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Abstract—In this paper we focus on the notion of robust
matrix root-clustering analysis in a union of regions that are
possibly disjoint and non symmetric. Indeed this work aims
at computing a bound on the size of the uncertainty domain
preserving matrix Du-stability. A Linear Fractional Transform
(LFT) uncertainty is considered. To reduce conservatism, a new
approach, based on some generalized S-procedure, is addressed.
In the case where the studied matrices depend affinely on
the uncertain parameters or when the studied matrices are
subject to polytopic uncertainty, it is known that recently
developed L MI conditions are effective to assess the robust
performance in a less conservative fashion. This paper further
extends the preceding results and propose a unified way to
obtain new L MI conditions even in the case of rational
parameter dependence. Some conservatism induced by some
techniques encountered in the literature is here reduced .

Index Terms—Robust matrix, Du-stability, S-procedure,
L MI .

I. INTRODUCTION

Robust stability analysis of control systems with parameter
uncertainties is one of the fundamental issues in system
theory. Many important advances have been achieved, see
[1]–[3] and the references therein.

The problem of robust matrix root-clustering in a region D
of the complex plane, also referred to as matrix D-stability
problem, has been widely investigated in the last decades.
Indeed, checking the robust D-stability of the state matrix
proves to be very useful to analyze the transient response
of a linear model. It enables ones, for instance, to verify if
some specified damping ratio and/or some settling time is
reached.

Considering a complex uncertain matrix A=A( , ),( ∈
IRq, ∈ [ in f , sup] and is an unknown matrix), our purpose
is to find the largest bound on the domain in which
lies such that A remains D-stable. Such bounds are called
robustness bounds or robust D-stability bounds. The way to
estimate such a bound obviously depends on the structure
of the uncertainty. The structured (parametric) case can be
distinguished from the unstructured (non parametric) one as
pointed out in one of the first contributions due to [4].

The maximal acceptable size of uncertainty was clearly
defined, for LFT uncertainty, as the stability radius [5]. Such
a stability radius was shown to equal the reciprocal of the
H -norm of a transfer in [6] and, thus, also appears to be
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the reciprocal of the maximal structured singular value
[7] along frequency. Unfortunately, techniques related to
analysis may sometimes induce heavy computations, this is
even truer when some performance level is required.
The research of robustness bounds was later improved in [8]–
[11] and extended to, for example, -regions and L MI -
regions [12]–[14].

One of the first attempts to consider unions of regions is
provided in [15]. The concept of Du-stability (root-clustering
in some region Du whose form encompasses many unions of
possible disjoint and not symmetric subregions) enables more
general results [16], [17]. However, these results remain quite
conservative. The use of Lyapunov functions is certainly
the main approach for this kind of analysis. Even if the
use of a single quadratic Lyapunov function for the whole
of the uncertainty domain [18] (quadratic stability), led
to interesting results [19], it remains quite pessimistic. To
reduce this conservatism, many authors proposed Parameter-
Dependent Lyapunov Functions [20]–[23]. Moreover, the
multiplier techniques have been exploited to develop less
conservative robust stability criteria [24]–[27].

In this paper, we propose to compute a robust Du-stability
bound in a different manner. To reduce conservatism in the
derivation of the bound, the reasoning relies on a framework
based upon explicitly rational parameter dependent Lyapunov
functions [28]. Indeed, to achieve our goal, we take benefit of
a quadratic Du-stability condition recently introduced in [17],
we rewrite it as a parameter-dependent L MI conditions
and transform it, using the S-procedure (see [24], [29] and the
references therein), into a parameter-independent optimiza-
tion problem that can be efficiently solved. Among the more
recent papers on this subject, it is worth mentioning [25],
[28], [30]. Recently the generalized S-procedure, introduced
by [29], [31], has proved to be very useful for robustness
analysis and synthesis of control systems. This procedure
provides a non conservative way to convert inequality con-
ditions on lossless sets into numerically verifiable conditions
represented by linear matrix inequalities.
The paper is organized as follows: after this introduction,
a large section is dedicated to preliminaries and problem
statement including some root-clustering concepts; The for-
mulation of E E MI -regions is recalled, the modeling of
the uncertain state-matrix is introduced and the basic tool in
this work, which is the S-procedure, is emphasized. In the
third section, previously existing results [17] are recalled.
A new formulation of the problem in the presence of LFT
uncertainty is then given. In the fifth section that constitutes
the most original contribution, we explain how to derive a
robust Du-stability bound via an extended version of the S-
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procedure [28], [29]. Section 6 provides a simple illustrative
example before the paper is concluded in section 7.
Notations :
M′ denotes the transpose conjugate of matrix M so s′ ∈ lC
is the conjugate of complex number s. MH equals matrix
M+M

