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Abstract— This paper studies the problem of designing robust
H∞ filters for linear uncertain systems. The uncertainty param-
eters are assumed to be time-varying, unknown, but bounded,
which appear affinely in the matrices of system models. An
adaptive mechanism is introduced to construct novel filters
with variable gains, which can reduce the conservativeness
of traditional robust H∞ filters. The proposed adaptive filter
design conditions are given in terms of linear matrix inequalities
(LMIs) to guarantee the asymptotically stability and optimize
H∞ performances of the resulting closed-loop systems. A
numerical example is presented to illustrate the effectiveness
of the proposed strategy.
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I. INTRODUCTION

It is well-known that the Kalman filter is no longer appli-

cable when a priori information on the external noise is not

precise known. In such cases, H∞ filtering was introduced

in [3], which is to make the worse case H∞ norm from the

process noise to the estimation error minimized. Comparing

with H2 filtering, the advantages of H∞ filtering approach

are twofold. First, the assumption of boundness of the noise

variance is loosen. Second, the H∞ filter tends to be more

robust when there exist additional uncertainties in systems,

such as quantization errors, delays and unmodeled dynamics

[14]. Since modelling error and system uncertainties often

exist in the plant model, much works has been done to the

design of robust H∞ filters [4], [6], [9], [11]-[13], [15]-[20].

Norm bounded uncertainty is a particular uncertainty rep-

resentation where the mathematical model of the uncertain

system explicitly exhibits a nominal model located at the

center of the hyper ellipsoid of uncertainty in the parameter

space. Some of the above-mentioned results deal with the

so-called norm-bounded uncertainty by means of the Riccati-

like approaches [4], [11], [13], [17] and [18]. The norm-
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bounded uncertainty is converted into some scaling param-

eters, which significantly simplify the robust H∞ filtering

problems and make it possible to use the standard H∞

filtering results. However, the introduction of the scaling

parameters make the resulting conditions difficult to solve.

Further, the norm-bounded uncertainty assumptions is some-

what conservative in many applications [7] and [10].

Another uncertain representation is convex polytopic un-

certainty [7], which represents an uncertain domain more

precisely than the norm-bounded uncertainty and causes

no conservatism for a particular structure. In the past

few years, robust H∞ filtering problem for systems with

polytopic-type parameter uncertainty has been treated based

on parameter-independent Lyapunov function [9], [20] or

parameter-dependent Lyapunov function [6], [12], [19] us-

ing LMI methodologies, which are computationally sim-

ple and numerically reliable for solving convex optimiza-

tion problems [1] and [2]. In fact, parameter-dependent

Lyapunov method can reduce conservativeness compared

with parameter-independent one when the uncertain parame-

ters are time-invariant. Also parameter-dependent Lyapunov

method can include the traditional quadratic stability ap-

proach as a special case if the time-varying parameters

and their rate of variation are assumed to belong to a

given convex-bounded polyhedral domain. However, while

the uncertain parameters is time-varying and the bound of

its derivative is unknown, only the parameter-independent

Lyapunov function method can be applied.

This paper develops a new robust H∞ filter design method

for linear uncertain continuous-time systems. The uncertainty

parameters are assumed to be time-varying, unknown, but

bounded, which appear affinely in the matrices of system

models. Apart from using traditional filters with fixed filter

parameters, the proposed filter parameters are adjustable

based on the introduced indirect adaptive mechanism [8].

The derived filter design conditions are given in terms of

LMIs, which can reduce conservativeness compared with

the corresponding conditions of traditional robust H∞ filters.

The potential of the method is demonstrated by a numerical

example that illustrates the H∞ performance improvement.

This paper is organized as follows. Section 2 introduces

the problem and some preliminaries. It is followed by the

adaptive robust H∞ filter design method in Section 3. An

illustrative example is given in Section 4 to demonstrate the

proposed method. Finally, Section 5 concludes the paper.
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II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

Consider a linear uncertain model described by

ẋ(t) = A(δ(t))x(t) + Bωω(t)

z(t) = C1x(t)

y(t) = C2x(t) + D21ω(t) (1)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the measured

output and z(t) ∈ Rq is the output signal vector to be esti-

mated, respectively. ω(t) ∈ Rv is the exogenous disturbance

in L2[0,∞). And

A(δ(t)) = A0 +

N0
∑

i=1

δi(t)Ai,

A0, Ai, Bω, C1, C2 and D21 are known constant matrices of

appropriate dimensions. δi(t)(i = 1 · · ·N0) are unknown

time-varying uncertainty, which satisfy δi ≤ δi(t) ≤ δ̄i.

