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Abstract— Many cooperative control strategies focus on sta-
bility concerns to the deficit of global structure in a distributed
cooperation task. We present a method of ensuring provable
convergence of decentralized switching systems using ad-hoc
definitions of proximity graphs, where convergence is measured
by a potential function defined on the graph. The method
depends on the proper filtering of the time-varying proximity
graph structure so as to maintain convergence characteristics.
We demonstrate the approach with an underactuated system.

I. INTRODUCTION

We present a technique that uses a locally-defined energy

function that leads to a guarantee that a potential globally

defined for the system converges for the coordinated control

algorithm in the face of arbitrarily changing proximity graph

structures. The adaptive control system weighs the changing

network with internal models of the system in order to

provide converging responses with acceptable performance.

This is accomplished through an internal estimate of the

stability margin along with the use of consensus for purposes

of performance improvement. Depending on the controller

chosen, this can be achieved using linear controllers with

quadratic Lyapunov functions.

This work is in contrast to other approaches that focus

on nonsmooth analytical approaches to showing stability

and convergence. The advantage of the approach we show

here is that it does not depend on any particular proximity

graph structure, and correspondingly does not depend on

any particular potential function for potential-based methods.

Proofs of stability have been produced for such systems

(e.g., [1], [2]), but typically these proofs impose constraints

on the dynamics of the system and the proximity graph.

For example, the results in [1] apply only to a specific

potential function on the unit-disk graph, and the results in

[2] apply to another particular potential function on a Voronoi

graph. The difficulty associated with these prior works is that

the stability results leave little room for task specification;

tasks must be framed in terms of what can be achieved

in a stable manner and may therefore be limited to stable

area coverage or “flocking” through a series of obstacles.

Moreover, the task specification will likely change over

time, thus introducing discrete changes into the equations

of motion. Finally, heuristics that are not easily combined

with these approaches are often helpful for various tasks,

such as collision avoidance and other safety-critical elements

of the task specification. The key point is that the control

mechanism should dictate task specification to the minimum

extent possible.

To this end, we have developed a coordinated control

algorithm that operates in the following context. Assume that

a graph G can be computed given the state of every agent and

that the goal is to minimize this potential. For instance, such

a potential could be a measure of deviation from a desired

distance between two agents, in which case minimizing the

potential corresponds to successfully creating a formation.

However, allowing arbitrary switching in the graph G due

state changes–and corresponding changes in the control–can

potentially lead to instability. Filtering the changes in the

graph in such a way that convergence of the state-dependent

potential is ensured avoids this issue. This is the topic of the

present paper.

II. MOTIVATING EXAMPLE: CONNECTIVITY USING THE

GABRIEL GRAPH

Let R be the set of agents. Let G be the set of graphs over

the vertices R. Let the sensor graph GS be a graph where

R is the vertex set, and there is an edge (or “link”) between

two vertices r1 and r2 ∈ R iff agents r1 and r2 can both

sense each other. Let the control graph (also referred to as

the neighbor graph) GN be a graph where R is the vertex

set, and there is an edge between two vertices r1 and r2 ∈ R
iff agents r1 and r2 are interacting for control purposes. To

simplify notation, we will understand S to be the edge set

of GS , N to be the edge set of GN , and Si and Ni to the

corresponding set for a given agent i. The graph GN will

be defined by a time-varying switching function σ, which

we will describe in terms of a graph construction algorithm.

Note that N (the set of neighbors used in the control law)

is necessarily a subset of S (the set of sensed neighbors).

A Gabriel graph [3], [4], [5] is a graph GN (x(t)) that

dictates which data is incorporated into the control laws.

There is a link between agents A and B if and only if

for all other agents Z, the interior angle ∠AZB is acute.

Equivalently, there is a link between agents A and B iff there

are no other agents within the circle with diameter AB.

