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Abstract— The problem of reliable robust H∞ tracking
control for a class of Lur’e singular systems with parameter
uncertainties is studied. The uncertainty is assumed to be
convex polytopic. A practical and general failure model of
actuator and sensor is considered. Some sufficient conditions
about reliable robust H∞ tracking control are presented for the
case of actuator and sensor failures in terms of Linear Matrix
Inequalities(LMIs). The resultant control systems are reliable
in that they guarantee closed-loop system regular, impulse-
free, stable with H∞ performance and the output tracking
the reference signal without steady-state error when all control
components are operational as well as when some control
components experience failures. Finally, a numerical example
is given to show the effectiveness of the proposed methods.

I. INTRODUCTION

Control of singular systems has been extensively studied
in the past years due to the fact that singular systems better
describe physical systems than regular ones. A great number
of results based on the theory of regular systems (or state-
space systems) have been extended to the area of singular
systems, such as, robust stability and robust stabilization
problem [1], [2], robust H∞ control problem [3]–[5], robust
H∞ filtering problem [6] etc.

However, all the aforementioned results are under a full
reliability assumption that all control components of the
systems are in good working condition. As is well known,
failures of actuators or sensors, in practical engineering
systems, often occur, which may lead to intolerable perfor-
mance of the closed-loop system. Therefore, from a safety
as well as performance point of view, it is required to have
a reliable controller design which can tolerate actuator or
sensor failures and guarantee the stability and performance
of resultant closed-loop system. Furthermore, there are lots
of results about reliable control for state-space systems [7]–
[10]. For singular systems, [11] studied the reliable H∞
control problem with actuator failures and multiple time
delays, but the reliable controller design method is based
on a basic assumption that control component failures are
modeled as outages, that is, when a failure occurs, the
signal(in the case of sensors) or the control action (in the
case of actuators) simply becomes zero. In this paper, a more
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practical and general failure model is adopted for sensor
and actuator failures, which consists of a scaling factor with
upper and lower bounds to the signal to be measured or
to the control action, plus a disturbance. This model was
introduced by [12]. For actuators, this general failure model
could represent faults in the driving circuitry before the
final control actuator. For sensors, it could represent faults
in the signal conditioning circuitry at the sensors. To the
author’s knowledge, the reliable control problem of singular
systems based on such failure model has not yet been fully
investigated.

On the other hand, designing a controller which can
guarantee the output of controlled system tracking the ref-
erence signal is of theoretical and practical meaning. A few
results were presented on the problem of reliable tracking
control [13], [14]. To the author’s knowledge, the study of
reliable robust H∞ tracking control for singular systems
with actuator or sensor failures has not yet been tackled.
Therefore, this topic remains challenging.

In this paper, we investigate the problem of reliable robust
H∞ tracking controller design for uncertain singular systems
with actuator or sensor failures. The parameter uncertain-
ties under consideration are possibly time-varying convex
polytopic. We aim to design a linear memoryless controller
such that, for all admissible uncertainties and actuator or
sensor failures, the resulting closed-loop system is regular,
impulse-free, stable with an H∞ norm bound constraint,
and the output of the resultant closed-loop system tracking
the reference signal without steady-state error. Finally, a
numerical example is also given to illustrate the effectiveness
of our method.

II. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following uncertain Lur’e singular system




Eẋ(t) = A(θ)x(t) + B1(θ)u(t) + D1(θ)ω(t)
+ E1f(σ(t)), σ(t) = Cx(t),

y(t) = C1(θ)x(t) + D2(θ)η(t),
z(t) = C2(θ)x(t) + B2(θ)u(t) + D3(θ)ω(t),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input vector, ω(t) ∈ Rp is the disturbance input vectors from
L2[0,∞), η(t) ∈ Rq is the square-integrable measurement
noise, z(t) ∈ Rl is the control output vector, y(t) ∈ Rq

is the measured output vector. The matrix E ∈ Rn×n

may be singular, we shall also assume the rankE = r ≤
n. A(θ), B1(θ), B2(θ), C1(θ), C2(θ), D1(θ), D2(θ) and
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D3(θ) denote the unknown possibly time-varying polytopic
uncertainties which satisfy