Here δi and δ̄i are known lower and upper bounds of

δi(t), respectively. Since C2 ∈ Rp×n and rank(C2) =
p1 ≤ p, then there exists a matrix Tc ∈ Rp1×p such

that rank(TcC2) = p1. Furthermore, there exists a matrix

Ccn such that rank

[

TcC2

Ccn

]

= n. Denote Tcn =

[

TcC2

Ccn

]

−1

.

Throughout this paper, we make the following assumption.

Assumption 1: System (1) is asymptotically stable.

For traditional robust filtering, the following form filter is

usually used.

ξ̇1(t) = AFfξ1(t) + BFfy(t)

zF1(t) = CFfξ1(t) (2)

where AFf ∈ Rn×n, BFf ∈ Rn×p and CFf ∈ Rq×n are

the filter parameter matrices to be designed. Here, we assume

that the filter is of the same order as the system model.

Then combing (2) with (1), it follows

ẋef (t) = Aefxef (t) + Befω(t)

zef (t) = Cefxef (t) (3)

where xef (t) = [xT (t) ξT
1

(t)]T is the state estimation error,

zef (t) = z(t) − zF1(t) is the estimated error and

Aef =

[

A(δ) 0
BFfC2 AFf

]

, Be =

[

Bω

BFfD21

]

,

Cef = [C1 − CFf ].

In this paper, the following adaptive robust filter with variable

gains is considered.

ξ̇(t) = AF (δ̂(t))ξ(t) + BF (δ̂(t))y(t)

zF (t) = CF (δ̂(t))ξ(t) (4)

where δ̂i(t)(i = 1 · · ·N0) are the estimations of δi(t),
which are obtained according to the introduced adaptive

mechanism. AF (δ̂) ∈ Rn×n, BF (δ̂) ∈ Rn×p and CF (δ̂) ∈
Rm×n have the following forms, that is

AF (δ̂) = AF0 +

N0
∑

i=1

δ̂iAFi, BF (δ̂) = BF0 +

N0
∑

i=1

δ̂iBFi,

CF (δ̂) = CF0 +

N0
∑

i=1

δ̂iCFi

where AF0, AFi, BF0, BFi, CF0, CFi are fixed parameter

matrices to be designed. Here, the designed filter is of the

same order as the system model.

Applying the robust filter (4) to the system (1), it follows

ẋe(t) = Aexe(t) + Beω(t)

ze(t) = Cexe(t) (5)

where xe(t) = [xT (t) ξT (t)]T is the state estimation error,

ze(t) = z(t) − zF (t) is the estimated output error. and

Ae =

[

A(δ) 0

BF (δ̂)C2 AF (δ̂)

]

, Be =

[

Bω

BF (δ̂)D21

]

,

Ce = [C1 − CF (δ̂)]

The adaptive robust H∞ filtering problem associated with

the system (1) is as follows: Given γ > 0, find a filter of

the form (4) such the corresponding error dynamics (5) is

asymptotically stable and satisfies

‖Tzeω‖∞ < γ, xe(0) = 0. (6)

B. Preliminaries

The following lemma presents a condition for the system

(3) to have robust H∞ performance bound.

Lemma 1: Consider the system described by (3), and let

γ > 0 be given constant. Then the following two statements

are equivalent:

(i) there exist a symmetric matrix X > 0 and a robust filter

described by (2) such that

AT
efX + XAef +

1

γ2
XBefBT

efX + CT
efCef < 0 (7)

holds for δi ∈ [δi, δ̄i]
(ii) there exist symmetric matrices 0 < N < Y , and a robust

filter described by (2) with AFf = AFe1, BFf = BFe1 and

CFf = CFe1 such that

Va =









V11 V12 Y Bω − NBFe1D21 CT
1

∗ V22 −NBω + NBFe1D21 −CT
Fe1

∗ ∗ −γ2I 0
∗ ∗ ∗ −I









< 0

(8)

holds for δi ∈ [δi, δ̄i] where

V11 = Y A(δ) − NBFe1C2 + (Y A(δ) − NBFe1C2)
T

V12 = −NAFe1 − AT (δ)N + CT
2

BT
Fe1N

T

V22 = NAFe1 + (NAFe1)
T

Proof:(7) ⇐⇒ (8). (7) holds for X > 0 is equivalent to that

there exists

X =

[

X11 XT
12

X12 X22

]

