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Abstract— This paper addresses algebraic criteria for consen-
sus problem of continuous-time networked systems, in which
both fixed and switching topology cases are considered. A
special eigenvector ω of Laplacian matrix is first constructed
and correlated with the connectivity of digraph. And then,
based on this tool, some necessary and/or sufficient algebraic
conditions are proposed, which can directly determine whether
the consensus problem can be solved or not. Furthermore, it
is clearly shown that only the agents corresponding to the
positive elements of ω contribute to the group decision value
and decide the collective behavior of all agents. Particularly
for the fixed topology case, not only the role of each agent is
exactly measured by the value of the corresponding element of
ω but also the group decision value can be calculated by such
a vector and the initial states of all agents.

I. INTRODUCTION

In the last decade, due to the broad applications of net-
worked systems in the fields of mobile robots, unmanned air
vehicles(UAVs), autonomous underwater vehicles(AUVs),
etc., where the coordination control of all agents is in the
central position, the importance of the consensus problem
in these fields has been well recognized and many results
have been obtained(see [2]−[11]). For example, Jadbabaie
et al. [2] have shown that the states of all the jointly-
connected agents converge to the same value or the value
of a given leader’s state, where the neighbor-based rule is
used and the information flow is bidirectional. Then, Ren
and Beard [3] extend the results in [2] to the case in which
consensus can be achieved if the union of interaction digraph
contains a spanning tree across each bounded time interval.
The similar results can be found in [4], where Moreau
shows that the conditions for the discrete-time consensus
in [3] are also necessary. From the above literatures, what
group decision value is reached by all agents is not clear.
However, this is not an issue for the average consensus
problem since for this special case, the state of each agent
converges to the average value of the initial states of all
agents [5]−[9]. More specifically, Olfati-Saber and Murray
[5] propose a continuous-time update scheme and prove that
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average consensus can be reached if the interaction digraph
is balanced and strongly connected. Recently, Liu et al.[9]
extend the results in [5] to the switching topology. Obviously,
all the above results depend on the structure property of
interaction digraphs, for convenience, we uniformly call
them as geometrical criteria. It is noted that in order to
examine whether the consensus problem can be solved or
not, the algorithms are further needed to identify whether
the interaction digraphs contain spanning tree or are jointly
connected, etc. In addition, it is not clear that agents play
the leading role in consensus procedure.

Our main objective in this paper is to develop the al-
gebraic criteria for consensus problem of continuous-time
networked systems. With this in mind, a special nonnegative
left eigenvector ω of Laplacian matrix is first constructed
and correlated with the connectivity of digraph. It has
been proved that the digraph is strongly connected(weakly
connected with spanning tree) if and only if the vector ω
is positive(nonnegative). Further, if a connected digraph is
balanced, then it must be strongly connected and meanwhile,
all elements of ω are equal. Since the vector ω has these
properties to examine the above digraphs, it is a natural tool
to study the considered consensus problem. The obtained
results provide a set of algebraic conditions to directly
determine whether the consensus problem can be solved
or not. In addition, more information about the consensus
procedure are reflected. For example, it has been proved that
only the agents corresponding to the positive elements of ω
decide the collective behavior of all agents and contribute
to the group decision value, i.e., they are the leaders of the
system. Meanwhile, for the fixed topology case, not only
the role of each agent is proportional to the value of the
corresponding element of ω but also the group decision
value can be calculated by ω and the initial states of all
agents. These new facts imply that if the elements of ω are
not equal, then different agent plays different role in the
consensus procedure.

The remainder of this paper is organized as follows. In
section II, some preliminaries and background knowledge
are given. Then, some algebraic criteria for connectivity of
digraph are presented in section III. Furthermore, algebraic
criteria for consensus problem and average consensus prob-
lem are proposed in section IV and section V, respectively.
Finally, we conclude our work in section VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries and Background
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In this subsection, we introduce some notations in graph
theory and matrix theory which are used throughout this
paper.

