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Abstract— This paper deals with the problem of constructing
adaptive trajectory control scheme of nonholonomic mobile
robots based on H∞ control strategy. Both kinematics control
laws and dynamics control ones are developed based on H∞
criterion and for processes with unknown parameters. It is
shown that the resulting control signals are derived as solutions
of certain H∞ control problems where tracking errors of
controlled velocities and estimation errors of tuning parameters
are regarded as external disturbances to control systems.

I. INTRODUCTION

Control problems of wheeled mobile robots have been
investigated extensively by several researchers. Those mobile
robots are considered as nonholonomic systems with nonin-
tegrable constraints, and cannot be stabilized via continuous
feedbacks. The control problems of nonholonomic mobile
robots are divided into two categories; one is a stabilizing
control problem, and the other is a tracking control one.
In the stabilization of nonholonomic mobile robots, chained
forms and/or state scaling transformations are introduced,
and several discontinuous stabilizing control strategies have
been proposed in [1], [2], [3], [4], [5], [6], [7]. On the
contrary, the tracking control problems of nonholonomic mo-
bile robots are known to be practical issues, and kinematics
control (path tracking control of kinematics models via ve-
locity inputs) and dynamics control (path tracking control for
dynamic models via torque inputs) methodologies have been
developed and uncertainties of dynamical models (actuator
dynamics) have been dealt with by utilizing adaptive control
schemes. Those were reported in [8], [9], [10], [11], [12],
[13].

In the present paper, we consider adaptive trajectory
control schemes of uncertain nonholonomic mobile robots
based on H∞ control strategy. Both kinematics control laws
and dynamics control ones are developed based on H∞
criterion and for processes with unknown parameters. It
is shown that the resulting control signals are derived as
solutions of certain H∞ control problems where tracking
errors of controlled velocities and estimation errors of tuning
parameters are regarded as external disturbances to control
systems.

II. PROBLEM STATEMENT

We consider trajectory control (path tracking control)
problems of double wheeled mobile robots with pure rolling.
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A kinematics model of mobile robots is given by the follow-
ing equations. 

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω,
(1)

where (x, y, θ) denotes the posture of the mobile, and (v, ω)
is a control input; v is a linear velocity, and ω is an angular
velocity, respectively. The control objective is to make the
posture of the mobile (x, y, θ) follow the desired trajectory
(xr, yr, θr) described as follows:

ẋr = vr cos θr

ẏr = vr sin θr

θ̇r = ωr.
(2)

Here we define path trecking errors x̃, ỹ, θ̃ by
x̃ = xr − x
ỹ = yr − y

θ̃ = θr − θ,
(3)

and introduce new variables (e1, e2, e3), e1

e2

e3

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x̃
ỹ

θ̃

 , (4)

then, the next error dynamics of the kinematics model are
obtained.  ė1 = ωe2 − v + vr cos e3

ė2 = −ωe1 + vr sin e3

ė3 = ωr − ω.
(5)

III. CONTROL OF KINEMATICS MODEL
VIA VELOCITY INPUTS

First, we consider path tracking control problems of
kinematics models (5) via velocity inputs (v, ω). Various
methodologies have been developed to solve those problems
by several researchers including Kanayama et al. [8], Jiang &
Nijmeijer [10], Lefeber [11], Fukao et al. [12], and Wang &
Tsai [13]. Among those, Wang & Tsai [13] recently proposed
the following control strategy.

[Wang & Tsai Method (Kinematics Control)] [13]
Input velocities v and ω are synthesized in the following
way:

v = k01e1 + vr cos e3 + αω sin e3, (6)

ω =
1

1 + αe1
{k02 e3 sgn(e3 sin e3) + vre2

+αvr sin e3 + ωr} , (7)
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where it is assumed that 1 + αe1 6= 0, and k01, k02, α are
chosen such that k01 > 0, k02 > 0 and αvr ≥ 0. A locally
defined Lyapunov function candidate W0 is introduced.

