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Abstract— This paper presents a nonlinear observer-based
control scheme to stabilize the downhole pressure and eliminate
riser slugging. A simple empirical model is developed that
describes the qualitative behavior of the downhole pressure in
case of severe riser slugging. A new nonlinear adaptive observer
is developed for state estimations with the new parameter
adaptation law. The controller is designed by an integrator
backstepping approach to stabilize the downhole pressure and
achieve asymptotic tracking. The stabilization in the unstable
region is demonstrated by the proposed control. For the design
and implementation of the controller, no knowledge is assumed
on the system parameters. It is shown that the proposed
controller not only can guarantee asymptotic stability, but also
transient performance.

I. INTRODUCTION

In many hydrocarbon production systems, unstable multi-
phase flow poses a serious challenge for safe and efficient
operation of the field. The stabilization is related to the
purpose of attenuating an oscillation phenomenon, called
severe slugging, that exists in pipelines carrying multiphase
flow. In many cases, the wells and production lines enter
a slug flow regime where liquid slugs are followed by gas
pockets yielding large oscillations in the flow rate and phase
distribution as seen from the outlet of the pipe/well. This
alternating flow regime, referred to as severe slugging, poses
a serious operational challenge for the downstream process,
such as separators, and may cause lower oil production. A
schematic diagram of riser slug rig is shown in Figure 1.
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Fig. 1. Schematic diagram of riser slug rig.

Jing Zhou and Ole Morten Aamo are with Department of Engineering
Cybernetics, Norwegian University of Science and Technology, 7491 Trond-
heim, Norway. jing.zhou@itk.ntnu.no, aamo@ntnu.no

Glenn-Ole Kaasa is with StatoilHydro ASA, Research Centre
Porsgrunn, Heroya Forskningspark, 3908 Porsgrunn, Norway.
GKAA@StatoilHydro.com

Research on handling severe slugging in pipeline-riser
systems has received great attentions in the literature and
in the industry. Several remediation strategies has been
proposed. These can be categorized as design modifications
and operational modifications. In operational modifications,
an effective method is to develop control strategies that
guarantee attenuation of riser slugging. The motivation for
using active feedback control is that one can operate the
pipeline/well in an unstable operating region, where the
system is open-loop unstable. Several publications describe
the use of active feedback control in order to stabilize
the flow, see for examples, [1], [2], [3], [4], [5], [6], [7],
[8]. Some works used a detailed model and only proved
stability linearly, whereas [9] proved nonlinear stability with
a simplified model. In [9], a state feedback control design
was presented based on linearization method, where the
system parameters must be known and all system states are
assumed to be known.

In this paper, we will address nonlinear observed-based
control of a riser slugging system in the presence of un-
known parameters and unmeasured signal. A simple empiri-
cal model is developed that describes the qualitative behavior
of the downhole pressure in case of severe riser slugging.
A new nonlinear observer is developed by using Lyapunov
technique to estimate the unmeasured state with the new
parameter adaptation law. The controller is designed by an
integrator backstepping approach in [10] to stabilize the
downhole pressure. The stabilization in the unstable region
is demonstrated by the proposed control. For the design
and implementation of the controller, there is no apriori
information required from the system parameters and thus
they can be allowed totally uncertain. It is shown that the
proposed controller not only can guarantee asymptotic stabil-
ity, but also transient performance. The simulation results are
presented to illustrate the effectiveness of proposed control
scheme.

II. MODEL

For unstable flow, several mechanisms can cause the
instability depending on the geometry, fluids and process
equipment. In order to understand the underlaying instabili-
ties and to predict the controllability of slugging, a relatively
simple model is needed which captures the fundamental
dynamics of the system. Furthermore, a simple model may be
used to develop a model-based stabilizing control law which
more intelligently counteracts the destabilizing mechanisms
of slugging. The developed models are different depending
on the application and assumptions made and can be found
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in [7], [8], [9], [11], [12]. [7] presents a relatively simple first
principle-based model which captures the main dynamics
of a severe slugging flow regime in pipeline-riser systems.
The model is able to reproduce observed unstable flow for
a particular test case. A schematic of the severe slugging
cyclic behavior is shown in 2, where the main phases of the
formation of a slug is illustrated. In the first sub-figure, liquid