Let I = {0,1,2, · · · ,n} be an index set and G = (V,E,A)
be a weighted digraph of order n with the set of nodes
V = {v1,v2, · · · ,vn}, set of edges E ⊆V ×V , and a weighted
adjacency matrix A = [ai j] with nonnegative adjacency ele-
ments ai j ≥ 0 for all i, j ∈ I, i 6= j and aii = 0 for all i∈ I. As
ai j > 0, it means that there exists an edge from the node v j
to the node vi. The set of neighbors of the node vi is denoted
by Ni and defined as Ni = {v j ∈V : ai j > 0}. The in-degree
and out-degree of the node vi are defined as degin(vi) and
degout(vi), respectively, just as follows:

degin(vi) =
n

∑
j=1

a ji, degout(vi) =
n

∑
j=1

ai j. (1)

The degree matrix of G is a diagonal matrix denoted by
4= [4i j] where 4i j = 0 for all i 6= j and 4ii = degout(vi).
The Laplacian matrix of a weighted digraph G is defined as

L(G) =4−A. (2)

A path in a digraph G is a sequence of edges such that
the terminal vertex of one edge is the initial vertex of the
next. A digraph G is said to be strongly connected if and
only if for every pair of distinct vertices vi and v j in V ,
there is a directed path from vi to v j. A digraph G is
called weakly connected if replacing all of its directed edges
with undirected edges produces a connected (undirected)
graph. A digraph G is called disconnected if it is not even
weak. Meanwhile, a weighted digraph G is called balanced
if its out-degree equal to its in-degree, i.e., 1>L = 0 with
1 = [1, · · · ,1]> ∈ Rn×1. For a series of digraphs G1, · · · ,Gn
with the same vertices, we say digraph Gu is the union of
them if the vertices of Gu are the same as any one of these
digraphs and the weight ai j of edge vi× v j of Gu is defined
as follows.

ai j =
1
n

n

∑
k=1

ak
i j (3)

where ak
i j is the weight of edge vi × v j of Gk, k ∈ I. For

convenience let Lu denote the Laplacian matrix of Gu and G
denote the collection of digraphs G1, · · · ,Gn.

To proceed, a vector x = [x1, · · · ,xn]> is called positive if
each element of x is positive(i.e., xi > 0, ∀i ∈ I). A vector x
is called nonnegative if each element of x is nonnegative(i.e.,
xi ≥ 0, ∀i ∈ I), meanwhile, there exists at least one nonzero
element in x. As all elements in x are zero, the vector x
is called zero vector. Following the same line, a matrix
A ∈ Rm×n is called positive if all its elements are positive
and matrix A is called nonnegative if all its elements are
nonnegative. Now, some lemmas are introduced because they
will be used in the below.

Lemma 1: [3] Given a matrix S = [ai j]∈Rn×n, where aii ≥
0, ai j ≤ 0,∀ i 6= j, and ∑n

j=1 ai j = 0 for each j, then S has at
least one zero eigenvalue and all of the nonzero eigenvalues
are in the open right half plane. Furthermore, S has exactly

one zero eigenvalue if and only if the digraph with S has a
spanning tree.

Proof: See the Lemma3.3 in [3].
Lemma 2: [3] If a nonnegative matrix A = [ai j] ∈ Rn×n

has the same positive constant row sums given by µ > 0,
then µ is an eigenvalue of A with an associated eigenvector
1 and ρ(A) = µ , where ρ(·) denotes the spectral radius. In
addition, the eigenvalue µ of A has algebraic multiplicity
equal to one, if and only if the digraph associated with A
has a spanning tree.

Proof: See lemma 3.4 in [3].

B. Problem Statement
In this subsection, we consider a protocol with continuous-

time dynamics to solve consensus problem as follows[5]

ẋi = ∑
v j∈Ni(t)

ai j(x j− xi) i, j ∈ I, (4)

where xi and Ni(t) denote the state and the neighbor set of
the node vi, respectively.

We say xi and x j agree if and only if xi = x j (component-
wise). And we say that system (4) has reached a consensus
if and only if xi = x j for all i, j ∈ I. The common value
of consensus variable is called the group decision value.
Let χ : Rm×n → Rm×m be a consensus function of vectors
x>1 · · · ,x>n , xi ∈ Rm×1, and xi(0) denote the initial state of
agent vi, then system (4) solves the χ−consensus problem
if and only if there exists an asymptotically stable equilib-
rium point x∗ = [x∗1

>, · · · ,x∗n>]> satisfying x∗i = χ(x(0)) ∈
Rm×1 for all i ∈ I. The function χ is called consensus
function. The special cases with χ(x) = max‖xi‖xi; χ(xi) =
min‖xi‖xi; χ(xi) = 1

n ∑n
i=1 xi(0) are called max-consensus

problem, min-consensus problem and average consensus
problem, respectively.