W0 =
1
2

(
e2
1 + e2

2

)
+ (1 − cos e3) . (8)

The time derivative of W0 along the trajectory of (e1, e2, e3)
is given by

Ẇ0 = −k01e
2
1 − k02|e3 sin e3| − αvr sin2 e3 ≤ 0. (9)

Then, it follows that e1, e2, e3 ∈ L∞, e1∈ L2, e3 sin e3 ∈
L1, sin e3 ∈ L2 (when αvr 6= 0), and it is also shown that ė1,
ė2, ė3 ∈ L∞, and therefore limt→∞ e1 = limt→∞ e3 = 0 are
deduced. Furthermore, since limt→∞ ė3=− limt→∞ vre2 =
0, it is shown that limt→∞ e2 = 0 when limt→∞ vr(t) 6= 0.
Or since limt→∞ ė1 = limt→∞ ωre2 = 0, it follows that
limt→∞ e2 = 0 when limt→∞ ωr(t) 6= 0. Then, we obtain
the next theorem [13].

Theorem 1 [13] The control laws (6), (7) are applied to
the kinematics model (5) under the conditions that 1+αe1 6=
0 and αvr ≥ 0. Then the state (e1, e2, e3) of (5) is locally
bounded, and (e1, e2, e3) converges to zero asymptotically
(10), if either limt→∞ vr(t) 6= 0 or limt→∞ ωr(t) 6= 0.

lim
t→∞

e1(t) = lim
t→∞

e2(t) = lim
t→∞

e3(t) = 0. (10)

For Wang & Tsai method, the conditions 1 + αe1 6= 0
and αvr ≥ 0 are needed, which make the application of that
method, too restrictive. Next, we propose a new kinematics
control methodology based on H∞ control criterion.

[Proposed Method (Kinematics Control)] When v and
ω are not specified, the time derivative of W0 along the
trajectory of (5) is given by

Ẇ0 = −e1v + e1vr cos e3

+e2vr sin e3 + ωr sin e3 − ω sin e3. (11)

From that, v and ω are chosen in the following way.
v = vr cos e3 + v0, (12)
ω = ωr + vre2 + ω0, (13)

where v0 and ω0 are stabilizing signal to be determined later,
based on H∞ control criterion. Then, Ẇ0 becomes

Ẇ0 = −e1v0 − ω0 sin e3. (14)

Here we add virtual external disturbances ξ1, ξ2 ∈ L2 to
the input ports such that

Ẇ0 = −e1(v0 + ξ1) − (ω0 + ξ2) sin e3, (15)

and introduce the following virtual system.
d

dt

[
e1

e3

]
=

[
−v0 − ξ1

−ω0 − ξ2

]
≡ F0 + g01d0 + g02V0, (16)

F0 ≡ 0, g01 = g02 =
[

−1 0
0 −1

]
, (17)

d0 ≡
[

ξ1 ξ2

]T
, (18)

V0 ≡
[

v0 ω0

]T
. (19)

It should be noted that the time derivative of W̄0

W̄0 =
1
2
e2
1 + (1 − cos e3), (20)

along the trajectory of the virtual system (16), (17), (18), (19)
is equal to Ẇ0 (15). We are to stabilize that virtual system
via a control input V0 by H∞ control criterion, where d0 is
regarded as an external disturbance to the process. For such
purpose, we introduce the following Hamilton-Jacobi-Isaacs
(HJI) equation.

LF0W +
1
4

{
‖Lg01W‖2

γ2
0

− (Lg02W )R−1
0 (Lg02W )T

}
+q0 = 0, (21)

where the solution W is given by W = W̄0 (8). Here we
adopt inverse optimal control policy [14], [15], [16], [7], and
obtain a symmetric positive definite matrix R0 and a positive
function q0 from the inequality (21) for the given solution
W = W̄0 and the positive constant γ0. The substitution of
W = W̄0 (20) into HJI equation (21) yields

1
4

(
‖s‖2

γ2
0

− sT R−1
0 s

)
+ q0 = 0, (22)

s =
[

e1 sin e3

]T
. (23)

Then, R0 and q0 are given by

R0 =
(

I

γ2
0

+ K0

)−1

, (24)

q0 =
1
4
sT K0s, (25)

(K0 = KT
0 > 0),

and the control input V0 is derived as an optimal solution
for the corresponding H∞ control problem such that

