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Abstract— This communication is concerned with state-
feedback stabilizability of discrete-time switched linear systems.
Necessary and sufficient conditions for state-feedback exponen-
tial stabilizability are presented. It is shown that, a switched
linear system is state-feedback exponentially stabilizable if and
only if an associated sequence converges to zero. Equivalently,
a switched linear system is state-feedback exponentially stabi-
lizable if and only if a dynamic programming equation admits
a solution of some kind. We also address the issue of testing
the stabilizability of a given switched system by computing the
elements of a new associated sequence of upper bounds for the
elements of the previously mentioned sequence. These computa-
tions involve the solution of convex programming problems. The
elements of both associated sequences are shown to be related
via Lagrange duality. Numerical examples illustrate some of
the results reported in the paper.

I. INTRODUCTION

In the present article, we will use the term switched system

to refer to a class of dynamical system described by a

differential or difference equation whose right hand side is

dynamically selected from a given finite set of (right hand

side) functions, and this selection is governed by a function

(of the time) usually termed switching signal.

Switched systems are useful in modeling processes ex-

hibiting significatively different behaviors depending on a

state (or status, or mode) that takes discrete finite values

and which describes the mode of operation of the process.

Such processes naturally appear, in numerous and different

manners, in engineering. For instance: In power electronics,

it is well-known [12], [11] that various types of power con-

verters present the aforementioned characteristic behavior. In

control systems, control schemes have been considered [3],

[4] in which a master (supervisor) controller has the task of

switching or selecting between a given finite set of available

controllers to close the loop with a given plant. Thus, the

overall (closed-loop) system is a switched system. Switched

systems are also being considered [7] to model the complex

behavior of processes that are subject to the occurrence

of faults. Such scenario is modeled by considering a finite

number of possible faults (that may suffer the process) each

associated with a different dynamic behavior described by a

significatively simpler model.

Switched systems have lately attracted the attention of

researchers in the control systems community. The practical

relevance of devising methods for analysis of switched sys-

tems and for the design of such systems in order to achieve
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certain specifications is a motivating factor for studying

these systems. The quest for devising such methods have

encourage research in many directions. Some of the research

in the area is documented in various survey papers [5],

[2], [9] and monographs [11], [8], [6], [10]. Some of the

important issues that are being studied concern with certain

stability problems related to these systems. As stated in [5], it

is possible to recognize three basic problems concerning the

stability of switched systems: (1) The problem of finding

conditions for stability, for arbitrary switching signals. (2)

The problem of finding conditions for stability, for switching

signals belonging to some given set. (3) The problem of

finding conditions for the existence of a switching signal that

stabilizes the system. The topic of the present article is re-

lated to (but different from) problem (3). It is concerned with

the problem of finding conditions for the existence of a state-

feedback that stabilizes the system. More specifically, the

present work is devoted to the problem of finding conditions

to determine the state-feedback exponential stabilizability in

discrete-time switched linear systems.

The present article is organized as follows. In section II

mathematical preliminaries and definitions are introduced.

Necessary and sufficient conditions for state-feedback ex-

ponential stabilizability of switched linear systems are pre-

sented and proved in section III. In this section, a sequence is

associated to each switched linear system. We then prove that

the state-feedback exponential stabilizability of the switched

system is equivalent to the property of convergency (to

zero) of the associated sequence. Other conditions, which are

equivalent to the state-feedback exponential stabilizability

of the switched system, are also presented. Section IV is

devoted to the problem of testing the state-feedback stabi-

lizability of a given switched system by computing upper

bounds for the elements of the associated sequence. In that

manner, a new associated sequence (of upper bounds) is

introduced. The computation of the elements of this new

associated sequence involves solving convex programming

problems. It is also shown that the elements of both as-

sociated sequences are related by Lagrange duality. Two

numerical examples, included in section V, illustrate some of

the results reported in this work. Summary and concluding

remarks are in section VI.

Most of the notation used through the paper is standard.

Z+ denote the non-negative integers. For k ∈ Z+, we use

Z[0,k] to also denote the set Z[0,k] = {0, . . . , k}. We use ln+
to denote the set of all the sequences {xk} ⊂ Rn, k ∈ Z+.
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For a matrix X ∈ Rn×n, ρ(X) is its spectral radius.

