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Abstract— In recent years active approaches for fault detec-
tion using test signals have been developed. This paper reports
on progress in extending one of these approaches from linear
systems to nonlinear systems. Theoretical results are presented
on the use of linearizations which is based on sufficiently
small nonlinearities. An optimization based approach is also
presented for large nonlinearities. Examples are given.

I. INTRODUCTION

Failure detection and identification are a fundamental part

of many industrial processes and have been extensively

studied [9], [15]. There are two general approaches. The

passive approach monitors system outputs. While useful in a

number of applications, system performance during normal

operation can mask faults until it is too late for the fault

to be detected by a passive approach in time to avoid a

failure. This can happen either due to inactivity (brakes are

not used until we need to stop) or due to the action of

controllers [9]. In addition, it is important to maintain some

functionality after damage. This happens in extended space

missions and a number of other power and transportation

systems. In this situation there may be a loss of sensors and

system reconfiguration which results in a system for which a

previously designed passive system may not be appropriate.

In each of these scenarios an active approach can be useful.

Accordingly there has been increasing interest in active

approaches where the system is acted upon in order to reveal

the fault [5], [12]. This is not active fault tolerant control

where the system is taking action to compensate for a fault

[10]. Here active refers to action to determine the existence

of a fault and the diagnosis of the fault. Signal injection

for identification has been widely studied [8]. These signals

are often persistently exciting and the identification may

be ongoing. [17] introduced the use of auxiliary signals

specifically in the context of fault detection. Subsequent

work has developed statistical [2], [11] and robust methods

[5], [14] for designing fault detection input signals. Ways

to reduce the effect of the signal on the system have been

investigated [5], [14]. Here we measure signals in the norm

(19a), (19b). These signals are sometimes referred to as

“plant-friendly” signals, that is, signals that can be introduced

while the plant is in normal operation.

The work in [5] was for linear systems. However, many

systems are nonlinear, especially some of the applications of
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most interest to us. Here we report on progress in extending

the approach of [5] to nonlinear systems. Section II briefly

summarizes part of the linear time invariant approach. Space

prohibits going into detail. A natural thing to try is to

use linearization and apply the ideas of Section II to get

a test signal that is then used on the nonlinear model.

Experimental work shows that this sometimes works well

[4]. Section III provides a theoretical justification for this

approach. We also derive explicit bounds that can give an

idea when the use of linearizations is justified. Convexity is

important for switching the max,min in the linear algortihm.

For large nonlinearities we do not expect even approximate

convexity. Instead we use a direct optimization approach and

sophisticated optimization software in Section IV.

II. THE LINEAR CASE

We provide in this section a brief introduction to the linear

algorithm. [5] contains an in depth development including

a consideration of model uncertainty. We assume linear,

constant coefficient models with additive uncertainty:

ẋi = Aixi +Biv +Miµi (1a)

yi = Cixi +Niµi, (1b)

for i = 0, 1. v is our input signal and µi is the noise

associated with the properly working (i = 0) and the faulty

(i = 1) system. We also assume that Ni, i = 0, 1, has full

row rank.

Ai(v) is the output set of model i. Perfect fault detection

would imply that A0(v) ∩ A1(v) = ∅. Without a bound

on the uncertainty, or noise, any output would be possible

from either model and perfect model identification would be

impossible. Thus, we assume that the noise in model i is

bounded in the L2 norm by the noise measure

Si(xi(0), µi) = xi(0)TQixi(0)+

∫ T

0

|µi(t)|2 dt < γ. (2)

For discussion purposes, we initially take take γ = 1. Once

the noise is bounded, we can consider the outputs of the

models. Define Li(f) =
∫ T

0
eAi(t−s)f(s)ds so that Li(f) is

the solution of ż = Aiz + f, z(0) = 0. Let ξi be the free

initial condition for ODE (1a). Then yi = ȳi + (CiLiMi +
Ni)µi + Cie

Aitξi where ȳi = CiLi(Biv) is a vector that

is linearly dependent on the detection signal, {(CiLiMi +
Ni)µi : ‖µi‖ < 1} is an open, convex set, and {Cie

Aitξi :
ξi ∈ R

N} is a finite dimensional subspace of L2[0, T ].
Thus, the output sets, Ai(v), are translates of open sets

by ȳi and are affinely dependent upon the detection signal,

v. The goal of the algorithms is to find the minimum proper

signal, where a proper signal is one which makes the two
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output sets disjoint. This signal is then input into the system

during a short test period and the output is measured. Based

on the measurement, a decision is made whether the system

is normal or faulty.