V0 = −1
2
R−1

0 (Lg02W0)
T

=
1
2
R−1

0 s =
1
2

(
I

γ2
0

+ K0

)
s. (26)

By considering the relations of (21), (22), (23), (24), (25),
we come back to stability analysis of the original process
(5). From HJI equation (21), Ẇ0 (15) along the trajectory of
(5) is evaluated by

Ẇ0 = −sT (V0 + d0)

=
(

V0 −
1
2
R−1

0 s

)T

R0

(
V0 −

1
2
R−1

0 s

)
−q0 − V T

0 R0V0

−γ2
0

∥∥∥∥d0 +
s

2γ2
0

∥∥∥∥2

+ γ2
0‖d0‖2, (27)

and it is shown that V0 is an optimal solution which mini-
mizes the following cost functional.

J0 = sup
d0∈L2

{∫ t

0

(q0 + V T
0 R0V0)dτ + W0(t)

−γ2
0

∫ t

0

‖d0‖2dτ

}
. (28)

Also, we have the next inequality.
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∫ t

0

(q0 + V T
0 R0V0)dτ + W0(t)

≤ γ2
0

∫ t

0

‖d0‖2dτ + W0(0). (29)

Hence, since d0 ∈ L2 (in this section, d0 ≡ 0 actually), the
inequality (29) holds, and the right side of (29) is bounded
from above, even for arbitrary t including t = ∞. Therefore,
it follows that e1, e2, e3 ∈ L∞, e1, sin e3 ∈ L2, and the
same result as Wang & Tsai Method is derived. However,
the conditions 1 + αe1 6= 0, αvr ≥ 0 are not necessary in
the proposed methodology.

Theorem 2 The control laws (12), (13), (26) are applied
to the kinematics model (5). Then the state (e1, e2, e3) of (5)
is locally bounded, and (e1, e2, e3) converges to zero asymp-
totically, if either limt→∞ vr(t) 6= 0 or limt→∞ ωr(t) 6= 0.
Furthermore, V0 is an optimal solution which minimizes the
cost functional J0 (28), and the inequality (29) holds.

Remark 1 In our proposed methodology, K0(= KT
0 >

0) is a free parameter. An example of it is given below:

K0 =
[

k011 + k012e
2
1 0

0 k021 + k022e
2
3

]
, (30)

(k011, k021 > 0, k012, k022 ≥ 0).

Especially, when k012 = k022 = 0, the proposed methodol-
ogy is essentially equivalent to the method by Kanayama et
al. [8]. However, the proposed scheme is derived as a solution
for certain H∞ control problem, and it possesses disturbance
attenuation property represented by (29). That is an important
point, when dynamical actuator models (dynamic models)
are considered in the following sections.

Remark 2 In most of the previous related works, the
condition that either limt→∞ vr(t) 6= 0 or limt→∞ ωr(t) 6=
0, is necessary for asymptotic zero-tracking of (e1, e2, e3)
[8], [10], [12]. This is owing to stability analysis based on
Lyapunov functions. On the contrary, Lefeber [11] proposed
a different control scheme of the same problem by introduc-
ing the cascaded design, where the previous condition on vr

and ωr is replaced by the new one that ωr is persistently
exciting. Hence, his approach cannot be directly applied to
constant ωr.

Remark 3 Similar to [8], [12], [13], the proposed
control scheme is stable in the local sense. On the contrary,
the globally stable control strategies were proposed in [10],
[11]. The difference between those two research results
is owing to the difference of Lyapunov functions used in
stability analysis. Although the proposed methodology is
locally stable, that can be extended to a globally stable
control scheme via the new Lyapunov function, which will
be shown in the future study.

IV. CONTROL OF DYNAMIC MODEL
VIA TORQUE INPUTS

In Section III, the path tracking of the kinematics model is
attained via velocity inputs v and ω. In the present section,
we consider actuator dynamics, and control the velocity of

the dynamic model via torque inputs, which is described as
follows [6], [13]:

MV̇ + FV = Bτ, (31)

M =
[

m 0
0 I

]
, F =

[
f1 0
0 f2

]
,

B =
1
r0

[
1 1

l/2 −l/2

]
, (32)

V =
[

v ω
]T

, (33)

τ =
[

τ1 τ2

]T
, (34)

where m is a mass of the mobile, I is an inertia moment of
the rotation of the mobile, f1 and f2 are friction constants of
two wheels, r0 is a diameter of the wheels, l is a width of the
mobile, and τ1 and τ2 are input torques of the two wheels.
In this manuscript, r0 and l (physical configuration of the
mobile) are known a priori, and hence B is a known matrix.
However, m, I , f1 and f2 are assumed to be unknown.
Then, the dynamic model of the mobile is rewritten into the
following form.