II. PRELIMINARIES

Let N ∈ Z+, N > 0, be given. We will denote by Q the

set Q = {1, . . . , N}. Let us introduce the following sets of

control functions (or switching signals)

Qk = {q : q : Z[0,k−1] −→ Q} , k ∈ Z+ , k > 0 ,

Q∞ = {q : q : Z+ −→ Q} .

Let the matrices Ai ∈ Rn×n, i ∈ {1, . . . , N}, be given.

The present article is concerned with the dynamical system

described by

x(k+1) = Aq(k)x(k) , k ∈ Z+ , x(0) = x0 ∈ Rn , q ∈ Q∞ .
(1)

The motion of this controlled dynamical system will be

denoted by x(· ;x0, q).
To each mapping κ : Rn −→ Q we associate the diagonal

(or static) operator Fκ : ln+ −→ Q∞ defined by

Fκ(x)(k) = κ(x(k)) , k ∈ Z+ .

It is clear that if we also associate to each mapping κ :
Rn −→ Q the (closed-loop) dynamical system described by

xcl(k+1) = Aκ(xcl(k))xcl(k) , k ∈ Z+ , xcl(0) = x0 ∈ Rn ,
(2)

then, it follows that x(· ;x0,Fκ(x)) = xcl(· ;x0).
In this work we will adopt the following definitions.

Definition 1: The switched system (1) is feedback expo-

nentially stabilizable whenever there exist a mapping κ :
Rn −→ Q and scalars α ≥ 1 and 0 < β < 1 such that the

motions of the associated (closed-loop) dynamical system (2)

satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z+ , x0 ∈ Rn .
Definition 2: The switched system (1) is uniformly expo-

nentially convergent whenever there exist scalars α ≥ 1 and

0 < β < 1 that obey the following property:

For each x0 ∈ Rn there exists qx0
∈ Q∞ such that the

corresponding motion of (1) satisfies

‖x(k;x0, qx0
)‖ ≤ αβk‖x0‖ , k ∈ Z+ .

III. FEEDBACK STABILIZABILITY OF THE SWITCHED

SYSTEM

It is convenient to associate to the sets Qk, k ∈ Z+, k > 0,

of control functions the following sets Sk, k ∈ Z+, k > 0,

of matrices:

Sk = {S ∈ Rn×n : S = Aq(k−1) . . . Aq(0) , q ∈ Qk} .

We associate, also, to the switched system (1), the sequence

of functions Vk : Rn −→ R+, k ∈ Z+, k > 0, defined by

Vk(x) = min
q∈Qk

‖x(k;x, q)‖2 = min
S∈Sk

x∗S∗Sx , (3)

and the sequence µk ∈ R+, k ∈ Z+, k > 0, defined by

µk = max
‖x‖≤1

Vk(x) = max
‖x‖≤1

min
q∈Qk

‖x(k;x, q)‖2 . (4)

Some simple properties of {Vk} and {µk} are collected

in the next Fact.

Fact 1: For each given k ∈ Z+, k > 0, it follows that

(1) Vk is locally Lipschitz.

(2) Vk(λx) = λ2Vk(x) , λ ∈ R , x ∈ Rn .

(3) µk = max‖x‖=1 Vk(x) .

(4) µk ≤ minS∈Sk
‖S‖2 .

(5) For each given h ∈ Z+, h > 0, it follows that

µhk ≤
(
µk

)h
.

Next, we present the main result of this section.

Theorem 1: The switched system (1) is feedback expo-

nentially stabilizable if and only if, the associated sequence

{µk} is such that, any (and then all) of the following

equivalent conditions are satisfied:

(i) There exists k0 ∈ Z+, k0 > 0, such that µk0
< 1.

(ii) limk→+∞ µk = 0 .

Proof: The proof is organized as follows. Next, we

prove that condition (i) is equivalent to the feedback expo-

nential stabilizability of the switched system (1). In order

to prove the equivalence between conditions (i) and (ii), we

just have to prove that (i) implies (ii). That proof is included

(below) in the Sufficiency part.

(Necessity.) By assumption there exist a mapping κ :
Rn −→ Q and scalars α ≥ 1 and 0 < β < 1 such that the

motions of the associated system (2) satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z+ , x0 ∈ Rn .

Choose k0 ∈ Z+, k0 > 0, such that α2β2k0 < 1. And define

the following family of control functions:

qx0
= Fκ(xcl(· ;x0)) , x0 ∈ Rn , ‖x0‖ ≤ 1 .