A(θ) =
k∑

i=1

Aiθi, B1(θ) =
k∑

i=1

B1iθi,

B2(θ) =
k∑

i=1

B2iθi, C1(θ) =
k∑

i=1

C1iθi,

C2(θ) =
k∑

i=1

C2iθi, D1(θ) =
k∑

i=1

D1iθi,

D2(θ) =
k∑

i=1

D2iθi, D3(θ) =
k∑

i=1

D3iθi,

(2)

where Ai, B1i, B2i, C1i, C2i, D1i, D2i and D3i(i =
1, · · · , k) are known constant matrices of appropriate dimen-
sions. θ = [θ1, θ2, · · · , θk]T ∈ Rk is the uncertain possibly
time-varying constant parameter vector satisfying

θ = Ω = {θ ∈ Rk : θi ≥ 0,
k∑

i=1

θi = 1} (3a)

θ(t) = Ω = {θ(t) ∈ Rk : θi(t) ≥ 0,
k∑

i=1

θi(t) = 1} (3b)

σ = [σ1(t) σ2(t) · · · σn(t)] ∈ Rn, f(σ) =
[f1(σ1) f2(σ2) · · · fn(σn)] ∈ Rn denote the nonlinear
vectors. In this paper, every nonlinear term is assumed to
be of the following form

fj(•) ∈ Kj [0, kj ] = {fj(σj)|fj(0) = 0,

0 < σjfj(σj) ≤ kjσ
2
j (σj 6= 0), j = 1, 2, · · · , n}. (4)

For the control input u(t), let uf (t) be the signal from the
actuator that has failed. Then the following actuator failure
model, as introduced in [12] and [9], is adopted here

uf (t) = M1u(t) + Muδ1(t) (5)

where M1 = diag{m11,m12, · · · ,m1m} is the actu-
ator failure matrix, Mu = diag{mu1,mu2, · · · ,mum}
is the actuator failure disturbance matrix, δ1(t) =
[δ11(t) δ12(t) · · · δ1m(t)] ∈ Rm is the square-integrable
actuator failure disturbance vector. Furthermore, m1i and
mui satisfy

0 ≤ m1i ≤ m1i ≤ m̄1i, m̄1i ≥ 1, i = 1, 2, · · · , m, (6a)
0 ≤ mui ≤ m̄ui, i = 1, 2, · · · , m. (6b)

Denote

M10 = diag{m̃11, m̃12, · · · , m̃1m},
J1 = diag{j11, j12, · · · , j1m},
L1 = diag{l11, l12, · · · , l1m}

(7)

where m̃1i = 1
2 (m̄1i+m1i), j1i = m̄1i−m1i

m̄1i+m1i
, l1i = m1i−m̃1i

m̃1i
.

Then from (7), we can easily obtain

M1 = M10(I + L1), |L1| ≤ J1 ≤ I. (8)

Similarly, let yf (t) be the signal from the sensor that has
failed. The sensor failure model adopted is

yf (t) = M2y(t) + Myδ2(t), (9)

where M2 = diag{m21,m22, · · · ,m2q} is the sen-
sor failure matrix, My = diag{my1,my2, · · · ,myq}
is the sensor failure disturbance matrix, and δ2(t) =
[δ21(t) δ22(t) · · · δ2q(t)] ∈ Rq is the square-integrable
sensor failure disturbance vector. Furthermore, m2i and myi

satisfy

0 ≤ m2i ≤ m2i ≤ m̄2i, m̄2i ≥ 1, i = 1, 2, · · · , q, (10a)
0 ≤ myi ≤ m̄yi, i = 1, 2, · · · , q. (10b)

Remark 1: When m1i = 0, mui = 0 or m2i = 0, myi =
0, it covers the complete failure of ui(t) or yi(t) respectively.
When m1i = 1, mui = 0 or m2i = 1, myi = 0,
which corresponds to the case of no failure of ui(t) or yi(t)
respectively. If m1i > 0 or m2i > 0, it covers the partial
failure of ui(t) or yi(t) respectively.