Bτ = MV̇ + FV = Y (V, V̇ )φ, (35)

Y (V, V̇ ) =
[

v̇ 0 v 0
0 ω̇ 0 ω

]
, (36)

φ =
[

m I f1 f2

]T
, (37)

where φ is an unknown parameter vector.
In order to make the velocity of the mobile V =[
v ω

]T follow the desired reference velocity Vd =[
vd ωd

]T
, the input torque τ is synthesized as follows

[6], [13]:
Bτ = Y (V, V̇d)φ̂ − K1ξ, (K1 = KT

1 > 0), (38)

ξ = V − Vd =
[

ξ1 ξ2

]T
, (39)

Y (V, V̇d) =
[

v̇d 0 v 0
0 ω̇d 0 ω

]
, (40)

where φ̂ is a current estimate of φ. Then, we obtain
Mξ̇ + K1ξ = Y (V, V̇d)φ̃, (41)

φ̃ = φ̂ − φ. (42)

The estimate φ̂ is tuned by the next adaptation law [6], [13]．

˙̂
φ = −ΓY (V, V̇d)T ξ, (Γ = ΓT > 0). (43)

For stability analysis of the adaptive control systems, we
introduce a positive function W1

W1 =
1
2
ξT Mξ +

1
2
φ̃T Γ−1φ̃, (44)

and take the time derivative of W1 along the trajectory of
(V, φ̃).

Ẇ1 = −ξT K1ξ ≤ 0. (45)

Then, it is shown that ξ, φ̂ ∈ L∞, ξ ∈ L2, and ξ̇ ∈ L∞ is
deduced, and it follows that limt→∞ ξ(t) = 0.

Next, we combine two control schemes, the path tracking
control via velocity inputs (kinematics control) and the
velocity control via torque inputs (dynamics control), and
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construct the path tracking control scheme via torque inputs
(dynamics control).

[Path Tracking Control Strategy of Dynamic Model
via Wang & Tsai Method (Kinematics Control)] The
substitution of the velocity tracking errors (ξ1, ξ2)

ξ1 = v − vd, ξ2 = ω − ωd, (46)

into the kinematics model (e1, e2, e3) (5) yields ė1 = ωe2 − vd − ξ1 + vr cos e3

ė2 = −ωe1 + vr sin e3

ė3 = ωr − ωd − ξ2.
(47)

Here we apply Wang & Tsai Method (kinematics control)
[13] to generate vd and ωd such that

vd = k01e1 + vr cos e3 + αω sin e3, (48)

ωd =
1

1 + αe1
{k02e3sgn(e3 sin e3) + vre2

+αvr sin e3 + ωr} . (49)

The time derivative of W0 (8) along the trajectory of
(e1, e2, e3) is given by

Ẇ0 = −k01e
2
1 − k02|e3 sin e3| − αvr sin2 e3

−ξ1e1 − ξ2 sin e3. (50)

For stability analysis of the path tracking control scheme of
dynamic models via torque inputs, a positive function W2 is
newly defined by

W2 = W0 + βW1, (β > 0). (51)

The time derivative of W2 along the trajectory of
(e1, e2, e3, ξ1, ξ2, φ̂

T ) is given as follows:

Ẇ2 = −k01e
2
1 − k02|e3 sin e3| − αvr sin2 e3

−ξ1e1 − ξ2 sin e3 − βξT K1ξ

≤ −k01e
2
1 − k02|e3 sin e3| − αvr sin2 e3

−ξ1e1 − ξ2 sin e3 − βλmin(K1)(ξ2
1 + ξ2

2)

≤ −1
2
k01e

2
1 − k02|e3 sin e3| −

1
2
αvr sin2 e3

−
(

βλmin(K1) −
1

2k01

)
ξ2
1

−
(

βλmin(K1) −
1

2αvr

)
ξ2
2 , (52)

where λmin(K1) is the minimal eigenvalue of K1. Then, for
β satisfying

β > max
(

1
2k01λmin(K1)

,
1

2αvrλmin(K1)

)
, (53)

it follows that Ẇ2 ≤ 0, and the next theorem is deduced.

