For refer-

ence, the lower bound price at-the-money is LB = 0.06721

while the Black-Scholes price is 0.0756.

D. Discussion

To compute these examples, we only used up to fourth

order polynomials in S and t. Higher order polynomials lead

to tighter bounds but require increased computational effort.

SOStools was able to solve the problem using fourth order

polynomials in a matter of a few seconds. Thus, for one

dimensional problems, computation time was not an issue.

Rather than using polynomials, one may also consider

using other functional forms. We tested polynomials in S
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Fig. 2. Upper bound on the price given by the piecewise polynomial
(fourth order in S and t) function V (S(0),0). In both plots, the green
line is the Black-Scholes price of the option. The upper plot shows the
entire polynomial functions (blue, magenta, black, and cyan) that are pieced
together to make up the upper bound super-martingale V (S(0),0). The lower
plot is a zoomed-in version of the piecewise polynomial function V (S(0),0)
where vertical lines show the breakpoints (0.9, 1, and 1.1) at which the
polynomial functions from the upper plot are pieced together. The red line
is the payoff function for the option and is provided for reference.

and exponentials in t. The results were similar to simply

using a polynomial in t, so we did not report those results

in this paper.

As mentioned previously, this approach also applies to

pricing options on more than a single underlying asset,

although we do not report results here. Of course, using

higher dimensions leads to increased computational times

and questions regarding efficient methods for piecing poly-

nomials together.

VII. CONCLUSIONS

In this paper we first derived sufficient conditions for a

continuous function to be a super- or sub-martingale. This

characterization allowed us to use piecewise polynomial

super- and sub-martingales in an optimization to bound the

price of an option. By using polynomials, the optimization

was formulated as a polynomial programming problem. We

used the software package SOStools which replaces the
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Fig. 3. Piecewise polynomial (fourth order in S and T ) lower bound on
the call option payoff (red). The upper plot shows the entire polynomial
functions (blue, magenta, black, and cyan) that are pieced together to
make up the lower bound sub-martingale V (S(T ),T ). The lower plot is a
zoomed-in version of the piecewise polynomial function V (S(T ),T ) where
vertical lines show the breakpoints (0.9, 1, and 1.1) at which the polynomial
functions from the upper plot are pieced together.

problem with a sum-of-squares program, allowing it to be

solved as a semi-definite program.

The results were tested on a Black-Scholes example using

four polynomials pieced together to create an upper and

lower bound. The results showed that we achieved reasonably

tight bounds with four fourth order polynomials, even for an

at-the-money option.
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