The unforced singular system of (1) can be written as
{

Eẋ(t) = A(θ)x(t) + D1(θ)ω(t) + E1f(σ(t))
z(t) = C2(θ)x(t) + D3(θ)ω(t).

(11)

Definition 1: [2], [15] 1) The pair (E, A(θ)) is said to
be regular if det(sE −A(θ)) is not identically zero.
2) The pair (E, A(θ)) is said to be impulse-free if
deg(det(sE −A(θ))) = rank E.

Lemma 1: [2] Suppose the pair (E, A(θ)) is regular and
impulse free, then the solution to (11) exists and is impulse
free and unique on [0, ∞).

Definition 2: [2], [15] 1) The singular system (11) is said
to be regular and impulse free if the pair (E, A(θ)) is regular
and impulse free.
2) The singular system (11) is said to stable if for any
compatible initial conditions x(0) ∈ Rn, there exists scalars
α > 0 and β > 0 such that ‖x(t)‖2 ≤ αe−βt‖x(0)‖2 .
3) The singular system (11) is said to robustly stable if sys-
tem (11) is regular, impulse-free and stable for all admissible
uncertainties (2) and (3).

Definition 3: Let the constant γ > 0 be given. Singular
system (11) is said to be robustly stable with an H∞ norm
bound γ if for all admissible uncertainties (2) and (3),
singular system (11) satisfies
1) Singular system (11) (with ω(t) = 0) is robustly stable;
2) For the zero initial condition of x(t) and non-zero ω(t),
the following condition holds

J =
∫ ∞

0

zT (t)z(t)dt− γ2

∫ ∞

0

ωT (t)ω(t)dt < 0.

The reliable robust H∞ tracking problem is to design a
state-feedback controller such that
1) The resultant closed-loop system is robustly stable with
an H∞ norm bound γ when all control components are
operational, but also in case of some sensor and actuator
failures by (5) and (9), respectively.
2) The output y(t) tracks the reference signal r(t) without
steady-state error, that is

lim
t→∞

e(t) = 0, e(t) = r(t)− y(t). (12)

Throughout this paper, we shall use the following concepts
and introduce the following some useful lemmas.
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Lemma 2: [2], [5] The singular system Eẋ(t) = Ax(t)
or the pair (E, A) is regular, impulse-free and stable if and
only if there exists a matrix P such that

EPT = PET ≥ 0, APT + PAT < 0.
Lemma 3: [16] Let A, D, E and F (t) be real matrices

of appropriate dimensions with ‖F (t)‖ ≤ U , where U is an
known real constant matrix, there exists a scalar ε > 0 such
that DF (t)E + ET FT (t)DT ≤ εDUDT + ε−1ET UE.

III. MAIN RESULTS

A. Bounded Real Lemma

In this section, we will present the stability criteria of
system (11). According to Definition 3, two issues must be
dealt with: i) robust stability of system (11) with ω(t) = 0;
and ii)J =

∫∞
0

zT (t)z(t)dt− γ2
∫∞
0

ωT (t)ω(t)dt < 0 for a
prescribed constant γ > 0.

Theorem 1: Suppose that all the pairs (E, Ai, C2i), i =
1, · · · , k is observable, for a given constant γ > 0, the
singular system (11) is robustly stable with an H∞ norm
bound γ if there exist matrix P > 0 and scalar ε > 0, for
all i = 1, · · · , k, such that

EPT = PET ≥ 0 (13)




Γ11 D1i PCT
2i PCT KT

∗ −γ2I DT
3i 0

∗ ∗ −I 0
∗ ∗ ∗ −εI


 < 0 (14)

where Γ11 = AiP
T + PAT

i + εE1E
T
1 , K =

diag{k1, · · · , kn}.
Proof: First, we prove robustly stability of the system

(11) with ω(t) = 0. Suppose both (13) an (14) hold, then
according to [17], if (14) is satisfied, one has




Γ̃11 D1(θ) PCT
2 (θ) PCT KT

∗ −γ2I DT
3 (θ) 0

∗ ∗ −I 0
∗ ∗ ∗ −εI


 < 0 (15)

where Γ̃11 = A(θ)PT + PAT (θ) + εE1E
T
1 .