Fig. 2. Schematics of the severe slug cycle in riser systems

blocks the low point of the pipeline-riser system, preventing
the gas from passing. Liquid flows from the riser and into the
slug by gravity and causes the slug to grow and fill the riser.
The pressure in the pipeline increases due to the inlet flow
of gas and the increased liquid head. In the “slug production
phase” the liquid slug has reached the top of the riser and
flows into the separator. The pressure in the pipeline has
steadily increased and is now large enough to push the liquid
slug out of the riser. When the tail of the liquid slug enters the
riser, the pressure drops due to the reduced static head of the
liquid column which causes the gas to expand and accelerate
the “blow out phase”. When the gas has left the riser, the
velocities in the riser are too low to carry any liquid up the
riser and the process starts over (“liquid fall-back phase”).
In this paper, a simplified model structure is presented that
describes the qualitative behavior of the downhole pressure
in case of severe riser slugging.

ṗ = w, (1)

ẇ = a1(β − p) + a2(ζ − w2)w, (2)

where the states p and w are the down hole pressure in the
riser and its time derivative, respectively. The coefficients in
(1)–(2) can be explained as follows.
• β: steady state pressure.
• a1: frequency or stiffness of the system.
• a2, ζ: local “degree of the stability/instability” and ampli-
tude of the oscillation.

A. The equilibrium downhole pressure β

If the characteristic of the reservoir influx is known,
the equilibrium downhole pressure can be derived from
the steady-state flow rate characteristics of the choke valve

and riser. From the slugging model (1)–(2), the fixed point
(ṗ, ẇ) = (0, 0) gives

0 = a1(β − p). (3)

Thus

β = p, (4)

which implies that β is the steady state curve as in Figure 3,
where β is plotted as a function of the choke opening. In the
simplest case, we may assume constant flow rates of liquid
and gas from the reservoir. Then

β (q) = b0 + b1q, (5)

where b0 and b1 are positive constants and q can be inter-
preted as proportional to the differential pressure over the
production choke.

B. Local Degree of Stability/Instability a2,ζ

The parameters a2 and ζ are related to the amplitude of
oscillation and stability properties of the fixed point. This
can be seen by linearizing system (1)–(2) to get

Δ̇p = Δω, (6)

Δ̇ω = −a1Δp + a2ζΔω. (7)

The eigenvalues of the system are λ =
a2ζ±

√
a2

2
ζ2−4a1

2
,

which means that (assuming a1 > 0 and a2 > 0)
• ζ = 0, bifurcation point.
• ζ < 0, system is stable.
• ζ > 0, system is unstable.

In the simplest case, we may assume constant flow rates of
liquid and gas from the reservoir. Then

ζ (q) = c0 − c1q, (8)

where c0/c1 denotes the bifurcation point and c0, c1 are
positive constants.
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Fig. 3. Bifurcation plot

C. Transportation Delay

The variable q is related to the effect the differential
pressure over the production choke. Due to transport delay
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in the well, a time-lag is expected between application of the
control signal to the choke and seeing the effect in (1)–(2).
This time-lag is modelled as follows

q̇ = −1

τ
q +

1

τ
δ, (9)

where δ represents the control input.

D. Simplified Model of Riser Slugging

Based on (5) and (8), the system dynamics (1)–(2) and (9)
can be assembled into

ṗ = w, (10)

ẇ = −a1p + h (w) + g (w) q + f1 (11)

q̇ = −1

τ
q +

1

τ
δ, (12)

where f1 = a1b0, the functions h and g are defined as

h (w) = a2c0w − a2w
3 = h0w − h1w

3 (13)

g (w) = a1b1 − a2c1w = g0 − g1w. (14)

The positive constants ai, bi and ci (i = 1, 2) are empirical
parameters that are adjusted to produce the right behavior of
the downhole pressure p.
The system (10)–(12) can capture some of the qualitative
properties in the downhole pressure during riser slugging.

• Decreasing control gain: A characteristic property of
riser slugging is that the static gain decreases with choke
opening.