Then, using the definition of Vk0
, we have that

Vk0
(x0) = min

q∈Qk0

‖x(k0;x0, q)‖
2 ≤

‖x(k0;x0, qx0
)‖2 = ‖xcl(k0;x0)‖

2 ≤

α2β2k0 , x0 ∈ Rn , ‖x0‖ ≤ 1 .

Therefore,

µk0
= max

‖x0‖≤1
Vk0

(x0) ≤ α2β2k0 < 1 .

(Sufficiency.) By assumption there exists k0 ∈ Z+, k0 >
0, such that µk0

< 1. It will be assumed, without loss of

generality, that k0 > 1. (Notice that in case that k0 = 1 we

can appeal to Fact 1 (property (5)) to define a new knew
0 =

hk0 with h ∈ Z+, h > 1. Thus, knew
0 > 1, and moreover

µknew
0

≤ (µk0
)h < 1.) We choose γ ∈ R+ such that µk0

<
γ < 1.

For a given x0 ∈ Rn, we will consider the optimal control

problem

min
q∈Qk0

‖x(k0;x0, q)‖
2 , (5)

and we will use q̂k0,x0
to denote a solution for that problem.

Therefore, for any given x0 ∈ Rn

‖x(k0;x0, q̂k0,x0
)‖2 = min

q∈Qk0

‖x(k0;x0, q)‖
2 =

Vk0
(x0) ≤ µk0

‖x0‖
2 ≤ γ‖x0‖

2 .
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Let us define

M = max{1 , max
S∈⋃k0−1

j=1
Sj

‖S‖2} .

Let x0 ∈ Rn be given, and let h ∈ Z+, h > 0, be

given. Let q̃hk0,x0
∈ Qhk0

be a control function made up

by concatenating solutions of the optimal control problem

(5) with the following initial conditions:

x̂0 = x0 , x̂1 = x(k0; x̂0, q̂k0,x̂0
) , . . . ,

x̂h−1 = x(k0; x̂h−2, q̂k0,x̂h−2
) .

That is, using the above notation, the control function q̃hk0,x0

is defined by

q̃hk0,x0
(jk0 + i) = q̂k0,x̂j

(i) ,

i ∈ {0, . . . , (k0 − 1)} , j ∈ {0, . . . , (h − 1)} .

Now, it is easy to see that, with the above defined control

function q̃hk0,x0
the following inequalities are satisfied:

‖x(k;x0, q̃hk0,x0
)‖2 ≤ Mγj‖x0‖

2 ,

k ∈ Z+ , k ∈ {jk0, . . . , jk0 + (k0 − 1)} ,

j ∈ {0, . . . , (h − 1)} .

It is then clear that the above expression implies that

limk→+∞ µk = 0. In effect, given ǫ > 0 arbitrary, we choose

j0 ∈ Z+, j0 > 0, such that Mγj0 < ǫ. Then, for any k ∈ Z+,

k ≥ j0k0, it is verified that (where we have chosen h ∈ Z+,

h > 0, such that k ≤ hk0; thus j ≥ j0)

µk = max
‖z‖≤1

Vk(z) = Vk(x0) = min
q∈Qk

‖x(k;x0, q)‖
2 ≤

‖x(k;x0, q̃hk0,x0
)‖2 ≤ Mγj ≤ Mγj0 < ǫ ,

where x0 denotes an optimal solution of the problem

max‖z‖≤1 Vk(z).
For each k ∈ Z+, k > 0, we now define the cost functional

Jk : Rn ×Qk −→ R+ by

Jk(x0, q) =

k∑

i=0

‖x(i;x0, q)‖
2 .

For any given x0 ∈ Rn we will consider the following family

of optimal control problems (parameterized by k ∈ Z+,

k > 0):

min
q∈Qk

Jk(x0, q) ,

and we will denote by Uk(x0) the optimal value of that

problem. Therefore, for any given x0 ∈ Rn, we have that

(for h ∈ Z+, h > 0, such that k ≤ hk0)

Uk(x0) = min
q∈Qk

Jk(x0, q) ≤ min
q∈Qhk0

Jhk0
(x0, q) ≤

Jhk0
(x0, q̃hk0,x0

) =

hk0∑

i=0

‖x(i;x0, q̃hk0,x0
)‖2 ≤

h∑

j=0

k0Mγj‖x0‖
2 ≤ k0M

1

(1 − γ)
‖x0‖

2 .

It was then proved that

‖x0‖
2 ≤ Uk(x0) ≤ k0M

1

(1 − γ)
‖x0‖

2 ,

x0 ∈ Rn , k ∈ Z+ , k > 0 .