From (15), we have that

A(θ)PT + PAT (θ) < 0 (16)

By Lemma 2, it follows from (16) and (13) that the pair
(E, A(θ)) is regular and impulse free. So by Definition 2,
we can derive that the singular system (11) is regular and
impulse free.

Then we shall show the stability of the singular system
(11). From (14), by Schur complement argument, it is easy
to see that

AiP
T + PAT

i < 0 (17)

By Lemma 2, it follows that from (17) and (13) the pair
(E, Ai) is regular, impulse free and stable.

The regularity and the absence of impulses of the pair
(E, Ai) implies that there exist two invertible matrices G
and H ∈ Rn×n such that [18]

Ē : = GEH =
[

Ir 0
0 0

]
,

Āi : = GAiH =
[

Air 0
0 In−r

]
(i = 1, · · · , k)

(18)

where Ir ∈ Rr×r, In−r ∈ R(n−r)×(n−r) are identity
matrices, Air ∈ Rr×r. According to (16), let

P̄ : = GPH−T =
[

P̄11 P̄12

P̄21 P̄22

]
, Ē1 := GE1,

C̄ : = CH, D̄1i := GD1i,

C̄2i : = C2iH, K̄ := K, D̄3i := D3i

(19)

Then, from (13), we have

ĒP̄T = P̄ ĒT ≥ 0 (20)

Pre-multiplying diag{G, I, I, I} and post-multiplying
diag{GT , I, I, I} to the left and right side of (14) yields




Γ̄11 D̄1i P̄ C̄T
2i P̄ C̄T K̄T

∗ −γ2I D̄T
3i 0

∗ ∗ −I 0
∗ ∗ ∗ −εI


 < 0 (21)

where Γ̄11 = ĀiP̄
T + P̄ ĀT

i + εĒ1Ē
T
1 .

Noting the expression of Ē in (18) and using (20), we
can deduce that P̄11 = P̄T

11 ≥ 0 and P̄21 = 0, therefore P̄
reduces to

P̄ =
[

P̄11 P̄12

0 P̄22

]
. (22)

Substituting (18) and (22) into (21), one eventually gets
[

AirP̄11 + P̄11A
T
ir P̄12

P̄T
12 P̄22 + P̄T

22

]
< 0 (23)

Since the inequality (23) holds, we have that P̄22 is invertible.

Now, let ξ(t) = H−1x(t) =
[

ξ1(t)
ξ2(t)

]
, where ξ1(t) ∈ Rr,

ξ2(t) ∈ Rn−r. Using the expressions in (18) and (19), the
singular system (11) can be described as

{
Ēξ̇(t) = Ā(θ)ξ(t) + D̄1(θ)ω(t) + Ē1f(η(t))

z(t) = C̄2(θ)ξ(t) + D̄3(θ)ω(t).
(24)

where η(t) = C̄ξ(t). It is easy to see that the stability of
the singular system (11) ω(t) = 0 is equivalent to that of
the system (24). In view of this, next we shall prove that the
system (24) with ω(t) = 0 is stable. Since P̄11 = P̄T

11 ≥ 0
and AirP̄11 + P̄11A

T
ir < 0, as (22) shows, it follows that

P̄11 > 0. Define

V (ξ(t)) = ξT
1 (t)P̄−1

11 ξ1(t) = ξT (t)P̄−1Ēξ(t) (25)

