
 
 

 

  

Abstract—A new robust controller using sliding mode control 
method for a class of underactuated mechanical systems with 
mismatched uncertainties is proposed in this paper. Two state 
variables of the underactuated system are chosen to construct 
the first-layer sliding surface. The first-layer sliding surface 
and one of the left state variables are used to construct the 
second-layer sliding surface. This process continues till the last 
sliding surface is constructed. And a distributed compensator 
is added to the sliding mode surfaces. We design a new sliding 
mode control law to guarantee that every sliding surface can 
converge rapidly to zero. For an underactuated system, which 
consists of 2n state variables, the controller has the (2n-1)-layer 
structure. Using Lyapunov law, we prove the stability of all the 
sliding surfaces theoretically. The simulation results show the 
validity of this method. 

I. INTRODUCTION 

n recent years, there has been an increasing interest in 
underactuated systems. These systems are characterized 
by the fact that they have fewer actuators than the degrees 

of freedom to be controlled. Designing a common sliding 
mode surface for underactuated systems is not appropriate.  
Because underactuated systems usually consist of several 
subsystems and the state variables have no obvious 
differential relationship among these subsystems, the 
parameters of the common sliding mode surface can’t be 
obtained directly according to the Hurwitz condition. 

In the last few decades, sliding mode control has 
become a very popular control strategy for trajectory 
tracking and stabilization of dynamical systems. The reason 
for the popularity of sliding mode controller is robustness 
and system order reduction. As a kind of highly robust 
variable structural control method, the sliding-mode 
controller (SMC) can respond quickly, invariant to systemic 
parameters and external disturbance. Usually, SMC laws 
include two parts: switching control law and equivalent 
control law. The switching control law is used to drive the 
system’s states towards a specific sliding surface and the 
equivalent control law guarantees the system states to stay 
on the sliding surface and converge to zero along the sliding 
surface. Many papers about the control of underactuated 
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mechanical systems models were published [1]-[7] in the 
last few years. Fantoni, Lozano, and Spong [6] solved the 
control of an underactuated two-link robot called the 
Pendubot based on an energy approach and the passivity 
properties of the system. Wang [5] presented a stable 
hierarchical sliding mode control method for a class of 
second-order underactuated systems, which had two 
subsystems. Yi [7] designed a cascade sliding mode 
controller for large-scale underactuated systems, where the 
asymptotic stability of all the sliding surfaces was proved 
theoretically. In order to proving all sliding surface are 
stable, Yi [7] gave a strict limit to the underactuated 
system’s state variables. Voytsekhovsky and Hirschorn [8] 
achieved the stabilization of single-input nonlinear systems 
using higher order compensating sliding mode control. 
Laghrouche, Plestan and Glumineau [9] presented a 
practical higher order sliding mode controller for multi-input 
multi-output nonlinear systems. Hirschorn [10] designed an 
incremental sliding mode control of the Ball and Beam. Lin 
and Mon [11] presented a hierarchical fuzzy sliding mode 
controller, which only guaranteed the second level sliding 
mode surface was asymptotically stable.  

In this paper, a new robust controller using sliding 
mode control method for a class of underactuated 
mechanical systems with mismatched uncertainties is 
proposed. Moreover, the total control can guarantee every 
state variable to follow its own sliding surface to zero by 
choosing proper parameters of the controller. At the same 
time, the whole system’s sliding surfaces are asymptotic 
stable. The simulations for the double inverted pendulum 
system show the validity of this method  

 

II. PROBLEM FORMULATION  

The norm expression of a class of underactuated 
systems can be given in the following form [1]: 
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where X=[x1, x2, …, x2n-1, x2n]T  is the state variables; u is the 
input of the system;  fn(x) and bn(x) are bounded nominal 
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nonlinear functions. d1(t), d2(t)…, dn(t) are the lumped 
disturbances, which include the system uncertainties and 
external disturbances. It’s assumed that they are bounded 
by max| ( ) |i id t d≤ , where dimax are upper boundary, i=1, 2, …, 
n. This large system is a typical single-input multi-output 
nonlinear coupled system. The objective of control is to 
design a single input u , which simultaneously controls the 
state variables X=[x1, …, x2n]T to zero. In order to design 
stable sliding mode controller, we make the assumptions as 
following for plant(1): fi(x)≤Mi, bi(x)≤ Bi, , X∈ dΩ  
(i=1,2, …,n), where Mi, Bi are definite positive constants, and
Ωd is a set given as 0{ | }d X X XΩ = − ≤ Δ . Here Δ  is a 
positive constant which denotes all state variables’ 
boundaries. X0∈R2n is a fixed point.  

In the following, we will design an incremental sliding 
surface. 

First, we can choose two state variables to construct a 
sliding surface as the first-level. For example: the state 
variables (x1, x2) are chosen. 