To proceed, we first give the algebraic conditions for
connectivity of digraph. These results are the basis of our
method.

III. ALGEBRAIC CRITERIA FOR CONNECTIVITY OF
DIGRAPH

Obviously, all the information about a digraph is reflected
by its Laplacian matrix, L. For a given node vi(i∈ I), the row
i of L denotes how much the other nodes directly affect the
node vi, meanwhile, the column i of L reflects how much
the other nodes are affected by the node vi. In this sense,
the study of Laplacian matrix is helpful for us to learn
something about the digraph, especially to understand the
structure information of digraph. Here, we first construct a
vector ω from the Laplacian matrix L as follows.

ω =[ω1,ω2, · · · ,ωn]>

=[det(L11),det(L22), · · · ,det(Lnn)]>,
(5)

where det(Lii) denotes the determinant of matrix Lii, and
Lii ∈ R(n−1)×(n−1) (i ∈ I) is obtained from L by deleting the
row i and the column i. In what follows, we give some
algebraic results about the connectivity of digraph.
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Theorem 1: Suppose that digraph G contains spanning
tree, L is its Laplacian matrix, and let the vector ω be defined
in (5), then

ω>L = 0, (6)

meanwhile, ω is nonnegative.
Proof: See Appendix A.

Remark 1: For all connected digraphs with spanning tree,
theorem 1 gives a uniform formula about the left eigenvector
of Laplacian matrix associated with simple zero eigenvalue.

Corollary 1: Suppose that G is a strongly connected
weighted digraph and L is its Laplacian matrix, let vector
ω be defined in (5), then

ω>L = 0,

meanwhile, ω is positive.
Proof: Combining Theorem 1 and Theorem 8.4.4. in

[13], it is easy to be shown.
Corollary 2: Suppose that a weakly connected digraph G

has spanning tree and L is its Laplacian matrix, let vector ω
be defined in (5), then

ω>L = 0,

meanwhile, ω is nonnegative and has at least one zero
element.

Proof: By Theorem 1 and the fact that G is a weakly
connected digraph and contains a spanning tree, this result
can be shown easily. Due to the limitation of the space, the
detail is omitted.

Theorem 2: Suppose that G represents a digraph and L
is its Laplacian matrix, then G is strongly connected if and
only if the vector ω defined in (5) is positive.

Proof: Necessity: by corollary 1, the conclusion holds
obviously. Sufficiency: We show the sufficiency by contradic-
tion. Suppose that the digraph is not strongly connected, then
it must be a weakly connected or a disconnected digraph.
Firstly, if it is weakly connected and contains spanning tree,
then by corollary 1, we know the simple zero eigenvalue
of its Laplacian matrix has a nonnegative left eigenvector
like (5) and in which there exists at least one zero element.
Secondly, if it is weakly connected but does not contain
spanning tree, then its Laplacian matrix has at least two zero
eigenvalues by lemma 1, so the vector defined in (5) is a zero
vector. Thirdly, if it is a disconnected digraph, by lemma 1,
its Laplacian matrix also has at least two zero eigenvalues,
so the vector defined in (5) is zero, too. Since these three
cases are all contradicted with the assumption that such a
vector is positive, so the conclusion holds.

Theorem 3: Suppose that G represents a digraph and L is
its Laplacian matrix, then G is a weakly connected graph
with spanning tree if and only if the vector ω defined in (5)
is nonnegative and has at least one zero element.

Proof: Necessity: By corollary 2, the conclusion holds
obviously. Sufficiency: We show the sufficiency by contradic-
tion. Suppose that G is not a weakly connected digraph with
spanning tree. Firstly, if it is a strongly connected digraph,

then by corollary 1, the vector ω is positive. Secondly, if
it is weakly connected but does not contain spanning tree,
then by lemma 1, its Laplacian matrix has at least two zero
eigenvalues. So the vector ω must be zero vector. Thirdly,
if the digraph G is disconnected, then its Laplacian matrix
also has at least two zero eigenvalues, so the vector ω is
a zero vector, too. Since all three cases in the above are
contradicted with the assumption that the vector ω at least
exists one positive element and one zero element, so the
conclusion holds.

Remark 2: Compared with theorem 2 and theorem 3, the
structure difference between a strongly connected digraph
and a weakly connected digraph with spanning tree is clearly
reflected by the vector ω , i.e., by employing ω , these two
type of digraphs can be easily distinguished from each other.