The expression in (4) is equivalent to be described as

σjfj(σj)(σjfj(σj)− kjσ
2
j ) ≤ 0 (j = 1, 2, · · · , n)

⇒ f2
j (σj) ≤ k2

j σ2
j ⇒ ‖f(σj)‖2 ≤ ‖KCx(t)‖2
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Therefore

fT f ≤ ξT (t)C̄T K̄T K̄C̄ξ(t) (26)

Then, taking time derivative of V (ξ(t)) and adopting the
multiconvexity concept in [17] yield:

V̇ (ξ(t)) =ξ̇(t)ĒT P̄−T ξ(t) + ξT (t)P̄−1Ēξ̇(t)

=ξT (t)P̄−1(ĀiP̄
T + P̄ ĀT

i )P̄−T ξ(t)

+ fT ĒT
1 P̄−T ξ(t) + ξT (t)P̄−1Ē1f

According to Lemma 3, we have V̇ (ξ(t)) ≤
ξT (t)P̄−1Ω̄P̄−T ξ(t), where

Ω̄ =
[

ĀiP̄
T + P̄ ĀT

i + εĒ1Ē
T
1 P̄ C̄T K̄T

∗ −εI

]
.

From (21), by Schur complement argument, we know that
Ω̄ < 0. which implies V̇ (ξ(t)) < 0. So there exist β > 0
such that

V̇ (ξ(t)) ≤ −βV (ξ(t)). (27)

From (27), we have V (ξ(t)) ≤ e−βtV (ξ(0)), which gives

‖ξ(t)‖2 ≤ αe−βt‖ξ(0)‖2, α =
λmax(P̄−1Ē)
λmin(P̄−1Ē)

.

According to Definition 2, we know that the system (11)
with ω(t) = 0 is robustly stable.

Considering the effect of the external disturbance on the
system, we can show by taking the time derivative of V (ξ(t))
and using condition (21) that

V̇ (ξ(t)) ≤ −zT (t)z(t) + γ2ωT (t)ω(t) (28)

Integrating both side of (28) from zero to ∞ and noting that
the assumption of zero initial condition, we obtain

J =
∫ ∞

0

zT (t)z(t)dt− γ2

∫ ∞

0

ωT (t)ω(t)dt

≤
∫ ∞

0

zT (t)z(t)dt− γ2

∫ ∞

0

ωT (t)ω(t)dt

+ V (∞)− V (0) < 0

Consequently, from Definition 3, the singular system (11)
is robustly stable with an H∞ norm bound γ.

B. Reliable Robust H∞ Tracking Controller Design

In this section, we present the solution to reliable robust
H∞ tracking controller design problem for the singular
system (1) with respect to actuator failures or sensor failures,
respectively.

1) Actuator Failures Case: It is well known that the
tracking error integral action of a controller can effectively
eliminate the steady-state tracking error. In order to obtain
a robust H∞ tracking controller with state feedback plus
tracking error integral, and we define the augmented state

vector ς(t) =
[
xT (t), (

∫ t

0
e(t)dt)T

]T

, disturbance vector

ω̃(t) =
[
ωT (t), ηT (t), δT

1 (t), rT (t)
]T

, and introduce the

following augmented description of singular system (1) with
actuator fault model (5),





Ẽς̇(t) =Ã(θ)ς(t) + B̃1(θ)M1u(t) + D̃1(θ)ω̃(t)

+ Ẽ1f̃(σ̃(t)), σ̃(t) = C̃ς(t),

z =C̃2(θ)ς(t) + B2(θ)M1u(t) + D̃3(θ)ω̃(t)