′
. HPD stands for Hermitian positive definite. The 2-

norm of M (maximal singular value) is denoted by ||M||2.
[Mk]→ = [M1 · · ·Mk̄], [Mk]↓ = [M′

1 · · ·M ′̄
k
]′. I and 0 are the

identity matrix and the null matrix of appropriate dimensions
respectively. In matrix inequalities > 0 (resp. < 0) means
positive (resp. negative) definite. ≥ 0 (resp. ≤ 0) means
positive (resp. negative) semi definite. Symbol ⊗ denotes
the matrix Kronecker product. A Linear Fractional Transfor-
mation (LFT) defined, with (I−A ) invertible, by:

Fu

([
A B
C D

]
,

)
= A+B (I−D )−1C.

II. PROBLEM STATEMENT

In this section, we introduce the structure of the uncer-
tainty that is taken into account. The precise purpose is then
formulated, the notion of Du-stability is recalled, and the
S-procedure, that is the basic tool in this paper, is presented.

A. The uncertainty structure

Consider the uncertain system

ẋ = A( , )x. (1)

where the parameter vector belongs to the set ={
( 1, ..., k) : j ∈ [ jmin , jmax ], j = 1, ..,k

}
, and is un-

known matrix.
In this paper we focus on rational parameter-dependence that
allows to represent A( , ) as a linear fractional transforma-
tion (LFT)

A( , ) = A( )+B( ) (I−D( ) )−1C( ), (2)

where is constant, unknown and belongs to B( ), the
ball of all matrices ∈ lCq×r satisfying || ||2 ≤ . Matrix
(I−D( ) )−1 exists (well posedness). A( )∈ lCn×n, B( )∈
lCn×q, C ∈ lC r×n and D( ) ∈ lC r×q are rational matrices
on .

B. Problem statement

Let A( , ) be an uncertain matrix as defined in (2),
D a clustering region of the complex plane that might be
the union of several possibly disjoint and non symmetric
subregions (a possible formulation will be given in the
next subsection). This contribution aims at computing the
complex D-stability radius. More precisely, assume that
A( ) is D-stable i.e that the whole of its spectrum lies in
D . Define rD as the largest value of , the radius of B( ),
such that A( , ) remains D-stable for any ∈B( ). Such
a value is the so-called complex D-stability radius. A lower
bound ∗ of rD , as tight as possible, is to be computed.

C. Matrix Du stability

In this subsection, the notion of E E MI -regions
(E E MI for Extended Ellipsoidal Matrix Inequality) is
recalled [17]. Then, the concept of Du-stability is reminded
to the reader.

Definition 1: Let R be a set of m Hermitian matrices Rk

defined by

Rk = R′
k =

[
Rk00 Rk01
R′
k01

Rk11

]
∈ lC2d×2d , ∀k ∈ 1, ...,m, (3)

The set of points Du defined by

Du =

⎧⎪⎨
⎪⎩z ∈ lC |∃w =

⎡
⎢⎣

w1
...

wm

⎤
⎥⎦ ∈ {

IR+∗}m |

fDu(w,z) =
m

k=1

(
wk

[
Idk z′Idk

]
Rk

[
Idk
zIdk

])
≺ 0 } .(4)

is called an open E E MI -region of degree d.

Du is the generic name for an E E MI -region. When m =
1, this description reduces to E MI -formulation (E MI
for Ellipsoidal Matrix Inequality) proposed in [23] which is
rather equivalent to the L MI formulation [32].