Remark 3: It is noted that the Laplacian matrix of a dis-
connected digraph may have a nonnegative left eigenvector
associated with its one of zero eigenvalues, which does not
contradict with the results in theorem 2 and theorem 3.

Corollary 3: Suppose that G is a weakly connected di-
graph and contains spanning tree, L is its laplacian matrix,
let the eigenvector ω of L be defined in (5), then the subgraph
induced by the nodes corresponding to nonzero elements of
ω is strongly connected.

Proof: Due to the limitation of the space, the detail is
omitted.

Remark 4: Let set LS denote all nodes which correspond
to the positive elements of ω , the above results reveal that
there must exist a directed path from any other nodes to the
nodes in the set LS, i.e., only the nodes in LS can be the root
of the directed spanning tree.

Corollary 4: Suppose that G is a connected digraph and
L is its Laplacian matrix, then G is a balanced digraph if and
only if the vector ω of L is positive, meanwhile, ωi = ω j for
all i, j ∈ I.

Proof: Combining the definition of the balanced di-
graph and the Theorem 1, the conclusion is easy to be shown.

Remark 5: Corollary 4 is important because it implies that
a connected balanced digraph must be strongly connected,
i.e., it is impossible that a weakly connected digraph is bal-
anced. In other words, either a strongly connected digraph or
a disconnected digraph with strongly connected components
has the possibility to be a balanced digraph.

IV. ALGEBRAIC CRITERIA FOR CONSENSUS PROBLEM

In this section, we study the algebraic criteria for the
system (4) to solve consensus problem. It is clear that
equation (4) can be rewritten in a compact form as follows.

ẋ(t) =−L(t)x(t), (7)

where L(t) is the laplacian matrix. For the fixed topology,
i.e., L(t) is a constant matrix, the solution of (7) is given by

x(t) = exp(−Lt)x(0). (8)

Here, we are in a position to give the algebraic criterion
for such a consensus problem.
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Lemma 3: [8] The state x in (7) approaches span{1} and
thus solves an agreement problem for all initial x if and only
if the interaction digraph of L contains a spanning directed
tree.

Proof: See the theorem 2 in [8].
Theorem 4: Suppose that the networked system is defined

in (7), L is Laplacian matrix of its interaction digraph G,
then (7) solves consensus problem if and only if the vector
ω defined in (5) is nonnegative.

Proof: Necessity: Because system (7) can solve the
consensus problem, the digraph G contains a spanning tree
by lemma 3. Then, ω is nonnegative by theorem 1.

Sufficiency: Because the vector ω is nonnegative, then the
digraph G contains a spanning tree by theorem 1. Thus, (7)
can solve the consensus problem by lemma 3.

As system (7) can solve consensus problem, it is another
important and attractive question that what value is reached
by the group and how much each node contributes to final
group decision value. Before answer such a problem, suppose
that (7) can solve consensus problem, i.e., ω is nonnegative,
let

ωl =
1

∑i ωi
ω, ωr = [1,1, · · · ,1]>, (9)

clearly, ω>
l L = 0, Lωr = 0 and ω>

l ωr = 1. Then the following
theorem can be derived.

Theorem 5: Suppose that system (7) can solve consensus
problem, L is Laplacian matrix of its interaction digraph G,
ωl and ωr are defined in (9), then
i): R = lim

t→∞
exp(−Lt) = ωrω>

l ∈ Rn×n, (10)

furthermore, R is a stochastic matrix.
ii) the group decision value is

α = ∑i ωixi(0)
∑i ωi

. (11)

which belongs to the convex hull of initial states of all agents.
Proof: i). The proof is similar to theorem 3 in [5].

For convenience, we do not omit it. Because system (7)
can solve consensus problem, ωl exists by theorem 4. Let
H = −L and J be the Jordan form associated with H, i.e.,
H = SJS−1. We have exp(Ht) = Sexp(Jt)S−1 and as t → ∞,
exp(Jt) converges to a matrix Q = [ai j] with a single nonzero
element q11 = 1. The fact that other blocks in the diagonal
of exp(Jt) vanish is due to the property that Re(λk(H)) < 0
for all k ≥ 2 by lemma 1, where λk(H) is the k-th largest
eigenvalue of H in terms of magnitude |λk|. Notice that
R = SHS−1. Since HS = SJ, the first column of S is ωr,
similarly S−1H = JS−1 that means the first row of S−1 is
ω>

l . Due to SS−1 = In, ω>
l ωr = 1 is satisfied just as equation

(9) states. So R = SQS−1 = ωrω>
l . By a simple calculation,

all entries in R are nonnegative and for a given row, the sum
of all elements is equal to 1, thus R is a stochastic matrix.

ii). From the above, due to ω>
l L = 0, we have ω>

l ẋ =
ω>

l u = ω>
l (−Lx) = 0. So ω>

l x is an invariant quantity. Thus,
we have ω>

l x∗ = ω>
l x(0), i.e., x∗ = α1, where α has the form

as (11).