(29)

where

Ẽ =
[

E 0
0 I

]
, Ã(θ) =

[
A(θ) 0
−C1(θ) 0

]
,

B̃1(θ) =
[

B1(θ)
0

]
, Ẽ1 =

[
E1 0
0 0

]
,

D̃1(θ) =
[

D1(θ) 0 B1(θ)Mu 0
0 −D2(θ) 0 1

]
,

f̃(σ̃(t)) =
[

f(σ̃)
0

]
, C̃ =

[
C 0
0 0

]
,

C̃2(θ) =
[

C2(θ) 0
]
,

D̃3(θ) =
[

D3(θ) 0 B2(θ)Mu 0
]

and Ã(θ) =
k∑

i=1

Ãiθi, B̃1(θ) =
k∑

i=1

B̃1iθi, D̃1(θ) =

k∑
i=1

D̃1iθi, C̃2(θ) =
k∑

i=1

C̃2iθi, D̃3(θ) =
k∑

i=1

D̃3iθi, where

Ãi =
[

Ai 0
−C1i 0

]
, B̃1i =

[
B1i

0

]
,

D̃1i =
[

D1i 0 B1iMu 0
0 −D2i 0 1

]
, C̃2i =

[
C2i 0

]
,

D̃3i =
[

D3i 0 B2iMu 0
]
, (i = 1, · · · , k).

Consider the augmented system (29) with the following
state feedback tracking controller

u(t) = Lς(t) (30)

then the resultant closed-loop augmented system is




Ẽς̇(t) =(Ã(θ) + B̃1(θ)M1L)ς(t) + D̃1(θ)ω̃(t)

+ Ẽ1f̃(σ̃(t)),

z =(C̃2(θ) + B2(θ)M1L)ς(t) + D̃3(θ)ω̃(t).

(31)

Lemma 4: [13], [14] For the system (29), if there exists
a controller (30) such that the resultant closed-loop system
(31) is robustly stable, then the measured output y(t) tracks
the reference signal r(t) without steady-state error, that is
lim

t→∞
e(t) = 0.

According to Theorem 1 and Lemma 4, we give the fol-
lowing sufficient condition for designing the reliable robust
H∞ tracking controller.

Theorem 2: Suppose that all the pairs (Ẽ, Ãi, C̃2i), i =
1, · · · , k is observable, for a given constant γ > 0, if there
exist matrices P > 0, Y and scalars ε1 > 0, ε2 > 0 for all
i = 1, · · · , k, such that

ẼPT = PẼT ≥ 0 (32)
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(1, 1) D̃1i (1, 3) PC̃T K̃T Y T J
1/2
1

∗ −γ2I D̃T
3i 0 0

∗ ∗ (3, 3) 0 0
∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ −ε2I




< 0 (33)

then, we can construct a reliable robust H∞ tracking control
law u(t) = Y P−T ς(t) such that the resultant closed-loop
singular system (31) is robustly stable with an H∞ norm
bound γ, and the measured output y(t) tracks the reference
signal r(t) without steady-state error. where

(1, 1) =ÃiP
T + PÃT

i + B̃1iM10Y + Y T MT
10B̃

T
1i

+ ε1Ẽ1Ẽ
T
1 + ε2B̃1iM10J1M

T
10B̃

T
1i,

(1, 3) =PC̃T
2i + Y T MT

10B
T
2i + ε2B̃1iM10J1M

T
10B

T
2i,

(3, 3) =− I + ε2B2iM10J1M
T
10B

T
2i,

K̃ =diag{K, 0}.
Proof: By Theorem 1, the system (29) is robustly stable

with an H∞ norm bound γ if there exist matrix P > 0 and
scalar ε > 0 for all i = 1, · · · , k, the following inequalities
holds,

ẼPT = PẼT ≥ 0 (34)




Υ11 D̃1i Υ13 PC̃T K̃T

∗ −γ2I D̃T
3i 0

∗ ∗ −I 0
∗ ∗ ∗ −εI


 < 0 (35)

where Υ11 = (Ãi + B̃1iM1L)PT + P (Ãi + B̃1iM1L)T +
εẼ1Ẽ

T
1 , Υ13 = P (C̃2i + B2iM1L)T .

From (8) and Lemma 3, and letting L = Y P−T , we know
that (35) is equivalent to (33).