If (x0, µ0, x1, µ1) satisfies the models (1) and the noise

bound (2), then a proper detection signal, v, ensures that

the output sets of the models will be distinct. Alternatively

if (x0, µ0, x1, µ1) satisfy the models and v is a proper

detection signal, but the outputs are still not distinct, then

(x0, µ0, x1, µ1) must not satisfy the noise bound (2) for

i = 0, 1. Thus, if (x0, µ0, x1, µ1) satisfies the models and

v is a proper detection signal, but an output y is still in both

output sets, it must be that

max{S0(x0(0), µ0),S1(x1(0), µ1)} ≥ 1. (3)

Since this is true for all (x0, µ0, x1, µ1) that satisfy the

models but do not have distinct outputs, it is sufficient to

ensure it is true for the minimum of them. Thus,

min
xi,µi,y0=y1

max{S0(x0(0), µ0),S1(x1(0), µ1)} ≥ 1. (4)

The algorithm is to find the minimum proper signal v such

that (4) holds. The linear algorithm utilizes the fact that the

max,min in (4) can be exchanged.

III. THEORY USING LINEARIZATIONS

We assume that both our working and faulty systems are

only nonlinear in the states and are of the form

ẋ = g(x) +Bv +Mµ. (5)

We require that g(x) is locally Lipschitz, g(0) = 0, and

linearization is around x̄ = 0 which gives the approximation

ẋ = Ax+Bv +Mµ. (6)

A. Guaranteed Fault Detection Through Problem Scaling

When can we guarantee fault detection in the nonlinear

problem using the linearization? Our first approach is to find

the proper v for the linearized problem and then to scale this

v, as well as µ and x0, by β until we find a proper signal

for the scaled nonlinear problem. To understand “scaling”

multiply (1) by β and s (2) by β2. Thus,

βẋ = Aβx+Bβv +Mβµ (7a)

βy = Cβx+Nβµ (7b)

Si(βxi(0), βµi) = βxT (0)Pβx(0) +

∫ T

0

βµT
i βµi dt

< β2. (7c)

Let x̃ = βx, ỹ = βy and µ̃ = βµ. Equation (7) become

˙̃x = Ax̃+B(βv) +Mµ̃ (8a)

ỹ = Cx̃+Nµ̃ (8b)

Si(x̃i(0), µ̃i) = x̃T (0)Px̃(0) +

∫ T

0

µ̃T
i µ̃i dt < β2.(8c)

Equation (8) is the new, scaled equations. Note that (8) is

the same as (1) and (2), but with a different γ. The theorem

in this section finds a bound on this β, which will guarantee

separation of the nonlinear output sets by βv.

The following theory relies heavily on [16]. The notation

has been slightly altered to match the notation used in this

paper. We start with the ODE

ẋ = f(x, t), x(0) = x0, (9)

where f(x, t) is defined on I × X . I is an interval and X
is an open set containing x(0) = x0. Also, Bǫ(x0) is a ball

of radius ǫ around x0. We assume that 1) for each x, f is

measurable in t, 2) f is locally Lipschitz in x. That is, for

each x0 ∈ X , there is an ǫ and nonnegative locally integrable

α such that Bǫ(x0) ⊂ X and ‖f(t, x)−f(t, y)‖ ≤ α(t)‖x−
y‖ for all t ∈ I x, y ∈ Bǫ(x0). 3) f is locally integrable on

t. That is, for each x0, there is a locally integrable Ω such

that ‖f(t, x0)‖ ≤ Ω(t)
Given these assumptions, f(x, t) is locally integrable if its

norm has a finite integral on each finite subinterval. Under

these assumptions we have:

