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Abstract— The problem of robust strictly passive analysis
for a class of uncertain discrete singular time-delay systems is
investigated in this paper. The discrete singular systems under
consideration involve constant time-delay and norm-bounded
uncertainties. Based on an integral inequality, a new sufficient
condition is firstly obtained, which guarantees that the discrete
singular time-delay systems are admissible and strictly passive.
Meanwhile, the sufficient condition for robust strictly passive
is also obtained in terms of linear matrix inequality (LMI). A
numerical example is also given to demonstrate the applicability
of the proposed method.

I. INTRODUCTION

It is well known that dissipative theory plays an important
role in stability analysis of control systems. The implication
is that there exists a nonnegative energy function such that
the energy consumption of a control system is always less
that the supply rate of the energy. When the supply rate is
taken as the special form, the dissipativeness is changed into
passivity.

On the other hand, singular systems, which are also
known as descriptor systems; semi-state space systems and
generalized state space systems are dynamic systems whose
behaviors are described by both differential equations (or
difference equations) and algebraic equations. Such systems
can preserve the structure of practical systems and have
extensive applications in power systems, robotic systems
and networks [1], [10]. The study of singular systems has
received a lot of attention during the past decades, and
many results based on the theory of state-space systems have
been extended to the area of singular systems [2], [3], [4].
In recent years, the passive control for singular systems in
terms of generalized algebraic Riccati inequalities has been
proposed in [5]. [6] developed a linear matrix inequality
(LMI) approach for designing the robust impulse passive
state feedback controller and output feedback such that the
closed-loop system is robust stable and strictly passive. In
the singular time-delay systems setting, the passive control
for continuous singular time-delay system can be found in
[7], but for discrete singular time-delay system, there are few
results involving the problem of positive real control.

In this paper, we study the problem of strictly passive
analysis for discrete singular time-delay systems. Based on
an integral inequality, a new sufficient condition ensuring
a discrete singular time-delay system to be admissible and
strictly passive is proposed. The obtained results are pro-
posed in term of LMI and involves no decomposition of
system matrices. Finally, an illustrative example is provided
to demonstrate the applicability of the proposed method.

Notations: Throughout this paper, <n denotes the
n−dimensional Euclidean space, <n×n is the set of real
matrices with m rows and n columns. For symmetric matri-
ces X and Y , the notation X > Y (respectively, X ≥ Y )
means that X − Y is positive definite (respectively, positive
semidefinite). The superscripts T and ∗ represent the trans-
pose and the complex conjugate transpose, respectively. For
a symmetric matrix, ? denotes the matrix entries implied by
symmetry. We use ρ(E, A) to represent max{|λ| : det(λE−
A) = 0}. In and 0m×n are used to denote the n×n identity
matrix and m × n zero matrix, respectively. The subscripts
n and m × n are omitted when the size is not relevant or
can be determined from the context.

II. PROBLEM FORMULATION

Consider a class of uncertain discrete singular time-delay
systems described by




Ex(k + 1) = (A + ∆A)x(k)
+ (Ad + ∆Ad)x(k − d) + Bww(k)

z(k) = Cx(k) + Dww(k)
x(k) = φ(k), k ∈ [−d, 0]

(1)
where x(k) ∈ <n is the state; w(k) ∈ <p is the disturbance
input and z(k) ∈ <q is the controlled output. For the
above singular system, we assume that p = q. d > 0 is
an integer denoting the constant time-delay of system (1)
and φ(k) is a real-valued vector function representing the
initial condition of x(k). E, A, Ad, Bw, C and Dw are
constant matrices with appropriate dimensions, where E may
be singular and we assume that rank(E) = r ≤ n. ∆A, ∆Ad

are unknown and possibly time-varying matrices representing
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norm-bounded parameter uncertainties and are assumed to be
of the following form

[
∆A ∆Ad

]
= HF (k)

[
Na Nd

]
(2)

where H , Na and Nd are constant matrices with appropriate
dimensions and F (k) is an unknown matrix bounded by

FT (k)F (k) ≤ I (3)

Before proceeding further, we give some definitions and
lemmas for the following nominal system.