Then according to Lemma 4, the singular system (31) is
robustly stable with an H∞ norm bound γ, and the measured
output y(t) tracks the reference signal r(t) without steady-
state error.

Remark 2: Since rankE = r < n, there exists a matrix
Φ ∈ R(n+q)×(n−r) with rankΦ = n − r such that ẼΦ =
0. Define P = ẼΘ + ΨΦT , where Θ is positive definite
matrix, Ψ is matrix with appropriate dimension respectively.
Obviously, ẼPT = PẼT ≥ 0 holds. Substituting P = ẼΘ+
ΨΦT into (33), we obtain a new LMI denoted by (33)’.
Solving Θ and Ψ from (33)’ and using the relation P =
ẼΘ + ΨΦT , we can finally design a reliable robust H∞
tracking controller with respect to actuator failures as

u(t) = Y (ẼΘ + ΨΦT )−T ς(t). (36)
Remark 3: The solution of reliable robust tracking control

problem is given in Theorem 2. If the disturbance attenuation
level γ is given, we can directly solve the feasibility problem
of LMI (33)’ to obtain a suitable state feedback control law.
Otherwise, we can solve the following optimization problem

min γ

s.t. LMI (33)′,Θ > 0, ε1 > 0, ε2 > 0

to obtain a minimal disturbance attenuation level.

Remark 4: According to Remark 1, when there are no
failures of u(t), the standard robust H∞ tracking controller
also can be designed by letting m1i = 1, mui = 0 in
Theorem 2.

2) Sensor Failures Case: Consider the sensor faults
model (9), following the same philosophy as that in
actuator faults, and define disturbance vector ω̂(t) =[
ωT (t), ηT (t), δT

2 (t), rT (t)
]T

, we can construct the aug-
mented system as follows,





Ẽς̇(t) =Â(θ)ς(t) + B̃1(θ)u(t) + D̂1(θ)ω̂(t)

+ Ẽ1f̃(σ̃(t)), σ̃(t) = C̃ς(t),

z =C̃2(θ)ς(t) + B2(θ)u(t) + D̂3(θ)ω̂(t)

(37)

where ς(t), Ẽ, B̃1(θ), Ẽ1, C̃2(θ), f̃(σ̃(t)) are the same as

those in (29), Â(θ) =
[

A(θ) 0
−M2C1(θ) 0

]
, D̂1(θ) =

[
D1(θ) 0 0 0

0 −M2D2(θ) −My 1

]
, D̂3(θ) =

[
D3(θ) 0 0 0

]
and Â(θ) =

k∑
i=1

Âiθi, D̂1(θ) =

k∑
i=1

D̂1iθi, D̂3(θ) =
k∑

i=1

D̂3iθi, where

Âi =
[

Ai 0
−M2C1i 0

]
,

D̂1i =
[

D1i 0 0 0
0 −M2D2i −My 1

]
,

D̂3i =
[

D3i 0 0 0
]
, (i = 1, · · · , k).

Consider the augmented system (37) with the state feed-
back tracking controller (30), then the resultant closed-loop
augmented system is





Ẽς̇(t) =(Â(θ) + B̃1(θ)L)ς(t) + D̂1(θ)ω̂(t)

+ Ẽ1f̃(σ̃(t)),

z =(C̃2(θ) + B2(θ)L)ς(t) + D̂3(θ)ω̂(t)

(38)

According to Theorem 1 and Lemma 4, the following
theorem is easily derived.

Theorem 3: Suppose that all the pairs (Ẽ, Âi, Ĉ2i), i =
1, · · · , k is observable, for a given constant γ > 0, if
there exist matrices P > 0, V and scalar ε > 0 for all
i = 1, · · · , k, such that

ẼPT = PẼT ≥ 0 (39)




Θ11 D̂1i PC̃T
2i + V T BT

2i PC̃T K̃T

∗ −γ2I D̂T
3i 0

∗ ∗ −I 0
∗ ∗ ∗ −εI


 < 0 (40)

then, we can construct a reliable robust H∞ tracking control
law u(t) = V P−T ς(t) such that the resultant closed-loop
singular system (38) is robustly stable with an H∞ norm
bound γ, and the measured output y(t) tracks the reference
signal r(t) without steady-state error. where Θ11 = ÂiP

T +
PÂT

i + B̃1iV + V T B̃T
1i + εẼ1Ẽ

T
1 , K̃ = diag{K, 0}.
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Proof: Following the same line as that in the proof of
Theorem 2, Theorem 3 follows immediately.