• Bifurcation: The model exhibits the characteristic bifur-
cation that occurs at a certain choke opening c0/c1, i.e.,
the steady-state response of the downhole pressure ex-
hibits changes from a stable point when choke opening
is smaller than c0/c1 to a stable limit cycle when choke
opening is larger that c0/c1 (see Figure 3).

• Time lag: The transportation delay between a change
in choke opening to the resulting change in downhole
pressure p is modeled by simple 1st-order lag.

Our objective is to design a control law for the control
input δ which stabilizes p at the desired set-point pref .

III. NONLINEAR ADAPTIVE OBSERVER

Consider that p and q are measured and w is unmeasured,
where the parameters h0, h1, g0, g1,f1 and a1 are unknown.
The following change of coordinate is defined

ξ � w − l1p, (15)

where l1 is a tunable feedback gain. This gives the dynamics

ξ̇ = ẇ − l1w

= −a1p + h0w − h1w
3 + g0q − g1qw + f1 − l1w.

(16)

An observer for w must then be implemented with estimated
parameter values â1, ĥ0, ĥ1, ĝ0, ĝ1 and f̂1, according to

˙̂
ξ = −â1p + ĥ0ŵ − ĥ1ŵ

3 + ĝ0q − ĝ1qŵ + f̂1 − l1ŵ (17)

ŵ = ξ̂ + l1p, (18)

1) Resulting error dynamics: First we need to express the
resulting error dynamics in appropriate form, incorporating
the effect of parameter errors. Defining

θ = [a1, h0, h1, g0, g1, f1]
T , (19)

θ̃ = θ − θ̂. (20)

Preparing for subsequent steps, we obtain the following error
terms as

g1qw − ĝ1qŵ = g1q(w̃ + ŵ) − ĝ1qŵ

= g̃1qŵ + g1qw̃ (21)

h1w
3 − ĥ1ŵ

3 = h1w
3 +

(
h1ŵ

3 − h1ŵ
3
) − ĥ1ŵ

3

= h̃1ŵ
3 + h1

(
w3 − ŵ3

)
. (22)

With (21), (22), and w̃ = ξ̃, the error dynamics ξ̃ becomes
.

ξ̃ = − (l1 − (h0 − g1q)) ξ̃ − ã1p + h̃0ŵ − h̃1ŵ
3 + g̃0q

−g̃1qŵ + f̃1 − h1

(
w3 − ŵ3

)
. (23)

Defining the regressor vector

φ
(
p, ξ̂, q

)
�

⎡
⎢⎢⎢⎢⎢⎢⎣

−p
ŵ

−ŵ3

q
−qŵ

1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (24)

and substituting w = ξ + l1p and ŵ = ξ̂ + l1p, (23) gives
.

ξ̃ = − (l1 − (h0 − g1q)) ξ̃ + θ̃T φ
(
p, ξ̂, q

)

−h1

(
(ξ + l1p)3 − (ξ̂ + l1p)3

)
. (25)

2) Lyapunov Analysis: Consider the Lyapunov function

U
(
ξ̃, θ̃

)
=

1

2
ξ̃2 +

1

2
θ̃T

Γ
−1θ̃, (26)

where Γ is the adaption gain. The time derivative of U gives

U̇ = − (l1 − (h0 − g1q)) ξ̃2 + θ̃T φ
(
p, ξ̂, q

)
ξ̃

−h1ξ̃
(
(ξ + l1p)3 − (ξ̂ + l1p)3

)
+ θ̃T

Γ
−1

.

θ̃.(27)

Noticing that

ξ̃

(
(ξ + l1p)

3 −
(
ξ̂ + l1p

)3
)

=
(
(ξ + l1p) − (ξ̂ + l1p)

) (
(ξ + l1p)

3 −
(
ξ̂ + l1p

)3
)

≥ 0. (28)

We obtain

U̇ ≤ − (l1 − (h0 − g1q)) ξ̃2

+θ̃T

(
Γ
−1

.

θ̃ + φ
(
p, ξ̂, u

)
ξ̃

)
. (29)
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This suggests that we should choose an adaptation law which
satisfies .

θ̃ = −Γφ
(
p, ξ̂, u

)
ξ̃. (30)

It gives the time-derivative of U

U̇ ≤ − (l1 − (h0 − g1q)) ξ̃2. (31)

If q > 0, the convergence is given by

U
(
ξ̃ (t)

)
≤ U

(
ξ̃ (0)

)
e−2αt, (32)

with convergence rate α = l1−h0 that can be made arbitrary
fast by increasing the feedback gain l1 > h0.