Theorem 3.1: Suppose that ψ is a solution of (9) on the

interval [0, τ ] ⊂ I. Then there are numbers ∆, c > 0 so

that for every 0 < δ ≤ ∆ the following holds: Suppose that

h(x, t) satisfies the above assumptions and in addition
∥∥∥∥
∫ t

0

h(ψ(s), s) ds

∥∥∥∥ ≤ δ (10)

for all t ∈ [0, τ ] and for all η0 such that ‖η0 −x0‖ ≤ δ, then

the solution η of η′ = f(t, η)+h(t, η), η(t0) = η0 is defined

on all of [0, τ ] and ‖ψ − η‖∞ ≤ cδ.

Theorem 3.1 says, that if h satisfies (10), then the dif-

ference between the solutions to ẋ = f and ẋ = f + h

only differ by a constant times the bound on the difference

between the initial conditions of the two systems. So, if

we start with sufficiently close initial conditions, then the

solutions will remain close. We seek to identify faults and not

failures. Our assumptions imply that there are no solutions

which go to infinity during the test interval.

Our first result shows that if the uncertainty bound is small

enough, then we can use a scaled linearized test signal.

Theorem 3.2: Suppose v is strictly proper for the lin-

earized system so that the linear output sets are a positive

distance ρ apart. Using the above assumptions from Theorem

3.1, for β ≤ ρ

2c3Tξc2

1
ǫ2

, βv separates the nonlinear output

sets, with a noise bound scaled by β2, c1 and c3 bounds

on the unforced nonlinear equation, and the difference be-

tween the forced linear and forced nonlinear equations, with

noise, respectively. ξ is the bound on the error term in the

linearization and T is the final time.

The proof consists of four steps. The first two steps show

that, as we scale by β, the solution to the unforced nonlinear

problem and the difference between the solutions to the

unforced and forced nonlinear problems are linearly bounded

in the initial condition and the auxiliary signal and noise,

respectively. The third step shows that the difference between

the solutions to the forced nonlinear problem and the forced

linear problem scales quadratically. The final step finds the

bound on β for which βv will guarantee separation of the
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nonlinear output sets. Figure 1 shows the effect of βv on

the scaled, nonlinear output sets and how the scaling affects

these output sets.

Si(xi(0),Pi)<1 Si(xi(0),Pi)<β
2

βρρ

ε Effect
β
�

ε Effect
of v* Scale of βv*

by β

Fig. 1. Pictorial of proof of Theorem 3.2.

We seek a β which guarantees separation of the nonlinear

output sets. Therefore, we need to find β such that

βρ

2
≤ β2c3Tξc

2
1ǫ

2. (11)

(11) says half the distance between the linear outputs sets is

greater than the maximum distance between the linear and

nonlinear output sets. Solving (11) for β, we gives the desired

β ≤ ρ

2c3Tξc21ǫ
2
. (12)

B. Using the Original Test Signal

We now consider when the proper v from the linear system

can be used on the nonlinear system. We find the optimal

v∗ for the linear problem and then derive conditions for

which this v∗ is proper for the nonlinear problem, except for

possibly tighter noise bounds. Linearizations can work well,

even for highly nonlinear systems [4], sometimes they work

even better on the nonlinear system. Linearizations also work

well for incipient faults[7]. Here we assume the noises in the

ODE and the output equation are independent (the same µi

is not present in both the ODE and the output equation).

We start with the nonlinear system

ẋ = f(x) +Bv +Mµ1 (13a)

y = g(x) +Nµ2, (13b)

which can be written

ẋ = Ax+ E1(x) +Bv +Mµ1 (14a)

y = Cx+ E2(x) +Dv +Nµ2. (14b)

The linear system is

ẋ = Ax+Bv +Mφ1 (15a)

y = Cx+Dv +Nφ2. (15b)

We use a noise bound S(x(0), φ) ≤ δ and then find the

proper v∗ for our linear system. Then, we find a noise bound

for the nonlinear system (14), for which v∗ is proper.