Remark 5: Remark 2 and 3 is also suitable for sensor
failure case.

Remark 6: According to Remark 1, when there are no
failures of y(t), the standard robust H∞ tracking controller
also can be designed by letting m2i = 1, myi = 0 in
Theorem 3.

IV. NUMERICAL EXAMPLE
In this section, we consider the system (1) with the

following parameters to demonstrate the applicability of the
proposed design algorithm.

E =
[

1 0
0 0

]
, A1 =

[
0.9 0
1 −5

]
,

A2 =
[

0.3 1
0.2 −0.5

]
, B11 = B12 =

[
2
1

]
,

D11 = D12 =
[

0.2
0.5

]
, E1 =

[
2 0
0 1

]
,

C =
[

1 0
0 2

]
, K =

[
0.5 0
0 0.07

]
,

C11 = C12 =
[ −1 0.2

]
, D21 = D22 = 0.01,

C21 = C22 =
[

0 1
]
, B21 = B22 = 1, r(t) = 0

D31 = D32 = 0.7, θ1 =
1− sin t

2
, θ2 =

1 + sin t

2
.

(41)

In the case of actuator failure (5), we assume that actuator
have a failure of a 96% reduction in signal strength. That is,
m11 = 0.04, m̄11 = 1, Mu = 0.47. w(t), η(t) and δ1(t) are
square-integrable stochastic noise with variance 0.02, 0.01
and 0.01 respectively. Obviously, the pairs (Ẽ, Ãi, C̃2i), i =
1, 2 is observable. The eigenvalues of system (41) are 0,
0.6873 and −2.8373, so the system (41) is unstable.

According to Theorem 2 and Remark 2, for a given γ =
2.5, setting Φ =

[
0 1 0

]T
and employing Matlab LMI

Toolbox to solve the feasibility problem of LMI (34)’ gives
the following reliable robust H∞ tracking controller,

L =
[ −206.0819 −29.2161 −0.3366

]
. (42)

At the same time, according to Remark 4, by setting M1 = 1
and Mu = 0, we also can obtain the standard robust H∞
tracking controller

Ls =
[ −7.8696 −1.2838 −0.0005

]
. (43)

Then, using the reliable robust H∞ tracking controller
(42), the eigenvalues of resultant closed-loop system are
−16.9617, −2.8418 and −0.0016, so the resultant closed-
loop system is stable. On the other hand, using the stan-
dard robust H∞ tracking controller (43), the eigenvalues of
resultant closed-loop system are −2.8409, 0.005 + 0.0042i
and 0.005 − 0.0042i, so the resultant closed-loop system is
unstable.

Moreover, when the disturbance attenuation level γ is
unknown, according to Remark 3, the minimal attenuation
level γ for reliable robust H∞ tracking control is γmin =
0.975, whereas the minimal attenuation level γ for standard
robust H∞ tracking control γmin = 1.24.

V. CONCLUSION

This paper dealt with the reliable robust H∞ tracking con-
trol problem for a class of uncertain Lur’e singular systems.
The uncertainties are assumed to be convex polytopic. Based
on LMIs, a sufficient condition was presented to design the
reliable robust H∞ tracking controller, which guaranteed
the closed-loop system regular, impulse-free, stable with
H∞ performance, and the output of closed-loop system
tracking the reference signal without steady-state error when
all control components are operational as well as when some
control components experience failures. Finally, a numerical
example is given to show the effectiveness of the proposed
methods.
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