Theorem 1: [17] Let Du be an E E MI -region as intro-
duced in definition 1. A matrix A ∈ lCn×n is Du-stable if and
only if there exists a set P of m HPD matrices Pk ∈ lCn×n,
k = 1, ...,m, such that

[
Idn Id ⊗A′ ]

U (P)
[

Idn
Id ⊗A

]
< 0 (5)

with

U (P) =
m

k=1

(Rk⊗Pk) (6)

Remark 1: Note that this condition consists in finding m
”Lyapunov” matrices Pk (as much as subregions in practice).
Besides, the result of [23] is a special case of Theorem 1 for
which m = 1 and R reduces to only one matrix R ∈ IRd×d

(i.e. for one single symmetric E MI -region).

D. S-procedure

In this section, we will first present a generalized version
of the S-procedure that converts a constrained inequality
to an unconstrained inequality with multiplier(s) [33]. The
S-procedure is frequently used as a tool in system theory
to derive stability and performance results for nonlinear
and uncertain systems [33]. Various properties of linear
systems can be characterized by inequality conditions in
the frequency domain [19], [34]. It has been shown that
frequency domain inequalities (frequency dependence) can
be reformulated as a parameters independent L MI con-
ditions by applying generalized S-procedure. It follows that
we can verify various properties of linear systems without
introducing any conservatism (under some conditions), by
solving L MI resulting from the generalized S-procedure.

Theorem 2: Let a matrix F , a Hermitian matrix and a
subset S of Hermitian matrices be given. Suppose S is rank

4798



one separable (i.e. if and only if a certain rank-one property
holds for an associated separating hyperplane [35]).Then the
following statements are equivalent.

(i)
′

< 0,∀ ∈ G =
{

∈ lCn : = 0,
′
S ≤ 0

∀S ∈ S } .
(7)

(ii) ∃S∈S | +F
′
SF < 0. (8)

The procedure to replace the condition (7) by (8) is called
the generalized S-procedure [29], [31]. When the rank one
separability condition is not verified, this replacement intro-
duces conservatism : The condition (8) is only sufficient
for (7).
Let us now consider the state-space realization

ẋ(t) = Ax(t)+Bu(t). (9)

y(t) = Cx(t)+Bu(t). (10)

For the particular choice of and F in (7) and (8)

=
[

(sI−A)−1B
I

]
, F =

[
I 0
A B

]
.

And for the following choice of S

S =
[

0 P
P 0

]
where P is a hermitian matrix. The S-

procedure is then particularized as follows

(i) ′( jw) ( jw) < 0 ∀w ∈ IR∪ ⇔
(ii) +

[
I 0
A B

]′ [ 0 P
P 0

][
I 0
A B

]
< 0.

It is the KYP lemma for continuous systems.
In the next, we will present a version of the S-procedure in
the uncertain case.
We can use the LFT formulae to establish the relationship
between transfer matrices and their state-space realizations.
A system with a state-space realization (9) has a transfer
matrix of

(s) = Fu

([
A B
C D

]
,
I
s

)
. (11)

Now take = 1
s , the transfer matrix can be written as

(s) = Fu

([
A B
C D

]
,

)
. (12)

In the general case, for an uncertain state-space realization
(A( ),B( ),C( ),D( )), whose matrices rationally depend
on , one can find an LFT representation of the system i.e.

( ) = Fu

([
A B
C D

]
,

)
. (13)

We now present the basic theorem, which will be used to
prove our main result.

Theorem 3: [28] Let ( ) be a rational matrix function
of ∈ IRq, defined by its LFT realization as in (13), let
be a Hermitian matrix. Then the condition

∀ ∈ [
in f , sup

] T ( ) ( ) < 0 (14)

holds if (and only if when q = 1) the following condition
holds[

C′
D′

] [
C′
D′

]′

+
[

I 0
A B

]′

S

[
I 0
A B

]
< 0.

(15)
with S ∈ S is a lossless subset [31].

In the next sections, we adopt the following subset S of
hermitian matrices, that is proven in [28] to be lossless (or
rank-one separable).