3) Adaptation Law: Note that (30) cannot be used for
parameter estimation because ξ̃ is unavailable. We introduce
a new variable

σ � θ + η
(
p, ξ̂, q

)
, (33)

where η (·) is a vector function to be designed to assign σ
a desired dynamics. Differentiating σ with respect to time,
gives

σ̇ =
∂η

∂p
w+

∂η

∂ξ̂

.

ξ̂+
∂η

∂q
q̇. (34)

Let an estimate θ̂ of the parameter vector be given by
.

σ̂ =
∂η

∂p
ŵ+

∂η

∂ξ̂

.

ξ̂+
∂η

∂q
q̇ (35)

θ̂ = σ̂ −η
(
p, ξ̂, q

)
. (36)

The resulting estimation error

θ̃ = σ − η
(
p, ξ̂, q

)
−

(
σ̂ − η

(
p, ξ̂, q

))
= σ − σ̂ � σ̃ (37)

is then governed by
.

θ̃ =
.

σ̃ =
∂η

∂p
w̃ =

∂η

∂p
ξ̃. (38)

Compared with (30), it suggests that we let

∂η/∂p � −Γφ
(
p, ξ̂, q

)
, (39)

which gives
.

θ̃ = −Γφ
(
p, ξ̂, q

)
ξ̃. (40)

Now, η (·) can be found by integrating (39):

η
(
p, ξ̂, q

)
= −

∫
Γφ

(
p̄, ξ̂, q

)
dp̄

= Γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
p2

−
(
ξ̂ + l1

2
p
)

p

1

4l1

(
ξ̂ + l1p

)4

−qp

q
(
ξ̂ + l1

2
p
)

p

−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

The resulting partial derivatives become

∂η

∂p
= Γφ

(
p, ξ̂, q

)
=Γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p

−
(
ξ̂ + l1p

)
(
ξ̂ + l1p

)3

−q

q
(
ξ̂ + l1p

)
−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

∂η

∂ξ̂
= Γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
−p

1

l1

(
ξ̂ + l1p

)3

0
qp
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(43)

∂η

∂q
= Γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
−p(

ξ̂ + l1
2
p
)

p

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

IV. BACKSTEPPING CONTROLLER DESIGN

The system (10)-(12) based on the observer (17) and (18)
is rewritten as

ṗ = ŵ + ξ̃
˙̂w = −â1p + ĥ0ŵ − ĥ1ŵ

3 + ĝ0q − ĝ1qŵ + f̂1 + l1ξ̃

q̇ = −1

τ
q +

1

τ
δ. (45)

In this section we design stabilizing controllers using back-
stepping technique. Thus, we iteratively look for a change
of coordinates in the form

z1 = p − pref (46)

z2 = ŵ − α1 (47)

z3 = q − α2, (48)

and an accompanying Lyapunov function. The functions α1

and α2 are virtual controls to be determined.
Step 1 — virtual control law α1

From (45), (46), and (47), we obtain that

ż1 = α1 + z2 + ξ̃. (49)

Consider the CLF, U1 = 1

2
z2

1
+kU , we see that by choosing

the virtual control law

α1 = − (C1 + k1) z1, (50)

the time-derivative of U1 becomes

U̇1 ≤ −C1z
2

1
+ z1z2 − k1z

2

1
+ z1ξ̃

−k (l1 − (h0 − g1q)) ξ̃2

≤ z1z2 − C1z
2

1
− k

(
l1 − (h0 − g1q) − 1

4k1k

)
ξ̃2.