(9)

with X11 ∈ Rn×n and X12 nonsingular such that




AT
efX + XAef XBef CT

ef

∗ −γ2I 0
∗ ∗ −I



 < 0 (10)
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holds. Let AFe1 = (X−1

12
)T X22AFfX−1

22
XT

12
, BFe1 =

−(X−1

12
)T X22BFf , CFe1 = −CFfX−1

22
XT

12
, X11 = Y and

N = X12X
−1

22
XT

12
. Then

Xa :=

[

I 0
0 −X12X

−1

22

]

X

[

I 0
0 −X12X

−1

22

]T

=

[

Y −N

−N N

]

(11)

X > 0 is equivalent to 0 < N < Y , and (10) is equivalent

to

Va0 :=





AT
eaXa + XaAea XaBea CT

ea

∗ −γ2I 0
∗ ∗ −I



 < 0 (12)

where

Aea =

[

A(δ) 0
BFe1C2 AFe1

]

, Bea =

[

Bω

BFe1D21

]

Cea =
[

C1 −CFe1

]

Furthermore, after some algebraic computation, Va0 < 0 can

be written as Va < 0 in (8). Thus, the proof is complete.

Remark 1: It should be noted that when NAFf and NBFf

are defined as new variables, conditions (8) become LMIs.

Remark 2: In fact ,the affine time-varying uncertainty

considered in this paper is a special form of polytopic

type time-varying uncertainty. From Lemma 1, it is easy to

see the condition (8) for traditional robust filter design is

equivalent to Theorem 2 in [9], where robust H∞ filtering

for polytopic time-varying uncertain system is investigated

based on parameter-independent Lypunov function.

The following algorithm is given to optimize the robust

H∞ performance of the closed-loop systems (3).

Algorithm 1: Let γ denotes the robust H∞ performance

bound of the closed-loop system (3). Let NAFf = ĀFf and

NBFf = B̄Ff .

min η s.t. 0 < N < Y (8)

where η = γ2. Then the resultant gains of robust filter (2)

are AFf = ĀFfN−1, BFf = B̄FfN−1 and CFf .

III. ADAPTIVE ROBUST H∞ FILTER DESIGN

In this section, the problem of designing an adaptive robust

H∞ filter for system (1) is studied. An adaptive mechanism

is introduced to reduce the conservativeness compared with

traditional robust filters.

Theorem 1: The closed-loop system (5) is stable and

H∞ disturbance attenuation is no large than γ, if there

exist matrices 0 < N < Y, AF0, AFi, BF0, BFi, CF0,

CFi, i = 1 · · ·N0 such that for δi(t), δ̂i(t) ∈ [δi, δ̄i] the

following matrix inequalities hold:









T1 + TT
1

T2 T3 CT
1

∗ T4 T5 −CT
F (δ̂)

∗ ∗ −γ2I + T6 0
∗ ∗ ∗ −I









< 0 (13)

with

T1 = Y A(δ) − NBF (δ)C2 −

N0
∑

i=1

(δ̂i − δi)N
T
3

NBFiC2

T2 = −NAF (δ) − AT (δ)N + CT
2

BT
F (δ)N

−

N0
∑

i=1

(δ̂i − δi)N
T
3

NAFi

T3 = Y Bω − NBF (δ̂)D21 +

N0
∑

i=1

(δ̂i − δi)[C
T
2

BT
FiNN2

+ NBFiD21 − NT
3

NBFiD21]

T4 = NAF (δ) + AF (δ)T N

T5 = −NBω + NBF (δ̂)D21

+

N0
∑

i=1

(δ̂i − δi)[A
T
FiNN2 − NBFiD21]

T6 =

N0
∑

i=1

(δ̂i − δi)[N
T
2

NBFiD21 + (NT
2

NBFiD21)
T ]

N1 = Tcn

[

Tc

0

]

, N2 = Tcn

[

TcD21

0

]

, N3 = Tcn

[

0
Ccn

]

,

AF (δ) = AF0 +

N0
∑

i=1

δiAFi, BF (δ) = BF0 +

N0
∑

i=1

δiBFi

and also δ̂i(t) is determined according to the adaptive law

δ̂i =

{

δ̄i, if Mi < 0
δi, if Mi ≥ 0

, i = 1 · · ·N0 (14)

Mi = ξT NAFiξ − yT NT
1

NAFiξ + ξT NBFiy

− yT NT
1

NBFiy

Then the filter gains of the form (4) are given by AF0, AFi,,

BF0, BFi, CF0, CFi, i = 1 · · ·N0.