It is also easy to see that the following property is verified:

Uk+1(x0) ≥ Uk(x0) , x0 ∈ Rn , k ∈ Z+ , k > 0 .

It then follows that, for each x0 ∈ Rn, the limite

limk→+∞ Uk(x0) exists. That lead us to the introduction of

the function W : Rn −→ R+ defined by

W (x0) = lim
k→+∞

Uk(x0)

which satisfies

‖x0‖
2 ≤ W (x0) ≤ k0M

1

(1 − γ)
‖x0‖

2 , x0 ∈ Rn ,

and furthermore, since

Uk+1(x0) =
(
‖x0‖

2 + min
q∈Q

Uk(x(1;x0, q))
)

=
(
‖x0‖

2 + min
q∈Q

Uk(Aqx0)
)
,

x0 ∈ Rn , k ∈ Z+ , k > 0 ,

it then follows that W is a solution of the following dynamic

programming equation:

W (x0) = ‖x0‖
2 + min

q∈Q
W (Aqx0) , x0 ∈ Rn .

Hence, there exists a mapping κ : Rn −→ Q satisfying

κ(x0) ∈ arg min
q∈Q

W (Aqx0) , x0 ∈ Rn .

Thus, it is verified that

W (Aκ(x0)x0) − W (x0) = −‖x0‖
2 , x0 ∈ Rn ,

which means that W is a Lyapunov function for the exponen-

tial stability of the trivial solution of the associated closed-

loop dynamical system (2). In effect, it is easy to verify that

(with that feedback mapping) the motions of the associated

closed-loop dynamical system (2) satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z+ , x0 ∈ Rn ,

with

α =

√

k0M
1

(1 − γ)
, β =

√
k0M − (1 − γ)

k0M
,

which completes the proof of the Theorem.

The constructive proof of the previous Theorem provides us

also with the following conclusion.

Proposition 1: For the switched system (1), under consid-

eration, the following assertions are equivalent:

(i) There exists k0 ∈ Z+, k0 > 0, such that µk0
< 1.

(ii) limk→+∞ µk = 0 .

(iii) There exists a function W : Rn −→ R+ satisfying

• W (λx0) = λ2W (x0) , λ ∈ R , x0 ∈ Rn,

• ‖x0‖
2 ≤ W (x0) ≤ α‖x0‖

2 , x0 ∈ Rn,

for some α > 1,
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which solves the following dynamic programming

equation:

W (x0) = ‖x0‖
2 +min

q∈Q
W (Aqx0) , x0 ∈ Rn . (6)

Moreover, a function W as in (iii) defines a feedback

mapping κ : Rn −→ Q by

κ(x0) ∈ arg min
q∈Q

W (Aqx0) , x0 ∈ Rn .

Such a feedback exponentially stabilizes the switched system

(1). And the function W , is a Lyapunov function for the

exponential stability of the trivial solution of the associated

closed-loop dynamical system (2).

Remark 1: It follows from the previous result that (in

case the switched system (1) is feedback exponentially

stabilizable) a exponentially stabilizing feedback mapping

κ : Rn −→ Q can always be chosen with the following

property:

κ(λx0) = κ(x0) , λ ∈ R , x0 ∈ Rn .
We observe that our proof of Theorem 1 also proves

that: The switched system (1) is uniformly exponentially

convergent if and only if there exists k0 ∈ Z+, k0 > 0,

such that µk0
< 1. (That particular result has already been

reported in [10].) We have therefore the following conclusion

from Theorem 1.

Corollary 1: The switched system (1) is feedback expo-

nentially stabilizable if and only if it is uniformly exponen-

tially convergent.

IV. DETERMINATION OF THE FEEDBACK EXPONENTIAL

STABILIZABILITY OF A SWITCHED SYSTEM

This section is devoted to the problem of testing the

property, of being feedback exponentially stabilizable, in the

switched system (1) under consideration. With that purpose

in mind, instead of focusing on the solvability of the dy-

namic programming equation (6), in the present work we

concentrate our attention on the convergency property of the

associated sequence {µk}. Thus, in order to determine the

feedback stabilizability of the switched system, we have to

address the issue of computing µk, k ∈ Z+, k > 0, or that

of computing an upper bound for µk. Regarding that issue

we first have the following result.

Theorem 2: Consider the switched system (1) and its

associated sequence {µk}. Let k ∈ Z+, k > 0, be given.