The Gabriel graph switching function provides many ad-

vantages; chief among these is provable connectivity of the

graph [4]. The Gabriel graph is also well-suited to providing

uniform coverage of an area, as it creates a mesh of acute

triangles. The Gabriel graph is a planar graph [4], so it

does not suffer from high edge density when the agents

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrA03.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 3733



are close together. However, the Gabriel graph depends on

links being created with non-zero virtual potential; that is,

the potential function defined on the graph will generally

jump up when an edge is generated between two vertices

i and j. This complicates any proof of stability, as virtual

energy may be added to the system as the topology (and

therefore the control law) changes. Even for linear, stable

systems, arbitrary switching can lead to instability. This is

what we wish to avoid in a completely generic manner.

In our approach to showing convergence, instead of com-

puting a limit on the switching frequency explicitly, we use

a notion of a global “energy reserve” (first introduced in

[6], [7]) to create a convergence-guaranteeing limiting effect

on the switching rate. (The idea behind this name is that if

a switch will increase the value of the Lyapunov function,

there must be enough energy reserve to compensate for

this increase.) We find this approach intuitive and moreover

straightforward to implement in our distributed scenarios, in

which switching events are detected locally. Although any

global quantity can be problematic, we will demonstrate that

a local estimate of this quantity based upon a zero sum

consensus algorithm is sufficient to establish convergence.

III. PROBLEM DESCRIPTION

The general problem we wish to address is how one

takes a control law calculated using a proximity graph

definition that depends on the state and implements it on an

underlying dynamic, cooperative system. The translation into

physical actions should take into account stability, stability

margin, and correctness (in terms of successfully completing

a command or returning a failure result). In this paper we

focus on stability (at least in the classical linear systems

sense of bounded input bounded output stability). We address

the issue of margin as a natural byproduct of how we solve

the stability problem. We do not address correctness, though

it is an important problem. However, the method presented

here allows one to specify arbitrary proximity graph rules,

hence potentially moving the correctness question into the

graph design domain.

The primary difficulty is that a control u(G, x) (where

G ∈ G is a graph and x is the state) that has no information

about low-level convergence characteristics may have to be

modified to preserve convergence. Hence, we will require a

mapping
χ : G → G

G 7→ GE
that maps a desired proximity

graph G to a stably implementable proximity graph GE . An

example of such a motivating scenario is discussed in the

next section.

We would like to have a system that has provable high-

level properties (e.g., connectivity of the network topology)

while maintaining low-level characteristics such as stability

(of the physical system), stability margin, and performance

metrics. The basic approach is to translate the proximity

graph G to an alternative GE by using a mapping χ that

is essentially a dynamically updated guard condition that

protects the stability of the system. Hence, χ may be thought

of as a means of “filtering” the effects of G based on a

stability condition.

We show here that if one has a stable cooperative system

for each possible network state GN , then one may use an

adaptive control strategy to guarantee stability in a decentral-

ized manner. In particular, the idea is to associate with each

agent i a value Ei which is defined as the solution to the

following differential equation, where Ei has an arbitrarily

chosen nonnegative initial value.

Ėi(t) = −kedi(t) if no switch in graph occurs

Ei(t) = lim
t̃→t−

Ei(t̃) − ∆V otherwise

where ke > 0 is the same constant for all agents, 0 < ke < 1
(this will be formalized shortly in Eqs. (5) and (6)). The value

di is a local conservative estimate of the stability margin of

the system, and is critical to maintaining stability. The value

Ei is initialized to a nonnegative value and then evolves

according to Equation 5 as long as the network topology is

not changing. Whenever there is a switch, Ei is re-initialized

to the value given in Equation 6 by subtracting ∆V . We call

Ei the local energy reserve, and it should be thought of as

a local estimate of stability margin relative to the hybrid

system. (Moreover, we will see that replacing Ei with an

estimate of Ei can be shown to provide global stability so

long as the estimate is conservative.)