Proof: Now we choose the following Lyapunov function

V (t) = xT
e (t)Pxe(t).

Then Ae can be written as

Ae = Aea + Aeb

where

Aea =

[

A(δ) 0
BF (δ)C2 AF (δ)

]

,

Aeb =

N0
∑

i=1

(δ̂i − δi)

[

0 0
BFiC2 AFi

]

Let P be of the following form,

P =

[

Y −N

−N N

]

with 0 < N < Y , which implies P > 0. From (1), it follows

TcC2x = Tc[y − D21ω] (15)
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Thus

x = Tcn

[

TcC2x

Ccnx

]

= N1y − N2ω + N3x (16)

with N1 = Tcn

[

Tc

0

]

, N2 = Tcn

[

TcD21

0

]

, N3 = Tcn

[

0
Ccn

]

.

Furthermore, we have

PAea =

[

Y A(δ) − NBF (δ)C2 −NAF (δ)
−NA(δ) + NBF (δ)C2 NAF (δ)

]

and

PAeb =

N0
∑

i=1

(δ̂i − δi)

[

−NBFiC2 −NAFi

NBFiC2 NAFi

]

which follows

[xT ξT ]PAeb[x
T ξT ]T

=

N0
∑

i=1

(δ̂i − δi){−xT NBFiC2x − xT NAFiξ

+ ξT NBFiC2x + ξT NAFiξ}

By (15) and (16), it is easy to see

−xT NBFiC2x = −xT NBFi(y − D21ω)

= −yT NT
1

NBFiy + xT NBFiD21ω(t)

+ (ωT NT
2
− xT NT

3
)NBFi(C2x + D21ω)

−xT NAFiξ = −(yT NT
1
− ωT NT

2
+ xT NT

3
)NAFiξ

ξT NBFiC2x = ξT NBFi(y − D21ω)

Thus,

xT
e PAebxe = xT

e APexe + xT
e BPeω + M

+

N0
∑

i=1

(δ̂i − δi)ω
T NT

2
NBFiD21ω

where

APe =

N0
∑

i=1

(δ̂i − δi)

[

−NT
3

NBFiC2 −NT
3

NAFi

0 0

]

BPe =

N0
∑

i=1

(δ̂i − δi)

[

Γ0

AT
FiNN2 − NBFiD21

]

Γ0 = CT
2

BT
FiNN2 + NBFiD21 − NT

3
NBFiD21

M =

N0
∑

i=1

(δ̂i − δi)Mi.

where Mi = ξT NAFiξ − yT NT
1

NAFiξ + ξT NBFiy −
yT NT

1
NBFiy.

Then from the derivative of V (t) along the closed-loop

system (5), it follows

V̇ (t) + zT
e (t)ze(t) − γ2ωT (t)ω(t)

= 2xT
e P (Aexe + Beω) + xT

e CT
e Cexe − γ2(t)ωT (t)ω(t)

= 2xT
e P (Aeaxe + Beω) + xT

e CT
e Cexe − γ2ωT (t)ω(t)

+2xT
e APexe + 2xT

e BPeω + 2M

+2

N0
∑

i=1

(δ̂i − δi)ω
T (t)NT

2
NBFiD21ω(t)

≤

[

xe

ω

]T

W0

[

xe

ω

]

+ 2M

where

W0 =

[

Γ1 + CT
e Ce PBe + BPe

∗ −γ2I + T5.

]

where where Γ1 = PAea + APe + [PAea + APe]
T and T5

is defined below (13).

The design condition V̇ (t)+zT
e (t)ze(t)−γ2ωT (t)ω(t) ≤ 0

is reduced to

W0 < 0 (17)

and

M ≤ 0. (18)

Since y and ξ are available on line, the adaptive law can be

chosen as (14). So (18) can be achieved.

Notice that

PBe =

[

Y Bω − NBF (δ̂)D21

−NBω + NBF (δ̂)D21

]

It is easy to see W0 < 0 is equivalent to

W1 =





Γ1 PBe + BPe CT
e

∗ −γ2I + T5 0
∗ ∗ −I



 < 0 (19)

If (13) holds, which implies W1 < 0. Thus it follows W0 <

0. Together with adaptive laws (14) , we can get V̇ (t) ≤ 0.

Furthermore, we have

V̇ (t) + zT
e (t)ze(t) − γ2ωT (t)ω(t) ≤ 0.