S =
{
S = ST |∃Q,G ∈ IRnA ×nA ,Q < 0, G = −GT

S =
[ −2Q ( in f + sup)Q +G

( in f + sup)Q−G −2 in f supQ

]}
. (16)

III. STARTING POINT

In this section, some result on quadratic Du-stability
analysis given in [17] is recalled, and then we will try to
extend it in the robust case for more complicated uncer-
tainties (rational parameter dependence and not structured
uncertainties).
First, we consider that the uncertain matrix A is given by

A = Fu

([
A B
C D

]
,

)
. (17)

in which ∈ lCq×ris unknown matrix and belongs to B( ),
the ball of (q×r) complex matrices checking || || ≤ , M =[

A B
C D

]
is constant and the parameters variation is not

take into account.
Theorem 4: [17] Let A ∈ lCn×n be a matrix as defined

in the equation (17) with M constant and Du be an
E E MI -region as formulated in definition 1. Matrix A is
quadratically Du-stable with respect to B( ) if (and only if
when d = 1) there exists a set P of m HPD matrices Pk,
k = 1, ...,m such that

Qu(M,P) =

⎡
⎣ Idn Id ⊗A′ 0 0

0 Id ⊗B′ Idq 0
0 0 0 Idr

⎤
⎦×

⎡
⎢⎢⎣

U (P) 0
Id ⊗C′

0
0 −Idq Id ⊗D′

Id ⊗C 0 Id ⊗D − Idr

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Idn 0 0
Id ⊗A Id ⊗B 0
0 Idq 0
0 0 Idr

⎤
⎥⎥⎦ < 0

∀i ∈ 1, ...,N

(18)

where = −2 and U (P) is given by equation (6)
Remark 2: When m = d = 1, the maximum value of ,

easily obtained by convex programming, equals the complex
Du-stability radius.
The extension of this theorem for the robust case is presented
in the next section.

IV. NEW FORMULATION OF THE PROBLEM

In this section, the problem presented by Theorem 4 is
extended for both structured and non structured uncertainties.
The uncertain matrix A is given by the equation (2) i.e. it is
affected by both LFT for (unknown matrix) and LFT for
(parameters variation).
Theorem 5: Let A ∈ lCn×n be a matrix as defined in the

equation (2), Du be an E E MI -region as formulated in

the definition (1). Let M =
[

A( ) B( )
C( ) D( )

]
is a matrix of
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rational functions on . Matrix A is robustly Du-stable with
respect to B( ) if (and only if when d = 1) there exists a
set P( ) of m HDP matrices Pk( ), k = 1, ...,m such that

⎡
⎣ Idn Id ⊗A′( ) 0 0

0 Id ⊗B′( ) Idq 0
0 0 0 Idr

⎤
⎦×

⎡
⎢⎢⎣

U (P( )) 0
Id ⊗C′( )

0
0 −Idq Id ⊗D′( )

Id ⊗C( ) 0 Id ⊗D( ) − Idr

⎤
⎥⎥⎦×

⎡
⎢⎢⎣

Idn 0 0
Id ⊗A( ) Id ⊗B( ) 0

0 Idq 0
0 0 Idr

⎤
⎥⎥⎦ < 0

(19)

where = −2 and U (P( )) is given by

U (P( )) =
m

k=1

(Rk⊗Pk( )) (20)

The proof is obvious from Theorem 1.
This optimization problem involving constraint (19) is con-
vex in the decision variables Pk( ). Unfortunately, it is
infinite dimensional and the decision variables are in an
infinite dimensional space. In this form, this prevents an
efficient computation of the solution [28]. We can therefore
impose a structure on Pk( ) in order to arrive at inequalities
on unknowns matrices [24].
When M varies in a polytopic manner, the condition (19) can
be treated in a simple fashion, according to [9], as mentioned
in the next theorem. Matrix M ∈ lC (n+r)(n+q) is assumed to
belong to a polytope M :

M =

{
M = M( )|M =

h

i=1
iMi =

h

i=1

(
i

[
Ai Bi

Ci Di

])
;

∈ =

{
= [ 1, . . . , h]

′ ∈ {
IR+}h |

h

i=1
i = 1

}}
.

where Mi, i = 1, . . . ,h are the vertices of M and is the set
of coordinates.

Theorem 6: [17] Let A ∈ lCn×n be a matrix as defined
in the equation (17) and Du be an E E MI -region as
formulated in definition 1. A is robustly Du-stable with
respect to B( ) and M if there exists N set Pi, each one
made up by m HPD matrices Pki, k = 1, ...,m, and a matrix
GU ∈ lCd(2n+q+r)×dn such that

⎡
⎢⎢⎣

U (Pi) 0
Id ⊗C′

i
0

0 −Idq Id ⊗D′
i

Id ⊗Ci Id ⊗Di − Idr

⎤
⎥⎥⎦+

{
GU

[
Id ⊗Ai −Imdn Id ⊗Bi 0

]}H
< 0. (21)

∀i ∈ {1, . . . ,h} where = −2.