Assume that, for this given k, the set Sk is such that 0 /∈ Sk.

Then, under that condition, the scalars ν, λ ∈ R+, are

related by

λ = max
‖x‖≤√

ν
Vk(x) = µk ν , (7)

if and only if

ν = min
X∈P̂k(λ)

trace(X) , (8)

where

P̂k(λ) = {X ∈ Rn×n : X = X∗, X ≥ 0,

rank(X) ≤ 1, trace(S∗SX) ≥ λ∀S ∈ Sk} .

Proof: (Necessity.) Consider the optimization problem

in (8):

min
X∈P̂k(λ)

trace(X) .

It is clearly equivalent to the following one:

min
x∈{x∈Rn: ‖Sx‖2≥λ ∀S∈Sk}

‖x‖2 .

Regarding that optimization problem we first make the

following two important remarks.

• Since by assumption 0 /∈ Sk then,

{x ∈ Rn : ‖Sx‖2 ≥ λ∀S ∈ Sk} 6= ∅ , ∀λ ∈ R+ .

• It is clear that, in the above optimization problem, the

minimization is indeed achieved. That explains the use

of min instead of inf .

Next, in this part of the proof, we will consider two cases.

Case λ = 0. When λ = 0 then

0 ∈ {x ∈ Rn : ‖Sx‖2 ≥ λ∀S ∈ Sk} ,

which means that

ν = min
x∈{x∈Rn: ‖Sx‖2≥λ ∀S∈Sk}

‖x‖2 = 0 .

Hence, in this case, the relationship λ = µk ν is verified.

Case λ > 0. Since ν is defined by

ν = min
x∈{x∈Rn: ‖Sx‖2≥λ ∀S∈Sk}

‖x‖2 (9)

then it follows that ν > 0. Thus, by definition of ν, we have

that:

If x ∈ {x ∈ Rn : ‖Sx‖2 ≥ λ∀S ∈ Sk} =⇒ ‖x‖2 ≥ ν .

Therefore,

If ‖x‖2 < ν =⇒ ∃S ∈ Sk : ‖Sx‖2 < λ =⇒ Vk(x) < λ .

Hence, it follows that

max
‖x‖≤√

ν
Vk(x) ≤ λ .

From the optimization problem (9) we have that

∃x0 ∈ Rn : ν = ‖x0‖
2, and ‖Sx0‖

2 ≥ λ∀S ∈ Sk .

Moreover, it is easy to see that

∃S ∈ Sk : ‖Sx0‖
2 = λ .

Then, it is concluded that Vk(x0) = λ. It was therefore

proved that

max
‖x‖≤√

ν
Vk(x) = λ .

(Sufficiency.) In this part of the proof, we will again

consider two cases.

Case ν = 0. In this case it is obvious that

λ = max
‖x‖≤√

ν
Vk(x) = Vk(0) = 0 .

Then, it is clear that in this case, the following relationship

holds:

ν = min
x∈{x∈Rn: ‖Sx‖2≥λ ∀S∈Sk}

‖x‖2 .
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Case ν > 0. Since λ is defined via

λ = max
‖x‖≤√

ν
Vk(x) (10)

then it follows that λ > 0. (Otherwise, if it were λ = 0, then

Vk(x) = 0∀x : ‖x‖2 ≤ ν, implying that Vk(x) = 0∀x ∈
Rn. But, that would be a contradiction since by assumption

0 /∈ Sk.) By definition of λ we have that

If ‖x‖2 ≤ ν =⇒ ∃S ∈ Sk : ‖Sx‖2 ≤ λ .

Hence,

If x ∈ {x ∈ Rn : ‖Sx‖2 > λ∀S ∈ Sk} =⇒ ‖x‖2 > ν .

Therefore,

min
x∈{x∈Rn: ‖Sx‖2≥λ ∀S∈Sk}

‖x‖2 ≥ ν .

Now, from the optimization problem (10), we conclude that

∃x0 ∈ Rn : ‖x0‖
2 ≤ ν, and Vk(x0) = λ ,

implying that

‖x0‖
2 ≤ ν and x0 ∈ {x ∈ Rn : ‖Sx‖2 ≥ λ∀S ∈ Sk} .

Hence, it is concluded that

min
x∈{x∈Rn: ‖Sx‖2≥λ ∀S∈Sk}

‖x‖2 = ν ,

which completes the proof of the Theorem.