Integrate the above-mentioned inequalities from 0 to ∞ on

both sides, we obtain

V (∞) − V (0) +

∫

∞

0

ze(t)
T ze(t)dt ≤ γ2

∫

∞

0

ω(t)T ω(t)dt.

which implies that the H∞ disturbance attenuation of the

closed-loop system (5) is no larger than γ holds.

Remark 3: It is easy to see when

NAF0, NAFi, NBF0, NBFi(i = 1 · · ·N0) are defined

as new variables, conditions (13) become LMIs.

For the comparison between Theorem 1 and Lemma 1, we

have the following theorem

Theorem 2: If the condition in Lemma 1 holds for the

closed-loop system (3) with traditional robust filter (2), then

the condition in Theorem 1 holds for the closed-loop system

(5) with adaptive robust filter (4).

Proof: Notice that if Va < 0, then the condition in Theorem
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1 is feasible with AF0 = AKf , BF0 = BKf , CF0 = CKf

and AFi = BFi = CFi = 0, i = 1 · · ·N0. The proof is

complete.

Remark 4: Theorem 2 shows that the adaptive robust H∞

filter design method given in Theorem 1 is less conservative

than that given in Lemma 1 for traditional robust H∞ filter

design method.

Based on Theorem 1, the following algorithm is proposed

to optimize the robust H∞ performance of the closed-loop

systems (5)

Algorithm 2: Let γ denotes the robust H∞ performance

bound of the closed-loop system (5). Let NAF0 = ĀF0,

NAFi = ĀFi, NBF0 = B̄F0.and NBFi = B̄Fi.

min η s.t. 0 < N < Y and (13),

where η = γ2. Then the resultant gains of adaptive robust

filter (4) are AF0 = ĀF0N
−1, AFi = ĀFiN

−1, BF0 =
B̄F0N

−1, BFi = B̄FiN
−1, CF0 and CFi, i = 1 · · ·N0.

IV. NUMERICAL EXAMPLE

Consider the following linear continuous-time system (1)

with time-varying uncertainty satisfying

A(δ) =

[

−5 1
1 −2

]

+ δ1(t)

[

1 0.1
0 −0.6

]

+ δ2(t)

[

0.5 −0.2
0.6 0

]

C1 =

[

1 0
5 2

]

, Bω =

[

0 1
0 2

]

, C2 =

[

3 0
1 0

]

,

D21 =

[

2 0
1 0

]

, x(0) =

[

0
0

]

with δ1(t) = cos(t) and δ2(t) = sin(t).

Using Matlab LMI tool box [5], Algorithm 1 and Algo-

rithm 2, we get the H∞ performance index is 2.3934 with the

adaptive robust filter while that of traditional robust filter is

2.9859. Just as the theory has proved that the adaptive robust

H∞ filter design method is less conservative than traditional

robust filter design method.

In order to see the effectiveness of our method more

clearly, some simulation results are also given. Here the

disturbance ω(t) =
[

ω1(t) ω2(t)
]T

that used is

ω1(t) = ω2(t) =

{

1, 2 ≤ t ≤ 3 (seconds)

0 otherwise

Figure 1 and Figure 2 are the responses curves of estimated

output errors with adaptive robust H∞ filter and traditional

robust H∞ filter, respectively. It is easy to see our adaptive

robust H∞ filter has more disturbance attenuation ability

than that of traditional robust filter as theory has proved.

V. CONCLUSIONS

This paper has investigated the design of robust H∞ filters

for linear uncertain continuous-time systems. The uncertainty

parameters are assumed to be time-varying, unknown, but

bounded, which appear affinely in the matrices of system

0 1 2 3 4 5 6 7 8
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

time(s)

z
e1

(t)

Fig. 1. The first component response of estimated output error ze(t) with
adaptive robust filter (solid) and traditional robust filter (dashed).

0 1 2 3 4 5 6 7 8
−2

−1.5

−1

−0.5

0

0.5

1

time(s)

z
e2

(t)

Fig. 2. The second component response of estimated output error ze(t)
with adaptive robust filter (solid) and traditional robust filter (dashed).

models. An adaptive mechanism is introduced to construct

robust H∞ filters with variable gains, which can reduce

the conservativeness inherent in the traditional robust H∞

filter design with fixed gains. New robust H∞ filter design

conditions are derived in the frameworks of LMIs. The

proposed method has been applied to a numerical example

and exhibited superior performances as compared to the

traditional robust H∞ filter design method.
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