This theorem ensures the existence of polytopic Lyapunov
matrices in the form Pk( ) = i=1

h iPi. This kind of condition
is inspired from [9].

Remark 3: Note that the L MI condition (19) can be
written as follows

∀ ∈ [ in f , sup] {F1( )( ( )+C)F2( )}H < 0 (22)

F1( ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Id ⊗A′( ))(R′
10k ⊗ In)→ (R′

10k ⊗B′( ))→ 0
0 0 Id ⊗C( )
0 0.5(R′

11k ⊗B′( ))→ 0
0 0 −0.5Idr

0.5(R00k ⊗ In)→ 0 0
0 −1

2 Idq 0
0.5(Id ⊗A′( ))(R11k ⊗ In)→ (R′

11k ⊗B′( ))→ 0
0 0 Id ⊗D( )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

′

,

F2( ) =

⎡
⎣ I I 0 0 I 0 Id ⊗A′( ) 0

0 0 Id ⊗B′( ) 0 0 I 0 I
0 0 0 Idr 0 0 0 0

⎤
⎦
′

,

( )+C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[Id ⊗Pk( )]↓ 0 0 0 0 0
0 I 0 0 0 0
0 0 [Id ⊗Pk( )]↓ 0 0 0
0 0 0 Idr 0 0
0 0 0 0 [Id ⊗Pk( )]↓ 0
0 0 0 0 0 Idq
0 0 0 0 0 0
0 0 0 0 0 0

· · ·

· · ·

0 0
0 0
0 0
0 0
0 0
0 0

[Id ⊗Pk( )]↓ 0
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Our goal is the transformation of this infinite dimensional
optimization problem into a finite dimensional one. For this,
we first try to search for a rational decision variables. We
then introduce the following finite parameterization

Pk( ) =
N
i=0

iPki
1+ N

i=0
idki

∀k ∈ {1, . . . ,m} . (23)

Each region is parameterized by (N+1) matrices Pi and N
scalars di. In order to obtain a finite number of constraints,
the second step is based on the extended version of
S-procedure given by theorem 3.

V. ROBUST Du-STABILITY ANALYSIS VIA S-PROCEDURE

The main result of this paper is summarized in the next
theorem

Theorem 7: Given N, let A∈ lCn×n be a matrix as defined

in the equation (2), M =
[

A( ) B( )
C( ) D( )

]
is a matrix of

rational functions on , and Du be an E E MI -region as
formulated in definition 1. Matrix A is robustly Du-stable
with respect to B( ) if there exists m set P( ), each one
made up by N matrices Pk, k = 1, ...,N, parameterized by
the equation (23) and well-posed on [ in f , sup], N scalars
di, i = 1, ...,N such that the three following conditions hold.
(i) There exist a symmetric positive definite matrix Q and
a skew-symmetric matrix G such that

[
C′
D′

] [
C′
D′

]′

+
[

I 0
A B

]′

S

[
I 0
A B

]
< 0,

(24)
where S is given by equation (16), is given by

=
[

0
′ 0

]
(25)
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with = N +dNC . . . 0 +d0C.

Fu

([
A B
C D

]
,

)
=

[
FT
1 ( )

F3( )F2( )

]
. (26)

where F1( ),F2( ) are given in remark 3, and F3 is given
by

F3( ) =

⎡
⎢⎢⎣

NI
N−1I
· · ·
I

⎤
⎥⎥⎦ . (27)

(ii) There exist a symmetric positive definite matrix Qp and
a skew-symmetric matrix Gp such that

[
C′
p

D′
p

]
p

[
C′
p

D′
p

]′

+
[

I 0
Ap Bp

]′

Wp

[
I 0
Ap Bp

]
< 0,

(28)
where Wp is given by equation (16) with G and Q replaced
by Gp and Qp respectively. p is given by

p =
[

0 −(dN dN−1 . . .1)
−(dN dN−1 . . .1)′ 0

]
. (29)