Thus, suggested by Theorem 2, we associate to the switched

system (1), the sequence νk ∈ (R(ext))+, k ∈ Z+, k > 0,

defined by

νk =

{
+∞ , 0 ∈ Sk

min
X∈P̂k(1) trace(X) , 0 /∈ Sk

. (11)

We include, in the next two corollaries, some straightforward

conclusions that follow from Theorem 2 and Theorem 1.

Corollary 2: Consider the switched system (1) and their

associated sequences {µk} and {νk}. These sequences are

related by

νk =
1

µk

, k ∈ Z+ , k > 0 .

Corollary 3: The switched system (1) is feedback expo-

nentially stabilizable if and only if, the associated sequence

{νk} is such that, any (and then all) of the following

equivalent conditions are satisfied:

(i) There exists k0 ∈ Z+, k0 > 0, such that νk0
> 1.

(ii) limk→+∞ νk = +∞ .

Next, we consider some convex optimization problems

which provide with lower bounds for the elements of the

sequence {νk} and therefore convey to sufficient conditions

for the feedback exponential stabilization of the switched

system (1). Let us introduce the sequences ωk ∈ (R(ext))+,

ωk ∈ (R(ext))+, k ∈ Z+, k > 0, associated to the switched

system (1), via the following convex optimization problems:

ωk =

{
+∞ , 0 ∈ Sk

minX∈Pk(1) trace(X) , 0 /∈ Sk
, (12)

where

Pk(λ) = {X ∈ Rn×n : X = X∗, X ≥ 0,

trace(S∗SX) ≥ λ∀S ∈ Sk} , λ ∈ R+ ,

ωk =

{
+∞ , 0 ∈ Sk

maxv∈Rk

∑
q∈Qk

vq , 0 /∈ Sk
, (13)

where

Rk = {v ∈ (RNk

)+ : (
∑

q∈Qk

vqS
∗
q Sq) ≤ I} ,

and where, in the last optimization problem, we have used

q ∈ Qk to index the corresponding members of Sk and also

the components of the vector v ∈ (RNk

)+.

Proposition 2: Consider the switched system (1) and their

associated sequences {νk}, {ωk}, and {ωk}. The elements

of these sequences obey the following relationship:

νk ≥ ωk = ωk , k ∈ Z+ , k > 0 .

Therefore, if there is a k0 ∈ Z+, k0 > 0, with the property

that ωk0
> 1, then the switched system (1) is feedback

exponentially stabilizable.

Proof: Let k ∈ Z+, k > 0, be given such that 0 /∈ Sk.

Since

P̂k(1) ⊂ Pk(1) ,

then, νk ≥ ωk. Next, let X0 and v0 be optimal solutions

for the corresponding optimization problems (12) and (13)

respectively. Then,

ωk = trace(X0) ≥ trace((
∑

q∈Qk

v0,qS
∗
q Sq)X0) =

∑

q∈Qk

v0,q trace(S∗
q SqX0) ≥

∑

q∈Qk

v0,q = ωk .

In order to prove that the strict equality, ωk = ωk holds,

we use the fact that the optimization problem in (13) is the

Lagrange dual of the optimization problem in (12). In effect,

the Lagrangian [1] associated to the optimization problem in

(12) is the function

L(X,Λ, λ) = trace
(
(I − Λ −

∑

q∈Qk

λqS
∗
q Sq)X

)
+

∑

q∈Qk

λq ,

X ∈ Rn×n : X = X∗ ,

Λ ∈ Rn×n : Λ = Λ∗ , Λ ≥ 0 , λ ∈ (RNk

)+ ,

and the Lagrange dual function is

g(Λ, λ) = inf
X∈{X∈Rn×n: X=X∗}

L(X,Λ, λ) =

{ ∑
q∈Qk

λq , (I − Λ −
∑

q∈Qk
λqS

∗
q Sq) = 0

−∞ , (I − Λ −
∑

q∈Qk
λqS

∗
q Sq) 6= 0

,

Λ ∈ Rn×n : Λ = Λ∗ , Λ ≥ 0 , λ ∈ (RNk

)+ .