1 1 1 2 2s c x c x= +                             (2) 
where c1 and c2 are constants which have the same sign. The 
equivalent control law is 

2 1 1 2
(1)

2 1
eq

c f c x
u

c b
+

= −                         (3) 

Then, the first-layer surface 1s  can be considered as a 
general state variable. We can use it and one of the left state 
variable to construct the second-layer surface 2s : 

2 3 3 1s c x s= +                              (4) 
where c3 is a constant.   

Similarly, the ith-layer surface si can be defined as: 
1 1 1i i i is c x s+ + −= +                            (5) 

where ci+1 is a constant.  
From (5), we can obtain the derivative of the i-th layer 

sliding surface. 

2 1 2 2
1 1

( )
m m

i j j j j j j
j j

s c x c f b u d−
= =

= + + +∑ ∑             (6) 

where 
( 1) / 2 ,        is odd number    

/ 2 ,             is even number
i i

m
i i
+⎧

= ⎨
⎩

          (7) 

This process continues till the entire state variables are 
included in the sliding mode surfaces. The structure of the 
sliding surface is shown as Fig. 1. For the underactueated 
system (1), which has 2n state variables, the last sliding 
surface is s2n-1. This incremental structure makes the i-th 
layer sliding mode controller have the information from the 
(i-1)th layer.  

2x1x 3x 4x 2 1nx − 2nx

1s
2s

2 2ns −

2 1ns −

 
Fig. 1.  The structure of the sliding surface 

The state variables of underactuated system (1) have no 
obvious differential relationship. Excepting c1 and c2, the 
other parameters of the sliding mode surface can’t be 
obtained directly according to the Hurwitz condition. So we 
propose a new incremental sliding mode controller to 
guarantee every layer to converge to zero.  

In the following description, we define the errors of the 
system’s state variables as X=[x1, …, x2n]T, and present the 
sliding control method to drive asymptotically the errors to 
zero for an initial state. 

For the underactuated system (1), the Lyapunov 

function can be defined as: 2
2 1 2 1

1
2n nV s− −= . Hence, 

2 1 2 1 2 1n n nV s s− − −= ⋅                              (8) 
From (5), we can know that 
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Let di = 0, Equation (1) can be treated as the nomial 

form of the SIMO underactuated system. The incremental 

sliding mode controller can be assumed as: 

( ) ( ) ( ) ( )sm i eq i sw i sw iu u u u′= + +                        (10) 

ueq(i) is the equivalent control law. 
usw(i) is the switch control law for every layer sliding surface. 

( )sw iu′ is the switch control law for the last layer sliding 
surface. 

The equivalent control law of the ith layer sliding 
surface can be defined as: 
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The switch control law is defined as: 
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where η1 is a positive constant, 
12j jη η −=                                (13) 
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m
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2 1 2
1

/
n
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i

u k s c b−
=

′ = − ⋅ ∑                  (15) 

s2n-1 denotes the last layer of the sliding mode surface. k is a 
positive constant. 

The switch control law ( )sw iu  and ( )sw iu′  can improve 
the response time. When the last-layer sliding surface s2n-1 

converges to zero, the control law (2 1)sw nu −′  becomes zero. 
The expressions of ueq(i) and usw(i) degenerate respectively, 
which become the equivalent control law and switch control 
law for the (2n-2)th layer sliding surface respectively. 
Similarly, when the sliding surface si (i>1) converges to zero, 
the state variables ix ( 3, 4, , 2i n= ) converges to zero. 
When the sliding surface si degenerates to s1, the equivalent 
control law becomes (1) 2 1 1 2 2( ) /equ c f c x c b= − + , which 
satisfies the reachable and stable condition of the sliding 
mode control. 

For the matched uncertainties, the above incremental 
sliding mode controller can resist them because of the 
invariant characteristic of the sliding mode. For the 
mismatched uncertainties, we will design a sliding mode 
compensator to resist them.  

For this incremental sliding mode surface, there are two 
methods to design a compensator. One is to design a 
distributed compensator and compensate the mismatched 
uncertainties at every layer sliding surface. The other 
method is to design a lumped compensator and compensate 
the mismatched uncertainties at the last layer. For the former, 
the distributed compensator makes the control accurate, and 
it could guarantee the stability, such as [11]. For the latter, 
the compensator simplifies the control design, but it is 
difficult to guarantee the stability.    

Based on the above viewpoints, we design a distributed 
compensator. The total controller for the underactuated 
system (1) can define as: 

 ( ) ( ) ( )i sm i com iu u u= +                        (16)  
where ucom(i) is the distributed compensator, and usm(i) is the 
incremental sliding mode controller. 

For the i-th layer sliding surface, ucom(i) is given by: 
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==−
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=

                 (17) 

Here id = dimax, the parameters Ci = |ci|. The mismatched 
uncertainties are compensated by the distributed sliding 
mode compensator at the sliding surfaces.  
 

III. STABILITY ANALYSIS  

In this section, we will prove the asymptotical stability 
of the entire sliding mode surfaces with Barbalat’s lemma.   