Ex(k + 1) = Ax(k) + Adx(k − d) + Bww(k)
z(k) = Cx(k) + Dww(k)
x(k) = φ(k), k ∈ [−d, 0]

(4)
Definition 1.
(1) The pair (E, A) is said to be regular if det(zE − A)

is not identically zero.
(2) The pair (E, A) is said to be causal if deg(det(zE −

A)) = rank(E).
(3) The pair (E, A) is said to be stable if ρ(E, A) < 1.
Definition 2.
(1) The discrete singular time-delay system (4) is said to

be regular and causal, if the pair (E, A) is regular and causal.
(2) The discrete singular time-delay system (4) is said to

be admissible if it is regular, causal and stable.
Throughout this paper, we shall use the following concept

of passiveness.
Definition 3.
(1) The discrete singular system (4) is said to be passive if

there exists a positive definite functional V (x(k)) > 0 such
that the following inequality holds

2
∞∑

k=1

zT (k)w(k) ≥ 0

for any disturbance input ω(k).
(2) The discrete singular system (4) is said to be

strictly passive if there exists a positive definite functional
V (x(k)) > 0 such that the following inequality holds

2
∞∑

k=1

zT (k)w(k) > 0

for any disturbance input ω(k).
Lemma 1. [8] Given matrices X , Y and Ω = ΩT , we

have

Ω + XF (k)Y + Y T FT (k)XT < 0

for any FT (k)F (k) ≤ I if and only if there exists a positive
scalar ε > 0 such that

Ω + ε−1XXT + εY T Y < 0.

Lemma 2. [9] Define y(k) := x(k + 1) − x(k), then for
any matrices M , N , Z ∈ <n×n and constant d > 0, the

following inequality holds:

−
k−1∑

k−d

yT (i)Ry(i)

≤ ξT (k)
[

MT + M −MT + N
∗ −NT −N

]
ξ(k)

+dξT (k)
[

MT

NT

]
Z−1

[
M N

]
ξ(k).

III. ROBUST PASSIVE ANALYSIS

In this section, a sufficient condition which guarantees the
system (4) to be admissible and strictly passive is proposed.

Theorem 1. For given time-delay d > 0, the discrete
singular time-delay system (4) is admissible and strictly
passive if there exist matrices P = PT > 0, Q = QT > 0,
Z = ZT > 0, S, M and N such that the linear matrix
inequality (5) shown on the top of next page hold, where

Ξ11 := AT RST + SRT A− ET PE + MT E + ET M + Q

and R ∈ <n×(n−r) is any matrix with full column rank and
satisfies ET R = 0.

Proof. By using Schur complement, it follows from (5)
that

(A + Ad)T P (A + Ad)− ET PE

+ (A + Ad)T RST + SRT (A + Ad) < 0.

By denoting U := PE+RST and using the results in [10], it
can be easily verified that the pair (E, A+Ad) is admissible.

Note that rank(E) ≤ n, there exist two nonsingular
matrices Ḡ and H̄ such that

Ē = GEH =
[

Ir 0
0 0

]
. (6)

Now, define the following matrices

Ā := GAH =
[

Ā11 Ā12

Ā21 Ā22

]
,

Ād := GAdH =
[

Ād11 Ād12

Ād21 Ād22

]
,

P̄ := G−T PG−1 =
[

P̄11 P̄12

P̄21 P̄22

]
,

Q̄ := GQH =
[

Q̄11 Q̄12

Q̄21 Q̄22

]
,

M̄ := G−T MH =
[

M̄11 M̄12

M̄21 M̄22

]
,

N̄ := G−T NH =
[

N̄11 N̄12

N̄21 N̄22

]
,

Z̄ := G−T MG−1 =
[

Z̄11 Z̄12

Z̄21 Z̄22

]
,

R̄ := GT R =
[

0
Φ̄

]
, C̄ := CH−1 =

[
C̄1 C̄2

]
.