We assume M,N are invertible and rewrite (14) as

ẋ = Ax+Bv +M(M−1E1(x) + µ1) (16a)

y = Cx+Dv +N(N−1E2(x) + µ2). (16b)

We treat the nonlinearities as extra noise in the system and

equate the noises from (15) to the noises in (16). Thus, φ1 =
M−1E1(x)+µ1 and φ2 = N−1E2(x)+µ2. We rewrite our

noise bound as

‖x(0)‖2 +

∫ T

0

φT
1 φ1 + φT

2 φ2dt ≤ δ (17)

If the nonlinearity is bounded by M̃ , and the noise is

bounded by δ − M̃ > 0, then the linearized test signal is

proper for the nonlinear problem with the noise bound δ−M̃ .

Substituting φ1 = M−1E1(x) + µ1 and φ2 =
N−1E2(x) + µ2 into this inequality,we can show that if

‖(M−1E1(x), N
−1E2(x))‖ ≤ M̃ ≤

√
δ, then ‖(µ1, µ2)‖ ≤

δ − M̃ guarantees that ‖(M−1E1(x), N
−1E2(x)) +

(µ1, µ2)‖2 ≤
√
δ.

Now, we can decide on appropriate bounds for the non-

linearities and find the bounds for the µi’s.

We have focused on the case where both models are

linearized around the same set point since this is the more

difficult problem for detection. The results here can be

extended to other possibilities but space prohibits their

discussion.

IV. DIRECT OPTIMIZATION AND LARGE

NONLINEARITIES

While the preceding discussion and the tests in [4] have

shown that linearizations are often useful, this is not always

the case. In particular, if the system is highly nonlinear,

then we must attack it directly as an optimization problem.

But a number of technical issues then arise. One is that

we usually no longer have the convexity that allowed us to

switch the max and the min in (4). Another is that problems

do not scale. A v that is proper may not be proper when the

problem is scaled. We shall discuss one way to surmount

many of these issues and conclude by giving two examples

that illustrate several points.

For our optimization solver we will use the Sparse Optimal

Control Software (SOCS) developed at the Boeing Company

[1]. SOCS uses a direct transcription approach and accepts

parameterized problems.

In the most general case, we have the models

ẋi = fi(xi, µi, v) (18a)

y = gi(xi, µi, v) (18b)

where the variables have the same interpretation as in the

previous section. We again restrict ourselves to the additive

uncertainty case with bound (2) and look for the optimal

proper v∗ [5] which gives minimal disturbance. The distur-

bance is described as

ψ̇ = f(ψ, v), ψ(0) = 0. (19a)
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Often f(ψ, v) = f0(ψ, 0, v). Our measure of the auxiliary

signal v thus becomes

δ2 = ψ(T )TWψ(T ) +

∫ T

0

|v|2 + ψTUψ dt (19b)

where U and W are positive semidefinite matrices and δ is

a norm on L2. Notice that if U = W = 0, the measure

becomes just a simple L2 norm of the auxiliary signal v.

A proper signal causes an uncertainty constraints to be

broken.

φ(v, s) = inf
xi,µi,y,u,s∈[0,T ]

max(S0, S1) ≥ γ (20)

In the linear case [5] a variable β is used to replace the

max in (20) with a family of inner product norms. We refer

to the β of [5] as β̂. For the model uncertainty case one

cannot just fix a β̂ value since that sometimes admits too

much noise. For the nonlinear problem we exploit the fact

that we can approximate the max in (20) with a p-norm.

Figure 2 shows the curve xp + yp = 1 in the first quadrant

for p from 2 to 5. They approximate the max from the inside.

xp + yp = 2 would approximate max from the outside.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p = 2

p = 5

Fig. 2. Approximation of max norm by p norm for p from 2 to 5.