Theorem 3 The velocity control scheme is constructed
via (38), (43), and Vd is synthesized via Wang & Tsai Method
(path tracking control of kinematics model) (48), (49). Then,
the velocity tracking error and the estimate of φ, (ξT , φ̂T ) are
globally bounded, and ξ(t) converges to zero asymptotically.

lim
t→∞

ξ(t) = 0, (ξ ∈ L2). (54)

Furthermore, (e1, e2, e3) are locally bounded under the
conditions 1 + αe1 6= 0 , αvr > 0, and converge to
zero asymptotically (10) if either limt→∞ vr(t) 6= 0 or
limt→∞ wr(t) 6= 0.

The condition αvr 6= 0 is newly added from (53).
Therefore, the path tracking control strategy of dynamic
models via Wang & Tsai method has many restrictions such
as 1 + αe1 6= 0 and αvr > 0. Additionally, it should be also
noted that β is not a design parameter, or β need not be
determined explicitly. Instead, it is sufficient for β to exist
under the condition (53) and for given design parameters k01,
α, K1, vr.

Next, we provide the path tracking control strategy of
dynamic models via the proposed methodology (kinematics
control).

[Path Tracking Control Strategy of Dynamic Models
via Proposed Method (Kinematics Control)] The pro-
posed methodology (12), (13), (26) (kinematics control) is
applied to generate vd and ωd such that

vd = vr cos e3 + v0, (55)
ωd = ωr + vre2 + ω0, (56)

V0 =
[

v0

ω0

]
=

1
2
R−1

0

[
e1

sin e3

]
. (57)

Then the time derivative of W0 along the trajectory of
(e1, e2, e3) is given by

Ẇ0 = −e1(v0 + ξ1) − (ω0 + ξ2) sin e3. (58)

This is equivalent to the previous equation (15) by setting
d0 = ξ. Hence W0 is evaluated as follows:

Ẇ0 = −sT (V0 + ξ)

=
(

V0 −
1
2
R−1

0 s

)T

R0

(
V0 −

1
2
R−1

0 s

)
−q0 − V T

0 R0V0

−γ2
0

∥∥∥∥ξ +
s

2γ2
0

∥∥∥∥2

+ γ2
0‖ξ‖2. (59)

Since ξ ∈ L2, it follows that∫ ∞

0

(q0 + V T
0 R0V0)dτ + W0(∞)

≤ γ2
0

∫ ∞

0

‖ξ‖2dτ + W0(0) < ∞, (60)

and the similar result to the previous case is obtained.

Theorem 4 The velocity control scheme is constructed
via (38), (43), and Vd is synthesized via Proposed Method
(path tracking control of kinematics model) (55), (56),
(57). Then, the velocity tracking error and the estimate
of φ, (ξT , φ̂T ) are globally bounded, and ξ(t) converges
to zero asymptotically (54). Also, (e1, e2, e3) are locally
bounded, and converge to zero asymptotically (10) if either
limt→∞ vr(t) 6= 0 or limt→∞ wr(t) 6= 0. Furthermore, Vd is
an optimal solution which minimizes the cost functional J0

(28) for the velocity tracking error d0 = ξ, and the inequality
(60) also holds.
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In the path tracking control strategy of dynamic models
via proposed method (kinematics control), stability analysis
of the path tracking control (kinematics model) and velocity
control (dynamic model) can be discussed separately because
of H∞ control property of the path tracking control scheme
(kinematics control). Or total stability analysis can be also
carried out by utilizing W2 (51). Since it holds that

Ẇ2 ≤ −q0 − V T
0 R0V0 −

(
βλmin(K1) − γ2

0

)
‖ξ‖2, (61)

then, for β satisfying

β >
γ2
0

λmin(K1)
, (62)

it follows that Ẇ2 ≤ 0, and the same result as Theorem 4 is
obtained. It should be noted that the conditions of Wang &
Tsai Method (αvr > 0 and 1 + αe1 6= 0) are not necessary
in the proposed methodology (Theorem 4).