Theorem 1: Consider a class of the underactuated 
system with mismatched uncertainties as (1). If the sliding 
mode control law is defined as (10), (11), (12) and (15), the 
distributed compensator is defined by (16) and (17), and let 
the assumptions for plant (1) be true, the entire sliding mode 
surfaces are asymptotically stable. 
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Both sides of (8) is integrated,  
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Because the sliding mode parameterηi is define as (13), we 
can know that  
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which means  
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Then, we can obtain 
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According to Barbalat’s lemma, we can know when t → ∞ , 
2 1
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ks s s C d c d sη
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,which means 2 1lim 0it

s −→∞
= , i=1, 2, 3, …, n. When i=n, the 

last layer sliding mode surface is asymptotically stable. 
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For the ith layer sliding surface, the Lyapunov 

function is 21
2i iV s= . Differentiating Vi(t) with respect to 

time t obtains 
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From (11), (12) and (17), we have 
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From (13), we can know that 
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sgn( )i isη  are the same sign. The following inequation 
can be obtained: 
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Integrating both sides of (26), 
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(29) 
From (22) and (29), and using the Barbalat’s lemma, there is 
lim 0it

s
→∞

= , ( 1, 2,..., 2 2i n= − ). That is to say, all the sliding 

surfaces are asymptotically stable.  
 

IV. SIMULATION RESULTS 
In this section, we will demonstrate the robust control 

strategy. This roubust controller is applicable to a double 
inverted pendulum system. The structure of double inverted 
pendulum is shown in Fig.2. 

 
Fig.2. Structure of the double inverted pendulum 

system   
There are three subsystems: the lower pendulum, the 

upper pendulum, and the cart. From (1), let 3n = . The state 
space expression of the double inverted pendulum system 
can be described by 
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where [ ]1 2 3 4 5 6, , , , , TX x x x x x x=  is state variable vector,  
fi(x) and bi(x) (i=1,2,3) are the nonlinear function of the state 
variables. di(x)(i=1,2,3) is the mismatched uncertain term 
whose bound is known. And the system variables x1 =θ1 is 
the lower pendulum angle with respect to the vertical line; x2 

= 1θ  is the angular velocity of the lower pendulum angle; x3 =

θ2 is the upper pendulum angle with respect to the vertical 
line; x4 = 2θ  is the angular velocity of the upper pendulum 
angle; x5 =x is the cart position; x6 = x  is the cart velocity; u is 
the applied force to move the cart. 

For simulative comparison, the parameters of the 
double inverted pendulum system are chosen as that the cart 
mass is 1kg, the lower pendulum mass is 0.1kg, the upper 
pendulum mass is 0.1kg; the lower pendulum length is 0.1m, 
the upper pendulum length is 0.1m, the gravitational 
accelerating  is 9.81 2m s ,which are same to the simulation 
model in [12]. 

The mismatched uncertain terms of the system are 
assumed as follows: 

d1 = 0.1+0.5p, d2 = 0.1+0.5 p, d3 = 0.5 p, 
Here p is a random number whose range is from -1 to 1. 
Thus, the upper boundary of the mismatched uncertain terms 
d1max = 0.6, d2max = 0.6 and d3max = 0.5.  

The parameters of the incremental sliding mode 
controller are selected as c1 = -0.01, c2 = -2.0, c3 = 3.0, c4 = 
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0.2, c5 = 0.2, c6 = 0.2, 1 0.4η =  and 0.8k = . The control 
objective is from the initial conditions 
[ / 6,0, / 9,0,0,0]Tπ π of the inverted pendulum system to the 
desired state [0, 0, 0, 0, 0]T of the double inverted pendulum 
system. The simulation results are shown as follows. 
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Fig.3. Lower pendulum angle 
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Fig.4. Upper pendulum angle    
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Fig.5. Cart position 
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Fig.6. Sliding surface of the ISMC 

From Fig.3-5, we know that, by using the incremental 
sliding mode control with distributed compensator, all state 
variables can converge to the desired states with favorable 
system performance. Fig.6 shows the entire sliding surfaces. 
By this control method, all the sliding surfaces are 
asymptotically stable.  

Comparing with the method in [11], which the control 
objective was only to make the double pendulums upright 
without considering the cart position, our objective is more 
difficult. Comparing with the method in [12], the initial state 
of our objective is more difficulty, the curves are smoother 
and the response time is shorter. 

  

V. CONCLUSIONS 
An incremental sliding mode controller with distributed 

compensator has been proposed to achieve decoupling 
performance for a class of underactuated systems with 
mismatched uncertainties. For a class of underactuated 
systems, which consists of 2n state variables, the controller 
has the (2n-1)-layer sliding surfaces. The paper has shown 
that all the sliding surfaces are asymptotically stable. The 
simulation results also show the validity of this incremental 
sliding mode controller.  
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