Therefore, the Lagrange dual optimization problem is

sup
(Λ,λ)∈{(Λ,λ) : Λ∈Rn×n, Λ=Λ∗, Λ≥0 , λ∈(RNk )+}

g(Λ, λ) =

max
λ∈{λ∈(RNk )+: (I−∑

q∈Qk
λqS∗

q Sq)≥0}

∑

q∈Qk

λq ,
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which is the optimization problem in (13). (From this, it

immediately follows that ωk ≥ ωk which was already proved

using different arguments.) Now, since 0 /∈ Sk, we claim that

∃X > 0 : trace(S∗SX) > 1∀S ∈ Sk . (14)

The above claim follows from the fact that the underlying

assumption ensures the existence of

x0 ∈ Rn : ‖Sx0‖ > 1∀S ∈ Sk .

Notice that, if the last assertion were not true then it would

imply that ∪S∈Sk
N (S) = Rn. (We use N (S) to denote the

null-space of S.) But, this can not be since, by assumption,

dim(N (S)) < n∀S ∈ Sk. Since the condition (14), namely

the Slater condition for the (primal) optimization problem in

(12), holds; and moreover the (primal) optimization problem

in (12) is convex, it then follows [1] that strong duality is

achieved. That is, we have established that ωk = ωk.

Remark 2: It is important to remark that the convex

optimization problem in (13) is also the Lagrange dual of

the (non-convex) optimization problem

min
x∈{x∈Rn: ‖Sx‖2≥1 ∀S∈Sk}

‖x‖2 , (15)

which is equivalent to the optimization problem in (11). In

effect, the Lagrangian associated to the optimization problem

in (15) is the function

L(x, λ) = x∗(I −
∑

q∈Qk

λqS
∗
q Sq)x +

∑

q∈Qk

λq ,

x ∈ Rn , λ ∈ (RNk

)+ ,

and the Lagrange dual function is

g(λ) = inf
x∈Rn

L(x, λ) =
{ ∑

q∈Qk
λq , (I −

∑
q∈Qk

λqS
∗
q Sq) ≥ 0

−∞ , (I −
∑

q∈Qk
λqS

∗
q Sq) � 0

,

λ ∈ (RNk

)+ .

Therefore, the Lagrange dual optimization problem is

sup
λ∈(RNk )+

g(λ) =

max
λ∈{λ∈(RNk )+: (I−∑

q∈Qk
λqS∗

q Sq)≥0}

∑

q∈Qk

λq ,

which is the optimization problem in (13). Thus, the differ-

ence, (νk − ωk), is the Lagrange duality gap associated to

the (non-convex) optimization problem (15).

The next two results are aimed at shredding light on

the degree of conservativeness of the test for exponential

feedback stabilizability of the switched system (1) by means

of the sequence {ωk}.

Proposition 3: Consider the switched system (1) and their

associated sequence {ωk}. If there is k ∈ Z+, k > 0, such

that

min
S∈Sk

ρ(S) < 1 ,

then, there exists k0 ∈ Z+, k0 > 0, with the property that

ωk0
> 1.

Proof: If there is k ∈ Z+, k > 0, such that

minS∈Sk
ρ(S) < 1 , then, there exists k0 ∈ Z+, k0 > 0,

such that minS∈Sk0
‖S‖2 < 1 . Since, for every h ∈ Z+,

h > 0, it is verified that

min
v∈{v∈(RNh )+:

∑
q∈Qh

vq=1}
‖

∑

q∈Qh

vqS
∗
q Sq‖ =

1

ωh

,

then,
1

ωk0

= min
v∈{v∈(RNk0 )+:

∑
q∈Qk0

vq=1}
‖

∑

q∈Qk0

vqS
∗
q Sq‖ ≤

min
S∈Sk0

‖S‖2 < 1 .

Proposition 4: Consider the switched system (1) and their

associated sequence {ωk}. If there exists k0 ∈ Z+, k0 > 0,

with the property that ωk0
> 1, then, there exists q0 ∈ Q

satisfying |det(Aq0
)| < 1, implying that

min
q∈Q

min
i∈{1,...,n}

|λi(Aq)| < 1 .

Proof: If there exists k0 ∈ Z+, k0 > 0, with the

property that ωk0
> 1, then, there exists v ∈ (RNk0

)+ :∑
q∈Qk0

vq = 1 and such that
∑

q∈Qk0

vqS
∗
q Sq < I .

We will assume, in what follows, that all the matrices Aq,

q ∈ Q, are nonsingular. Otherwise, the proof is complete.

Under that assumption, it follows from the above matrix

inequality that

log det
( ∑

q∈Qk0

vqS
∗
q Sq

)
< 0 .