V. CONTROL OF DYNAMIC MODEL
VIA TORQUE INPUTS

BASED ON H∞ CONTROL CRITERION

Next, we construct velocity control scheme (dynamics
control) based on H∞ control criterion, and provide the
path tracking control scheme via torque inputs based on H∞
control strategy. First, input torques are determined in the
following way.

Bτ = Y (V, V̇d)φ̂ + Bτ0, (63)

where τ0 is a stabilizing signal to be determined later based
on H∞ criterion. Then, the dynamic model of the mobile is
written by

ξ̇ = M−1Y (V, V̇d)φ̃ + M−1Bτ0

≡ F1 + g11d1 + g12u0, (64)
F1 = 0, g11 = M−1Y (V, V̇d), g12 = M−1,

d1 = φ̃, u0 = Bτ0. (65)

Here we are to stabilize the process via an input u0 based on
H∞ control strategy where d1 = φ̃ is regarded as an external
disturbance to the process. For such purpose, the next HJI
equation is introduced.

LF1W +
{
‖Lg11W‖2

γ2
1

− (Lg12V )R−1
1 (Lg12V )T

}
+q1 = 0. (66)

R1 is a symmetric positive definite matrix and q1 is a positive
function, and those are derived based on the notion of inverse
optimality [14], [15], [16], [7] for the given positive constant
γ1 > 0 and for the solution W = W3 given by

W3 =
1
2
ξT Mξ. (67)

The substitution of the solution W = W3 (67) into HJI
equation (66) yields

1
4

(
‖ξT Y (V, V̇d)‖2

γ2
1

− ξT R−1
1 ξ

)
+ q1 = 0. (68)

Therefore, R1 and q1 are obtained such as

R1 =
(

1
γ2
1

Y (V, V̇d)Y (V, V̇d)T + K1

)−1

, (69)

q1 =
1
4
ξT K1ξ, (70)

(K1 = KT
1 > 0),

and u0 is derived as an optimal solution for the corresponding
H∞ control problem.

u0 = Bτ0 = −1
2
R−1

1 (Lg12W3)
T = −1

2
R−1

1 ξ

= −1
2

(
1
γ2
1

Y (V, V̇d)Y (V, V̇d)T + K1

)
ξ. (71)

Then, Ẇ3 is evaluated by

Ẇ3 = ξT
{

u0 + Y (V, V̇d)φ̃
}

=
(

u0 +
1
2
R−1

1 ξ

)T

R1

(
u0 +

1
2
R−1

1 ξ

)
−q1 − uT

0 R1u0

−γ2
1

∥∥∥∥∥φ̃ − Y (V, V̇d)T ξ

2γ2
1

∥∥∥∥∥
2

+ γ2
1‖φ̃‖2, (72)

and it is shown that u0 is an optimal solution which mini-
mizes the following cost functional J1.

J1 = sup
φ̃∈L2

{∫ t

0

(q1 + uT
0 R1u0)dτ + W3(t)

−γ2
1

∫ t

0

‖φ̃‖2dτ

}
. (73)

Also, the next inequality holds.∫ t

0

(q1 + uT
0 R1u0)dτ + W3(t)

≤ γ2
1

∫ t

0

‖φ̃‖2dτ + W3(0). (74)

The estimation parameter φ̂ is tuned by the same adaptation
law (43). Then, Ẇ1 is evaluated by

Ẇ1 = −1
2
ξT R−1

1 ξ ≤ 0, (75)

and it is shown that ξ, φ̂ ∈ L∞, ξ ∈ L2, and ξ̇ is derived,
and it follows that limt→∞ ξ(t) = 0.