(51)
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Step 2 — virtual control law α2

Start by computing the derivative of z2 from (45), (47), and
(48)

ż2 = (ĝ0 − ĝ1ŵ) α2 − â1p + ĥ0ŵ − ĥ1ŵ
3 + f̂1

+(ĝ0 − ĝ1ŵ) z3 + (C1 + k1)(ŵ + ξ̃) + l1ξ̃.(52)

Assume ĝ0− ĝ1ŵ �= 0. We choose the virtual control law α2

as

α2 =
1

(ĝ0 − ĝ1ŵ)

(
− (

C2 + k2(l1 + C1 + k1)
2
)
z2 − z1

−(C1 + k1)ŵ + â1p − f̂1 − ĥ0ŵ + ĥ1ŵ
3

)
. (53)

Consider the CLF U2 = U1 + 1

2
z2

2
with (31), (51), (52) and

(53), the time-derivative of U2 becomes

U̇2 ≤ −C1z
2

1
− C2z

2

2
+ (ĝ0 − ĝ1ŵ) z2z3

−k2(l1 + C1 + k1)
2z2

2
+ (l1 + C1 + k1)ξ̃z2

−k

(
l1 − (h0 − g1q) − 1

4kk1

)
ξ̃2

≤ −C1z
2

1
− C2z

2

2
+ (ĝ0 − ĝ1ŵ) z2z3

−k

(
l1 − (h0 − g1q) − 1

4kk1

− 1

4kk2

)
ξ̃2.(54)

Step 3 — Final control law
We obtain the time-derivative of z3 from (45) and (48)

ż3 = −1

τ
q +

1

τ
δ − α̇2

=
1

τ
δ − 1

τ
q − ∂α2

∂p
ŵ − ∂α2

∂ŵ
θ̂T φ

−
(

∂α2

∂p
+ l1

∂α2

∂ŵ
+

∂α2

∂θ̂
Γφ

)
ξ̃. (55)

The resulting control law δ is designed as

δ = τ
(
− C3z3 − (ĝ0 − ĝ1ŵ) z2 +

∂α2

∂p
ŵ +

∂α2

∂ŵ
θ̂T φ

+
1

τ
q − k3 ‖ ∂α2

∂p
+ l1

∂α2

∂ŵ
+

∂α2

∂θ̂
Γφ ‖2 z3

)
. (56)

The derivative of the control Lyapunov function

U3 = U2 +
1

2
z2

3
=

3∑
i=1

1

2
z2

i +
k

2
ξ̃2 +

k

2
θ̃T

Γ
−1θ̃ (57)

along (54), (55) and (56) is

U̇3 ≤ −C1z
2

1
− C2z

2

2
− C3z

2

3

−
(

∂α2

∂p
+ l1

∂α2

∂ŵ
+

∂α2

∂θ̂
Γφ

)
ξ̃z3

−k3 ‖ (
∂α2

∂p
+ l1

∂α2

∂ŵ
+

∂α2

∂θ̂
Γφ) ‖2 z2

3

−k

(
l1 − (h0 − g1q) − 1

4kk1

− 1

4kk2

)
ξ̃2

≤ −C1z
2

1
− C2z

2

2
− C3z

2

3

−k

(
l1 − h0 − 1

4kk1

− 1

4kk2

− 1

4kk3

)
ξ̃2,(58)

where Young’s inequality was used and q > 0. Let εl > 0
and select l1 satisfying

l1 = εl + h0 +
1

4kk1

+
1

4kk2

+
1

4kk3

. (59)

Let
D = {(p, ŵ, q) |q ≥ 0} , (60)

U3 is positive definite in D and

U̇3 ≤ −C1z
2

1
− C2z

2

2
− C3z

2

3
− εlξ̃

2 (61)

is negative semidefinite definite in D, which proves that the
system is stable. From the LaSalle-Yoshizawa Theorem, it
further follows that z1, z2, z3, ξ̃ → 0 as t → ∞.
Since U3 is non-increasing, we have

‖ z1 ‖2

2
=

∫ ∞

0

|z1(τ)|2dτ

≤ 1

C1

(U3(0) − U3(∞)) ≤ 1

C1

U3(0). (62)

Thus we have

‖ z1 ‖2≤ 1√
C1

√
U3(0). (63)

Theorem 1: With the application of the adaptive non-
linear observer (T.4)-(T.5), the control law (T.6)-(T.8), and
the parameter update law (T.9) in Table 1, the following
statements hold for solutions in the set

A = {(p, ŵ, q) |q ≥ 0} , (64)

the following statements hold:
• The resulting closed loop system is stable.
• The asymptotic tracking is achieved, i.e.,

lim
t→∞

[p − pref ] = 0. (65)

• The transient tracking error performance is given by

‖ p(t) − pref ‖2≤ 1√
C1

√
U3(0). (66)

Remark 1: The following conclusions can be obtained:
• The transient tracking performance for ‖ p(t) − pref ‖2

depends on the initial states and initial estimations.
• The transient tracking error performance can be improved
by increasing the design parameter C1.