Thus we will consider the problem

φ(v, s) = infxi,µi,y,u,s∈[0,T ]
p

√
S

p
0 + S

p
1 ≥ γ (21)

with relative error bound
p
√

2 since

max{S0, S1} ≤ p

√
S

p
0 + S

p
1 ≤ p

√
2 max{S0, S1}. (22)

Combining all of the above, our problem is to minimize

ψ(T )TWψ(T ) +
∫ T

0
|v|2 + ψTUψ dt subject to

ẋi = fi(xi, µi, v), i = 0, 1 (23a)

ψ̇ = f(ψ, v) (23b)

0 = g0(x0, µ0, v) − g1(x1, µ1, v) (23c)

inf
xi,µi,y,s∈[0,T ]

S
p
0 + S

p
1 ≥ γp (23d)

In order to get a single optimization problem that is easier

to implement we replace the inf in (23d) with the necessary

condition for this minimization. We refer to this as the inner

optimization problem. We have more general formulations

but for this paper in order to simplify the presentation

we consider the case of linear noise, nonlinear states, and

additive uncertainty. Without loss of generality, we can take

γ = 1 since we can adjust the weight on the noise µi within

the definition of fi for a given problem. The optimization

problem constraints are

ẋi = fi(xi, v) +Miµi, i = 0, 1 (24a)

ψ̇ = f(ψ, v) (24b)

0 = g0(x0, v) +N0µ0 − g1(x1, v) −N1µ1 (24c)

infxi,µi,yS
p
0 + S

p
1 ≥ 1 (24d)

Si = xi(0)TPixi(0) +

∫ T

0

µT
i µidt. (24e)

Since the Ni have full row rank. there exists repre-

sentations Ni = [N̄i0] with N̄i invertible, achievable by

successive orthogonal changes of coordinates. Applying the

same decomposition on Mi and µi, we have Mi = [M̄iM̃i]
and µi = [µ̄i

T µ̃i
T ]T . Now we can use (24c) to solve for µ̄0:

µ̄0 = N̄0
−1
g1(x1, v) + N̄0

−1
N̄1µ̄1 − N̄0

−1
g0(x0, v)

= g̃(x0, x1, v, µ̄1) (25)

and eliminate µ̄0 from the other equations to obtain

ẋ0 = f0(x0, v) + M̄0(g̃(x0, x1, v, µ̄1) + M̃0µ̃0(26a)

ẋ1 = f1(x1, v) + M̄1µ̄1 + M̃1µ̃1 (26b)

ψ̇ = f(ψ, v) (26c)

infxi,µi,yS
p
0 + S

p
1 ≥ 1 (26d)

S0 = x0(0)TP0x0(0) +

∫ T

0

‖g̃‖2
2 + ‖µ̃0‖2

2 dt (26e)

S1 = x1(0)TP1x1(0) +

∫ T

0

‖µ̄1‖2
2 + ‖µ̃1‖2

2 dt.(26f)

To solve the inner optimization problem we define two

new differential variables:

ż0 = ‖g̃(x0, x1, v, µ̄1)‖2
2 + ‖µ̃0‖2

2 (27a)

ż1 = ‖µ̄1‖2
2 + ‖µ̃1‖2

2 (27b)

satisfying boundary conditions:

zi(0) = xi(0)TP0xi(0, i = 0, 1. (28a)

The inner minimization problem is to minimize z0(T )p +
z1(T )p with constraints

ẋ0 = f0(x0, v) + M̄0g̃(x0, x1, v, µ̄1) + M̃0µ̃0 (29a)

ẋ1 = f1(x1, v) + M̄1µ̄1 + M̃1µ̃1 (29b)

ż0 = ‖g̃(x0, x1, v, µ̄1)‖2
2 + ‖µ̃0‖2

2 (29c)

ż1 = ‖µ̄1‖2
2 + ‖µ̃1‖2

2 . (29d)

We derive the necessary conditions for the inner minimiza-

tion problem which is to minimize J = φ(x(0), x(T )) +∫ T

0
L(x(t), u(t), t)dt, with constraints

ẋ = f(x, u, t) (30)

where x = [xT
0 , x

T
1 , z

T
0 , z

T
1 ]T and u = [µ̃0

T , µ̄1
T , µ̃1

T ]T :

ẋ = f(x, u, t) (31a)

λ̇ = −fT
x λ− Lx (31b)

0 = Lu + fT
u λ (31c)

0 = (φx − λ)T dx|t=T (31d)

0 = (φx + λ)T dx|t=0 (31e)
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Combining those equations with our original optimization

problem we obtain our final definition of the problem.