Here, we combine two control schemes based on H∞
criterion, the path tracking control via velocity inputs (kine-
matics control) (55), (56), (57), and the velocity control
via torque inputs (dynamics control) (63), (71), (43), and
provide the path tracking control scheme via torque inputs.
Then, Vd is synthesized by considering velocity tracking
error ξ, and u0 is generated by considering estimation error
φ̃. Both control strategies are determined based on H∞
optimal control criterions. That total concept is shown in
the following equations. For W4 defined by

W4 = W0 + W3, (76)

Ẇ4 is evaluated as follows:
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Ẇ4 = −sT (V0 + ξ) + ξT
{

u0 + Y (V, V̇d)φ̃
}

=
(

V0 −
1
2
R−1

0 s

)T

R0

(
V0 −

1
2
R−1

0 s

)
−q0 − V T

0 R0V0

−γ2
0

∥∥∥∥ξ +
s

2γ2
0

∥∥∥∥2

+ γ2
0‖ξ‖2

+
(

u0 +
1
2
R−1

1 ξ

)T

R1

(
u0 +

1
2
R−1

1 ξ

)
−q1 − uT

0 R1u0

−γ2
1

∥∥∥∥∥φ̃ − Y (V, V̇d)T ξ

2γ2
0

∥∥∥∥∥
2

+ γ2
1‖φ̃‖2. (77)

Then, it is shown that V0 and u0 are optimal solutions which
minimize the following cost functional J2.

J2 = sup
ξ, φ̃∈L2

{∫ t

0

(q0 + V T
0 R0V0)dτ

+
∫ t

0

(q1 + uT
0 R1u0)dτ + W4(t)

−γ2
0

∫ t

0

‖ξ‖2dτ − γ2
1

∫ t

0

‖φ̃‖2

}
. (78)

Also, the next inequality holds.∫ t

0

(q0 + V T
0 R0V0)dτ +

∫ t

0

(q1 + uT
0 R1u0)dτ + W4(t)

≤ γ2
0

∫ t

0

‖ξ‖2dτ + γ2
1

∫ t

0

‖φ̃‖2dτ + W4(0). (79)

Stability of the proposed adaptive control systems is assured
similarly to the previous cases, by considering ξ ∈ L2. Or
Ẇ2 is evaluated by

Ẇ2 ≤ −q0 − V T
0 R0V0 − ξT

(
β

2
R−1

1 − γ2
0I

)
ξ, (80)

and for β > 0 satisfying

βR−1 > 2γ2
0I, (81)

it follows that Ẇ2 ≤ 0, and then stability of the proposed
adaptive system is assured.

Theorem 5 The velocity control scheme is constructed
via (63), (71), (43), and Vd is synthesized via Proposed
Method (path tracking control of kinematics model) (55),
(56), (57). Then, the velocity tracking error and the estimate
of φ, (ξT , φ̂T ) are globally bounded, and ξ(t) converges
to zero asymptotically (54). Also, (e1, e2, e3) are locally
bounded, and converge to zero asymptotically (10) when
limt→∞ vr(t) 6= 0 or limt→∞ wr(t) 6= 0. Furthermore,
Vd and u0 are optimal solutions which minimize the cost
functional J2 (78) for the velocity tracking error ξ and the
estimation error φ̃, and the inequality (79) also holds.

Remark 4 Of course, J2 (78) is a fictitious cost func-
tional, since φ̃ is not actually an external disturbance but an
error of the tuning parameter, and since that is not generally
included in L2[0,∞). Nevertheless, V0, which is derived as
a solution for that fictitious H∞ control problem, attain the

inequality (79), and it means that the L2 gains from the
disturbances ξ, φ̃ to the generalized output

√
q0 + V T

0 RV0

are prescribed by positive constants γ0, γ1. Additionally, it
should be noted that boundedness of φ̃ is assured in the
stability analysis as the adaptive control schemes.

VI. CONCLUDING REMARKS
The problem of constructing adaptive H∞ trajectory con-

trol scheme of uncertain nonholonomic mobile robots, is dis-
cussed in this paper. Both kinematics and dynamics control
laws are developed based on H∞ criterion and for processes
with unknown parameters. In the present work, the matrix B
of the dynamical models of the wheeled mobiles (physical
configuration of the mobiles) are assumed to be known a
priori for simplicity of notation. However, the present control
schemes can be easily extended to the case where even B is
unknown. That result together with the globally stable control
scheme will be shown in our future research.
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