Remark 6: Theorem 5 is an extension of the theorem 3 in
[5]. Because we have found the vector ω , the importance of
this theorem is greatly enhanced.

In what follows, we extend theorem 4 to the switching
topology case. To proceed, let ϒ be a infinite set of dwell
time τi = ti+1− ti, i ∈ I, which is closed under addition and
multiplication by integers, let Gu denote the union of the
finite interaction digraphs and the elements of its Laplacian
matrix Lu be defined by equation (3), then the algebraic
characterization of theorem 3.12 in [3] can be given as
follows.

Theorem 6: Let t1, t2, · · · be an infinite time sequence at
which the interaction digraph for weighting factors switch
and τi = ti+1 − ti ∈ ϒ, i ∈ I. Let G(ti) ∈ G be a switching
interaction digraph at time t = ti, where G is the set of
all possible interaction digraphs. Suppose that there exists
an infinite sequence of uniformly bounded, non-overlapping
time intervals [ti j , ti j+1 ), j = 1,2, · · · , starting at ti1 = t0, with
the property that interval [ti j , ti j+1 ) is uniformly bounded.
Let Gu( j) denote the union of the interaction digraphs across
interval [ti j , ti j+1 ) and Lu( j) denote the Laplacian matrix of
Gu( j). Then the continuous-time update scheme (4) achieves
consensus asymptotically if the vector ω( j) of Lu( j) is
nonnegative, where ω( j) is defined by (5). Furthermore, if
ω( j) = 0 for all time interval j, then consensus can not be
achieved asymptotically.

Proof: Combined the theorem 3 and theorem 3.12 in
[3], the conclusion holds obviously.

Remark 7: For the switching topology case, we can not
directly use the element of ω to estimate the contribution
of each agent to the group decision value. However, if the
element ωi( j) is zero for all time interval j, then agent vi
must make no contribution to the group decision value. This
is a new fact that can not be reflected by theorem 3.12 in
[3].

V. ALGEBRAIC CRITERIA FOR AVERAGE CONSENSUS
PROBLEM

In this section, we study the average consensus problem
of networked system with continuous-time dynamics. Just
as [5] have reported, the balanced digraph plays crucial role
in solving such a problem. Here inspired by theorem 5, an
algebraic result about average consensus problem can be
given as follows.

Theorem 7: System (7) with invariant topology solves
average consensus problem if and only if the vector ω
defined in (5) is positive and meanwhile, all elements of
ω are equal.

Proof: Combined the theorem 4 and 5, the conclusion
holds obviously.

Remark 8: Theorem 7 is equivalent to the theorem 4 in
[5]. However, we prove it directly by theorem 4 and 5.
Following this line, it is clear that the average consensus
problem is a special case of the general consensus problem,
which is not clarified by the results reported in [5].

Just as the discussion in section 4, let Gu denote the union
of finite interaction digraphs and G denote the set of all
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possible interaction digraphs, then we give an algebraic result
about average consensus problem with switching topology.
This result is the algebraic version of the theorem 4 in [9].

Theorem 8: Assume that G(ti) ∈G(i ∈ I) and Lti is lapla-
cian matrix of Gti , suppose that there exists an infinite
sequence of uniformly bounded, non-overlapping time inter-
vals [ti j , ti j+1), j = 1,2, · · · , starting at ti1 = t0. Let Gu( j)
denote the union of interaction digraphs during time in-
terval [ti j , ti j+1) and Lu( j) be its Laplacian matrix. Then
continuous-time update scheme (7) asymptotically achieves
average consensus if i). 1>Ltik

= 0, ik ∈ [i j, i j+1); ii). The
vector ω( j) of Lu( j) is positive, where ω( j) is defined by
(5).

Proof: Combined theorem 2 and theorem 4 in [9], the
conclusion holds obviously.