A. Examples

We now turn to two illustrative academic examples.

1) Example 1: Find the proper v that minimizes
∫ T

0
|v|2 dt

given

ẋ0 = −x2
0 − x0 + v + n0µ̃0 (32a)

ẋ1 = −x2
1 − 2x1 + v + n1µ̃1 (32b)

0 = x1 − x0 + µ̄1 − µ̄0 (32c)

For this specific example, after eliminating µ̄0 to get rid

of the algebraic constraint (32c), and using Lagrange-Euler

form, and keeping in mind that x2 = z0 and x3 = z1, the

optimization problem given to SOCS is formulated as

ẋ0 = −x2
0 − x0 + v + n0µ̃0 (33a)

ẋ1 = −x2
1 − 2x1 + v + n1µ̃1 (33b)

λ̇0 = −2λ2x0 + 2λ2x1 + 2λ2µ̄1 + λ0 + 2x0λ0(33c)

λ̇1 = 2λ2x0 − 2λ2x1 − 2λ2µ̄1 + 2λ1 + 2x1λ1(33d)

ż0 = (x1 − x0 + µ̄1)
2 + µ̃0

2 (33e)

ż1 = µ̄1
2 + µ̃1

2 (33f)

0 = 2λ2µ̃0 + n0λ0 (33g)

0 = 2λ2µ̄1 + 2λ3µ̄1 − 2λ2x0 + 2λ2x1 (33h)

0 = 2λ3µ̃1 + n1λ1 (33i)

with boundary conditions

zi(0) − Pix
2
i (0) = 0, i = 0, 1 (34a)

λi(0) + 2Pixi(0)λi+2 = 0, i = 0, 1 (34b)

pzi(T )p−1 − λi+2 = 0, i = 0, 1 (34c)

λi(T ) = 0, i = 0, 1 (34d)

z
p
0(T ) + z

p
1(T ) − 2 ≥ 0 (34e)

λ2 and λ3 are constants. The 2 is inserted into (34e) so

that the approximation to the max is from the outside. This

guarantees that our optimal v will be proper for the original

problem.

For comparison purposes, we also used the standard β̂

method on the linearized model: minimize
∫ T

0
|v|2 dt over

the proper v given

ẋ0 = −x0 + v + n0µ̃0 (35a)

ẋ1 = −2x1 + v + n1µ̃1 (35b)

0 = x1 − x0 + µ̄1 − µ̄0 (35c)

to compute the linearized test signal vL.

For the original nonlinear problem, we found the auxiliary

signal v using p-norm for parameter sets of T = 1, ni =
0.1, Pi = 10 and T = 5, ni = 0.1, Pi = 10. Comparison

of the auxiliary signal found using the p-norm and vL is in

Figures 3 and 4.

The black and red curves in Figure 3 show that the

linearized system was producing a much larger test signal

than the true nonlinear system signal. In addition, the green

0 0.2 0.4 0.6 0.8 1
 30

 25

 20
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 5

0

5

lin vopt

lin vopt scaled

nonlin p=2

Fig. 3. v optimal comparison for T = 1, n = 0.1, and P = 10.

and red lines show that the shapes were also somewhat

different. This difference in the shape of the nonlinear and

linear test signals is even more pronounced on the longer

test interval of Figure 4.

0 1 2 3 4 5
 3

 2.5

 2

 1.5

 1

 0.5

0

0.5
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lin vopt scaled1
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nonlin p=2

Fig. 4. v optimal comparison for T = 5, n = 0.1, and P = 10.