V. SIMULATION RESULTS

In this section we test our proposed backstepping con-
troller on model (10)-(12). For simulation studies, the follow-
ing values are selected as “true” parameters for the system:
h0 = 1, h1 = 50, g0 = 0.125, g1 = 5, a1 = 0.025, b0 = 3.5,
τ = 0.1, which are not needed to be known in the controller
design. The design objective is to stabilize p at the desired
set point pref = 3.8.
With the proposed backstepping controller, we take the
following set of design parameters: C1 = 0.8, C2 =
0.8, C3 = 0.2, k1 = k2 = k3 = 0.01, l1 = 0.8 and
Γ = diag{0.01, 10, 0.1, 0.1, 0.1, 0.5}. The initials are set
as p(0) = w(0) = q(0) = 0, ξ̂(0) = 0, and θ̂(0) =
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Table 1: Adaptive Backstepping Control Scheme

Coordinate transformation:

z1 = p − pref (T.1)

z2 = ŵ − α1 (T.2)

z3 = q − α2 (T.3)

Adaptive nonlinear observer:

ŵ = ξ̂ + l1p, (T.4)

˙̂
ξ = −â1p+ ĥ0ŵ− ĥ1ŵ

3+ ĝ0q− ĝ1qŵ+ f̂1− l1ŵ (T.5)

Control law:

δ = τ
(
− C3z3 − (ĝ0 − ĝ1ŵ) z2 +

1

τ
q +

∂α2

∂ŵ
θ̂T φ

+
∂α2

∂p
ŵ − k3 ‖ ∂α2

∂p
+ l1

∂α2

∂ŵ
+

∂α2

∂θ̂
Γφ ‖2 z3

)
(T.6)

with

α1 = − (C1 + k1) z1 (T.7)

α2 =
1

(ĝ0 − ĝ1ŵ)

(
− (

C2 + k2(l1 + C1 + k1)
2
)
z2

−z1 − (C1 + k1)ŵ + â1p − f̂1 − ĥ0ŵ + ĥ1ŵ
3

)
(T.8)

Parameter update law:

θ̂ = σ̂ − η
(
p, ξ̂, q

)
(T.9)

.

σ̂ =
∂η

∂p
ŵ+

∂η

∂ξ̂

.

ξ̂+
∂η

∂q
q̇ (T.10)

η
(
p, ξ̂, q

)
= Γ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2
p2

−
(
ξ̂ + l1

2
p
)

p

1

4l1

(
ξ̂ + l1p

)4

−qp

q
(
ξ̂ + l1

2
p
)

p

−p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(T.11)

[0, h0 ∗ 1.2, h1 ∗ 0.5, g0, g1 ∗ 1.2, f1 ∗ 0.5], respectively.
Figure 4 illustrates the backstepping controller applied for
stabilization at reference pressure pref = 3.8, where u is
the choke opening and δ = e−d1u, d1 = 10. The initial is
u0 = 0.10 and the actual control is applied from t = 100.
The simulation results verify our theoretical findings.

VI. CONCLUSIONS

This paper presents a nonlinear adaptive observer con-
trol applied to stabilize riser induced slugging. A simple
empirical model is developed that describes the qualitative
behavior of the downhole pressure in case of severe riser
slugging. A nonlinear adaptive observer is developed for state
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Fig. 4. Simulations illustrating stabilization using proposed control.

estimations. To obtain such an observer, a new parametriza-
tion of the state observer for the plant is proposed and a
new parameter adaptation law is developed. The controller is
designed by an integrator backstepping approach to stabilize
the downhole pressure and eliminate riser slugging. The
stabilization in the unstable region is demonstrated by the
proposed control. For the design and implementation of the
controller, no knowledge is assumed on the unknown system
parameters. It is shown that the proposed controller not
only can guarantee asymptotic stability, but also transient
performance.
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