Remark 9: It is clear that the algebraic conditions in
theorem 8 are more stricter than that in theorem 6. Further,
it is easy to verify that all elements of ω( j) in theorem 8
are equal.

Remark 10: Combined with corollary 4, theorem 8 and
remark 7, we know that each connected component of
interaction digraphs is strongly connected and balanced at
each time t if system (7) solves average consensus problem.
In this sense, all agents make the same contribution to the
group decision value if each of them is always in a connected
and balanced component.

VI. CONCLUSIONS

In this paper, we have established the algebraic criteria
for consensus problem of continuous-time networked sys-
tems, in which both fixed and switching topology cases are
considered. The proposed results not only can algebraically
determine whether the consensus problem can be solved
or not but also clearly show that the average consensus
problem is a special case of the general consensus problem.
Furthermore, more information about consensus procedure
is revealed. For example, it has been shown that only the
agents corresponding to the positive elements of ω decide
the collective behavior of all agents and contribute to the
group decision value, i.e, the agents corresponding to the
zero elements of ω make no any contribution to the group
decision value except for converging to it. Particularly for
the fixed topology case, the consensus procedure is distinctly
clarified. All these new facts give us a deep insight into the
consensus procedure.

APPENDIX

A.Proof of theorem 1
Proof: Because digraph G may be reducible, we prove

it directly. The proof is divided into four steps as follows.
Step 1: Because the digraph G has a spanning tree,

rank(L) = n− 1 by lemma 1. Therefore, square matrix L
contains at least one nonsingular submatrix of order n− 1.
Without loss of generality, assume that Li j is such a subma-
trix which is obtained by deleting the row i and the column
j of L. So the row vectors of L except for the row i are

linearly independent. Now, let L∗ denote the submatrix of L
obtained by deleting the row i of L as follows.

L∗ =




a11 −a12 · · · −a1n
...

...
...

...
−ai−1,1 −ai−1,2 · · · −ai−1,n
−ai+1,1 −ai+1,2 · · · −ai+1,n

...
...

...
...

−an1 −an2 · · · ann




.

It is clear that L∗ ∈ R(n−1)×n is a row full rank matrix(i.e.,
rank(L∗) = n − 1), meanwhile the sum of each row of
L∗ is zero because L is a Laplacian matrix. Therefore,
any n− 1 column vectors of L∗ must be linearly inde-
pendent. Thus, the first (n− 1)× (n− 1) leading princi-
pal submatrix A of L is nonsingular if we renumber the
node vi as the node vn and the node vn as the node vi.
To proceed, let B = [−a1n,−a2n, · · · ,−an−1,n]> and C =
[−an1,−an2, · · · ,−an,n−1], then there must exist an inverse
column permutation matrix P ∈ Rn×n such that

LP =L
[

A−1 0
0 1

]
=

[
A B
C ann

][
A−1 0

0 1

]
=

[
In−1 B

CA−1 ann

]

=L∗∗,
where In−1 is identity matrix of order n−1.

Step 2: Let

D =CA−1 = [−an1,−an2, · · · ,−an,n−1]A−1

=[−b1,−b2, · · · ,−bn−1],

substitute it into L∗∗, and then perform some elementary
column transformations on matrix L∗∗, we have

L∗∗ ∼
[

In−1 0
D ann−DB

]
= L∗∗1 .

Since the above operations on L are invertible, rank(L∗∗1 ) =
rank(L) = n− 1. Thus, we directly have ann−DB = 0 and
get the following two equivalent equations

ω>L = 0⇐⇒ ω>L∗∗1 = 0 (12)

In what follows, we calculate the value of bi for all i =
1, · · · ,n−1. Due to A−1 = 1

det(A)A∗, where A∗ is the adjoint
matrix of A, we have

D =
CA∗

det(A)
=

C
det(A)




A∗11 A∗21 · · · A∗n−1,1
A∗12 A∗22 · · · A∗n−1,2

...
...

. . .
...

A∗1,n−1 A∗2,n−1 · · · A∗n−1,n−1


 ,

where A∗i j = (−1)i+ jdet(Ai j), Ai j is the submatrix of A by
deleting the row i and the column j. Then combined with
the vector C defined in the above, we have

−bi =
1

det(A)
(−an1A∗i1−an2A∗i2−·· ·−an,n−1A∗i,n−1)

=
(−1)i

det(A)
[(−1)2an1det(Ai,1)+(−1)3an2det(Ai,2)

+ · · ·+(−1)nan,n−1det(Ai,n−1)].