Since the function log det(·) is concave (see e.g. [1]) on the

positive definite convex cone, we get that
∑

q∈Qk0

vqlog det
(
S∗

q Sq

)
≤ log det

( ∑

q∈Qk0

vqS
∗
q Sq

)
< 0 ,

implying that there exits S ∈ Sk0
: det(S∗S) < 1. Hence,

there exists q0 ∈ Q satisfying |det(Aq0
)| < 1.

V. NUMERICAL EXAMPLES

Two numerical examples are presented in this section in

order to illustrate some of the results reported in the paper.

Example 1: Consider the switched system (1) defined by

N = 2 and A1 =

(
1 2
0 1

)
, A2 =

(
1.25 0.45
−0.45 0.825

)
.

For these matrices, we have that, |λ1(A1)| = |λ2(A1)| = 1
and |λ1(A2)| = |λ2(A2)| ≈ 1.1107. Therefore it follows

from Proposition 4 that the associate sequence {ωk} satisfies

ωk ≤ 1 , ∀k. Hence, we cannot conclude on the feedback

exponential stabilizability of this switched system by means

of {ωk}. Due to the low dimensionality of this system, it

is possible to perform without difficulty direct numerical

computations in order to evaluate some of the elements of the

sequence {µk}. Thus, as a result of these computations, we

got that µ8 ≈ 0.4952. Then, using Theorem 1, we arrive to

the conclusion that the switched system is feedback exponen-

tially stabilizable. The low dimensionality of this system also

allows us to easily compute a solution W for the dynamic
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Fig. 1. Graphical representation of W for the system in Example 1.
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Fig. 2. Graphical representation of W for the system in Example 2.

programming equation (6). The graphical representation of

the computed W (

(
cos(·)
sin(·)

)
) : [0, π) −→ R+ is in Figure 1.

Example 2: Assume the switched system (1) is defined by

N = 2 and A1 =

(
1 2
0 0.95

)
, A2 =

(
0.825 0.6
−0.6 0.825

)
.

Here we have that, |λ1(A1)| = 1, |λ2(A1)| = 0.95
(and |λ1(A2)| = |λ2(A2)| ≈ 1.02). We attempted, in this

case, to test the feedback exponential stabilizability of this

switched system by computing some of the elements of

the associated sequence {ωk}. We got that ω8 ≈ 1.0031,

therefore, invoking Proposition 2, it is concluded that the

switched system is feedback exponentially stabilizable. (By

direct numerical computation of µ8 we got µ8 ≈ 0.2309.)

As in the previous example, a solution W for the dynamic

programming equation (6) was also computed here. The

graphical representation of this computed Lyapunov function

W (

(
cos(·)
sin(·)

)
) : [0, π) −→ R+ is shown in Figure 2.

VI. SUMMARY AND CONCLUDING REMARKS

We have proved that a discrete-time switched linear system

is state-feedback exponentially stabilizable if and only if its

associate sequence {µk} converges to zero; or equivalently,

if and only if there is k0 ∈ Z+, k0 > 0, with the property

that µk0
< 1. It was also shown that a switched linear

system is state-feedback exponentially stabilizable if and

only if a dynamic programming equation has a solution

W of a particular class. Such a solution, W , defines (that

is, provides us with) a stabilizing state-feedback mapping

κ : Rn −→ Q via κ(x) ∈ arg minq∈Q W (Aqx). That

function W , is a Lyapunov function for the exponential

stability of the trivial solution of the associated closed-loop

switched system. It was also proved that a switched system

is state-feedback exponentially stabilizable if and only if it

is uniformly exponentially convergent (in the sense of our

Definition 2). Instead of focusing on the solvability of the

aforementioned dynamic programming equation, we have

chosen, in this work, to focus on using the convergency

property of the associate sequence {µk} in order to determine

(or to test) the stabilizability of the switched system. We have

therefore studied, and proposed the use of, another associated

sequence {ωk} having the following two properties: (1)

The computation of each element of that sequence can be

performed by solving a convex programming problem. (2) It

is verified that µk ≤ 1
ωk

, k ∈ Z+. We have also shown, as

explained in Remark 2, that the elements of both sequences,

{µk} and {ωk}, are further related via Lagrange duality.

Results were presented, in Propositions 3 and 4, which

provide with information on the degree of conservativeness

of the test for stabilizability of the switched system by means

of the sequence {ωk}. Further work is still needed in order to

fully understand how conservative is that test (based on the

sequence {ωk}). Two numerical examples were presented to

illustrate the results reported in this work.
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