Morever

Fu

([
Ap Bp

Cp Dp

]
,

)
=

[
I

F3( )I

]
, (30)

and F3 is given by the equation (27).
(iii) There exist a symmetric positive definite matrix Qb

and a skew-symmetric matrix Gb such that

[
C′
b

D′
b

]
bk

[
C′
b

D′
b

]′

+
[

I 0
Ab Bb

]′

Wbk

[
I 0
Ab Bb

]
< 0,

(31)
∀k ∈ {1, . . . ,m}, where Wbk is also given by equation (16)
with G and Q replaced by Gb, and Qb respectively. bk is
given by

bk =
[

0 (PN PN−1 . . .P0)
(PN PN−1 . . .P0)′ 0

]
. (32)

Morever

Fu

([
Ab Bb

Cb Db

]
,

)
=

[ −In/2
F3( )In

]
, (33)

where F3 is still given by the equation (27).

Proof: By applying the S-procedure in the form of
Theorem 3, the L MI condition (24) is equivalent to (14)
with

( ) = Fu

([
A B
C D

]
,

)
(34)

and is given by the equation (25). Then, it can be written
as follows[

FT
1 ( )

F3( )F2( )

]′ [ 0
′ 0

][
FT
1 ( )

F3( )F2( )

]
, (35)

with = N + dNC . . . 0 + d0C. that is equivalent to (22)
which is a simple formulation of L MI (19).

In the same manner, by applying the S-procedure (Theorem
3), the L MI condition (28) can be written as follows

[
I

F3( )I

]′ [
0 −(dN dN−1 . . .1)

−(dN dN−1 . . .1)′ 0

][
I

F3( )I

]
< 0 (36)

⇔
{
1+

N

i=1
di i

}H

> 0. (37)

that is a necessary and sufficient condition for the well
posedness of our decision variables Pk( ) given by the
equation (23).
By applying the S-procedure another time, the L MI
condition (31) is equivalent to the condition

[ −In/2
F3( )In

]′ [
0 (PN PN−1 . . .P0)

(PN PN−1 . . .P0)′ 0

][ −In/2
F3( )In

]
< 0, (38)

where F3 is given by the equation (27). This condition (38)
is a simple formulation of the positivity of our decision
variables, i.e. Pk( ) > 0,∀k ∈ {1, . . . ,m} for ∈ [ in f , sup].

Remark 4: To make calculation simpler and to avoid
numerical problems, one can be satisfied, according to [36],
by polynomial decision variables i.e. denominator of Pk( )
for k = 1, . . . ,m equals 1.

VI. SHORT ILLUSTRATION

This simple example highlights the improvement of the
present work compared to [17]. Consider equation (2) with

A( ) =

[
−15.1073+(1+ ) −13.9317+ 1

(1+ )
8.5267 6.1073+ 1

(1+ )2

]
,

B = [0.7150 0.1215]′, C = [0.8989 0.6582] ,

D =
[

0 0
0 0

]
, with ∈ [−0.047,0.047].

The nominal spectrum is (A) = {−2;−5}. The clustering
region Du is chosen as the union of two discs centred around
the eigenvalues of A( ) and both of radius 1. The approach
used in [17] introduces a conservatism and is simply found
infeasible. Indeed, since A( ) is affected by a rational
uncertainty, [17, Theorem 6] cannot be applied directly.
The solution is a change of variables ( 1 = , 2 = 1

(1+ )
and 3 = 1

(1+ )2 ), and then instead of considering a single
uncertain parameter , two other parameters must be intro-
duced, what implies 8 vertices of polytope, and the approach
brings too much conservatism. Using our approach and by
applying Theorem 7, we obtain the complex Du-stability
radius � = 0.0577. Although some conservatism sometimes
induced by the technique of [17] is here circumvented,
it has to be mentioned that the proposed approach could
sometimes become numerically more demanding especially
when several regions are considered.
Figure 1 shows the pole migration plotted for several values
of such that || || ≤ �.

VII. CONCLUSION

We have proposed new L MI -based tests for the robust
analysis of matrix root-location when this matrix is subject
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to both LFT and rational parameter dependence uncertain-
ties. These tests rely on an extended version of the S-
procedure and involve explicitly parameter-dependent Lya-
punov functions with a rational dependence on the parameter
uncertainty. The simple example of the preceding section
highlights the limits of the results provided in [17] and shows
the relevance of the present contribution when [17, Theorem
6] fails or brings too much conservatism.
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