(13)
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Let 4i denote the (n−1)×(n−1) submatrix of L as follows

4i = BL
{

1,2, · · · , i−1, i+1, · · · ,n
1,2, · · · , i−1, i, i+1, · · · ,n−1

}
, (14)

i.e., 4i is obtained by deleting the row i and the column n
of L . Noting that 4i is a square matrix of order n−1, we
have
det(4i) =(−1)n+1an1det(4n1)+(−1)n+2an2det(4n2)+

· · ·+(−1)2n−1an,n−1det(4n,n−1),
(15)

where 4i j is submatrix of 4i by deleting the row
i and the column j of 4i. From equations (13)
and (15), we have det(4n1) = det(Ai1),det(4n2) =
det(Ai2), · · · ,det(4n,n−1) = det(Ai,n−1). Thus, equation (15)
becomes
det(4i) =(−1)n+1an1det(Ai1)+(−1)n+2an2det(Ai2)

+ · · ·+(−1)2n−1an,n−1det(Ai,n−1)

=(−1)n−1[(−1)2an1det(Ai1)+(−1)3an2det(Ai2)
+ · · ·+(−1)nan,n−1det(Ai,n−1)].

(16)

Then by (13) and (16), we have

bi =





(−1)i

det(A)det(4i), if n = 2k,k ∈ N+;
(−1)i−1

det(A) det(4i), if n = 2k +1,k ∈ N+.
(17)

Step 3: In this step, we show that bi ≥ 0 for all i =
1,2, · · · ,n−1 and give a formula to calculate ω defined in (5)
by bi. In what follows, we only consider the case in which
n is even and then show b2 ≥ 0 for i = 2. The others can
be proved by the similar way. Under these assumptions, we
have

det(A)b2 = det(42)

= det




a11 −a12 . . . −a1,n−1
−a31 −a32 . . . −a3,n−1

...
...

. . .
...

−an1 −an2 . . . −an,n−1




=(−1)n−3det




a11 −a13 . . . −a12
−a31 a33 . . . −a32

...
...

. . .
...

−an1 −an3 . . . −an2




=(−1)n−3det




a11 −a13 . . . a11−
n−1
∑
j=2

a1, j

−a31 a33 . . . a33−
n−1
∑

j=1, j 6=3
a3, j

...
...

. . .
...

−an1 −an3 . . . −
n−1
∑
j=1

an−1, j




=(−1)n−4det




a11 −a13 . . . −a1n
−a31 a33 . . . −a3n

...
...

. . .
...

−an1 −an3 . . . ann


 = det(L22),

(18)

where the third step is obtained by some elementary column
transformations; the fourth step is obtained by adding the

first n− 2 columns to the last column; the fifth step used
the properties of Laplacian matrix L, ∑n

j=1 ai j = 0 for each
i; and the last step is obtained by using the fact that n is
even. It is clear that L22 is the principal submatrix of L .
By step 2, we know det(A) > 0 and det(L22) ≥ 0, which
directly implies b2 ≥ 0. Just as the same analysis, we can
show bi = det(Lii)/det(A)≥ 0 for i∈ {1,3, · · · ,n−1}. Thus,
we have

b1 =
det(L11)
det(A)

;b2 =
det(L22)
det(A)

;

· · · ; bn−1 =
det(Ln−1,n−1)

det(A)
.

(19)

Substitute (19) into the right equation of (12) and let the free
variable ωn = det(A) = det(Lnn), we have

ω1 = det(L11);ω2 = det(L22); · · · ;ωn = det(Lnn). (20)

such that ω>L = 0.
Step 4: In this step, we show ω is nonnegative. To

proceed, we denote eigenvalues of Lii as λ k
i , where i ∈ I

and k ∈ {1,2, · · · ,n−1}. Because each principal minor Lii of
Laplacian matrix L is diagonally dominant and main diagonal
element of it is nonnegative, and then by Gerŝgorin disc
theorem, each eigenvalue λ k

i of Lii is in the right open plane,
i.e., λ k

i ≥ 0 for all k. Therefore, det(Lii) = λ 1
i λ 2

i · · ·λ n−1
i ≥

0 for all i ∈ I. Combined with Step 1 and Step 3 ω is
nonnegative.

Combining all of the above, the conclusion holds.
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