2) Computational observations: The results are obtained

for p = 2, 3 and 4. For this particular example, there was no

visible difference in results for different values of p.

Given a computed test signal we can evaluate the true

noise bound by minimizing the noise such that there is

a common output. This is done with SOCS. Using SOCS

we can also examine whether a smaller multiple of a test

signal would be proper for the nonlinear problem. On [0, 5]
we found that 0.21vL was proper. For this same case the

noise bound for the nonlinear test signal vNL was 51. So

there is room for improvement of the auxiliary signal v.

In fact, 0.29vNL was proper. Whether this was due to a

local minimum for the nonlinear problem or to the difficulty

of the optimization problem (or the difficulty in finding the

bound), we are not certain at this time. The key point is that

the computed nonlinear test signal was much better than the

linear one.

In using SOCS, switching from the default discretization-

integration method (trapezoidal rule) to the higher order

Hermite-Simpson was important in obtaining auxiliary sig-

nals. The SOCS default of starting with trapezoidal method

and then switching to Hermite-Simpson after a few itera-

tions, often resulted in a feasible point not being found.

By starting with Hermite-Simpson, that was avoided. Also,

starting Hermite-Simpson helped reduce the running time.

The solution times were still sensitive to starting values.

SOCS traces its total time in seconds, and those total times
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are given in Table I. Running time for p-norm depended on

the initial guesses for states and parameters. As an example,

for one set of initial guesses total time was 231.9 s while for

another total time was 1.97 s. The best time is given in the

table. Code was run on a PC computer with Intel Pentium

M 1.6GHz processor with 760MB of RAM.

TABLE I

CPU TIMES FOR EXAMPLE 1 WITH ni = 0.1, Pi = 10.

Total SOCS time in seconds
T linearized 2-norm 3-norm

1 1.03 s 11.64 s 1.3 s

5 1.64 s 1.97 s 2.08 s

The criteria for comparison was the cost function∫ T

0
|v|2 dt of the computed auxiliary signal v. Allowed noise

bound was set to 1. The actual noise bound for a given v

was computed by SOCS with another optimization. Auxiliary

signals v had to have calculated noise bound greater than 1

to be proper. Cost function and calculated noise bounds for

different methods are in the Table II.

TABLE II

SIZE OF v AND COMPUTED NOISE BOUND WITH ni = 0.1, Pi = 10.

Cost function Noise bound
T linear 2-norm 3-norm linear 2-norm 3-norm

1 261.64 9.01 8.97 5579.2 1.038 1.025

5 22.98 0.954 0.951 1293.5 1.035 1.022

B. Example 2

We seek to minimize
∫ T

0
|v|2 dt over proper v given

ẋ0 = −x2
0 + v + µ̃0 (36a)

ẋ1 = −2x2
1 + v + µ̃1 (36b)

0 = x1 − x0 + µ̄1 − µ̄0 (36c)

Here Pi = 1. This example is interesting in that the faulty

and nonfaulty system have the same set point (x = 0, v = 0)

and the same linearizations about this set point. Thus the

linearization approach cannot be used at all on this example.

For p = 2, the cost was 7.56, and the computed noise bound

was 1.18. This is quite close to the desired value of 1. For

p = 3 the cost was 7.37 and for p = 4 the cost was 7.26.

V. CONCLUSIONS

The construction of auxiliary test signal for fault de-

tection in nonlinear systems is considered. Previously re-

ported experiments had shown that signals computed from

linearizations could sometimes be useful. Two theoretical

results are presented. One shows that provided the linearized

problems can be told apart, that a properly scaled version of

the linear test signal can be used on the nonlinear system

if the noise bounds are small enough. A second result

showed that the original linear test signal can be used if

the nonlinearities satisfy appropriate bounds. In addition,
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Fig. 5. Computed optimal test signal for Example 2.

we have given a direct optimization formulation suitable for

highly nonlinear systems. Computational examples show that

this can sometimes produce much smaller test signals then

when using linearizations and also can sometimes find test

signals for problems for which the linearized approach fails.
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