Left-and right-multiplying Ξ11 with HT and H yields
[
> >
> S̄2Φ̄T Ā22 + ĀT

22Φ̄S̄T
2 + Q̄22

]
< 0 (7)

3661



Ξ :=




Ξ11 SRT Ad + ET N −MT E SRT Bw − CT dMT AT P d(A− E)T Z
? −NT E − ET N −Q 0 dNT AT

d P dAT
d Z

? ? −Dw −DT
w 0 BT

wP dBT
wZ

? ? ? −dZ 0 0
? ? ? ? −P 0
? ? ? ? ? −dZ




< 0 (5)

where > represents matrices that are not relevant in the
following discussion. It follows from (7) that

S̄2Φ̄T Ā22 + ĀT
22Φ̄S̄T

2 + Q̄22 < 0 (8)

Then, it can be easily shown that the matrix S̄2Φ̄T Ā22 is
nonsingular, which implies that the matrix Ā22 is nonsingular
too. Then, we have that the pair (E, A) is regular and causal.

Left-and right-multiplying (5) by

diag
{
H̄T , H̄T , I, Ḡ−T , Ḡ−T , Ḡ−T

}

and
diag

{
H̄, H̄, I, Ḡ−1, Ḡ−1, Ḡ−1

}

yields (9) shown on the top of next page, where

Ξ̄11 := ĀT R̄S̄T + S̄R̄T Ā− ĒT P̄ Ē + M̄T Ē + ĒT M̄ + Q̄

and R̄ ∈ <n×(n−r) is any matrix with full column rank and
satisfies ĒT R̄ = 0.

Now, we define a transformation of state x(k) as

x̄(k) := H−1x(k) (10)

Then, the system (4) can be decomposed as
{

Ēx̄(k + 1) = Āx̄(k) + Ādx̄(k − d) + B̄ww(k)
z(k) = C̄x(k) + Dww(k)

(11)
Defining ȳ(k) := x̄(k +1)− x̄(k) and considering system

(11), we define the Lyapunov functional (12) shown on the
next page.

Then, the forward difference of V (x̄k) along the trajectory
of system (11) is given by (13) shown on the next page.

In addition, it follows from that Lemma (2) that (14)
shown on the next page is also true.

Furthermore, by noting ET R = 0, we can deduce (15)
shown on the next page.

It follows from (12)-(15) that

∆V (x̄k)− 2zT (k)w(k) ≤ ζT (k)Ξ̄ζ(k). (16)

Noting the zero initial condition of x(k), we have
V (x(0)) = 0. Then, it is easy to see that (9) guarantees

∞∑

k=1

{
∆V (x̄(k))− zT (k)w(k)

}
< 0. (17)

Therefore we can get
∞∑

k=1

zT (k)w(k) > V (x(∞))− V (x(0)).

Noting the Definition 3, we have that the discrete singular
time-delay system (4) is strictly passive.

Moreover, the LMI (9) obviously implies (18). Then, we
can show that the singular system (4) with w(k) = 0 is
stable. This completes the proof.

In the following, we investigate the robust strictly passive
analysis for discrete singular time-delay system (1).

Theorem 2. For given time-delay d > 0, the discrete
singular time-delay system (1) is admissible and strictly
passive if there exist matrices P = PT > 0, Q = QT > 0,
Z = ZT > 0, S, M , N and a positive scalar ε > 0 such
that the LMI (19) shown on the next page hold.

Proof. Replacing A by A + HF (k)Na and Ad by Ad +
HF (k)Nd in (5) results in the following inequality:

Ξ + XF (k)Y + Y T FT (k)XT < 0 (20)

where Ξ is defined in (5) and

X :=
[

HT RST 0 0 0 HT P HT Z
]T

,

Y :=
[

Na Nd 0 0 0 0
]
.

By using Lemma 1, it can be shown that (20) holds for any
F (k) satisfying (3) if and only if there exists a positive scalar
ε > 0 such that the following inequality holds:

Ξ + ε−1XXT + εY T Y < 0 (21)

which, by Shur Complement, is equivalent to (19). This
completes the proof.

IV. NUMERICAL EXAMPLE

Consider the system (1) with parameters given in (22). By
choosing R =

[
0 −1

]T
and using the LMI Toolbox in

MATLAB to solve the feasibility problem of LMI (19), we
obtain the solutions given in (23).

V. CONCLUSION

This paper has studied the problem of strictly passive
analysis for discrete singular time-delay systems. A new
sufficient condition ensuring that the system is admissible
and strictly passive is obtained in terms of LMI. A numerical
example is given to show the effectiveness of the proposed
method.
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Ξ̄ :=
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d P̄ dĀT
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yT (j)ĒT Z̄Ēy(j) ≤ ξT (k)
[
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