This brings us to the simple change necessary to stabilize

the system. The modified control u(χ(GN ), x(t)) is identical

to u(GN , x(t)), except for the added condition that any

switch in the control graph that would cause Êi < 0 is

prohibited. This result provides guaranteed convergence, and

one is guaranteed to eventually be able to implement any

graph G. It is worth noting that the evolution of E is only

used in the calculation of χ–it doesn’t affect which controls u
are admissible for the system. Additionally, this computation

is decentralized: agents only need access to local values Ei,

di, and local estimates of changes in the Lyapunov functions

as the network topology changes.

The key idea is that we are using the evolution of

the energy reserve Ei to systematically block changes in

proximity graph if they will lead to instability (that is, χ
blocks new graphs until stability can be ensured). However,

typically u(χ(G), x) = u(G, x) in systems that do not

have aggressive controller gains [6]. Hence, χ, though a

conservative approach to preserving stability, often does not

come into play.

IV. GENERAL RESULT

Consider a set of agents R and a time-varying switch-

ing signal
σ : R → G

t 7→ GN
that determines the proximity

graph and is constant except for discrete changes at times

t1....tn on the interval [t0, tf ]. Assume that the state for

each agent i is x ∈ M , the governing equations are ẋ =
f(x), and that the switching function changes f over time,

σ : (x, t) −→ f . The equations of motion of interest are as
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follows:

ẍi = ui (1)

ui =

{

−ẋ τ(σ) < T
ui(χ(G), x(t)) τ(σ) ≥ T

(2)

where ui stabilize x for each choice of G, τ(σ) is the length

of time since the last change in the network topology Ni,

and T is a time-delay before u can decrease the Lyapunov

function. The filter χ will be defined shortly. We assume that

for each time interval (tj ...tj+1) (we will call this interval

τj), there exists a global potential function Vσ(τj) such that

Vσ(τj) is positive-definite, V̇σ(τj) is negative semi-definite,

and V̈σ(τj) is bounded. (This is satisfied, for instance, under

the conditions on the graph Laplacian discussed in [1].) We

define the overall potential function Vσ(t) to be equal to

Vσ(τj) on the interval (tj ...tj+1), for all j.

Define the quantity si such that:

si(t) =
1

2





∑

j∈Ni

(

lim
t→t̃+

P (xi, xj) − lim
t→t̃−

P (xi, xj)

)



 ,

(3)

where P (xi, xj) is the potential between agent i and j.

Moreover, each agent can determine an estimate ŝi such that
∑

i∈R ŝi ≥
∑

i∈R si (often for our purposes ŝi = si). This

quantity captures the instantaneous change in potential due

to the link switching. The factor of 1/2 is present because

each link connects to two agents, and thus will be counted

twice. It is thus easy to show that the following holds:
∑

i∈R

si = lim
t→t̃+

(Vσ(t)) − lim
t→t̃−

(Vσ(t)) (4)

Associate with each agent i a value Ei which is called the

local energy reserve, and is defined as the solution to a dif-

ferential equation. Ei has an arbitrarily chosen nonnegative

initial value and evolves according to the following:

Ėi(t) =

{

0 if si(t) = 0 and τ(σ) < T
−kedi(t) + wi if si(t) = 0 and τ(σ) ≥ T

(5)

Ei(t) = lim
t̃→t−

Ei(t̃) − si(t) otherwise (6)

where ke is a global constant, 0 < ke < 1 and
∑

i wi = 0
(which will show up as a zero-sum consensus [8] term later).

Notice that Ei is initialized to a nonnegative value and then

evolves according to Equation 5 as long as si is zero (that

is, on intervals with no switches). Whenever si 6= 0 (there is

a switch), Ei is re-initialized to the value given in Equation

6.

Each agent maintains a local estimate Êi, which is initially

greater than zero and evolves as follows:

˙̂
Ei(t) =

{

0 if ŝi(t) = 0 and τ(σ) < T
−kedi(t) + wi if ŝi(t) = 0 and τ(σ) ≥ T

(7)

Êi(t) = lim
t̃→t−

Ê(t̃) − ŝi(t) otherwise (8)

Let the global values E and Ê be defined such that

E =
∑

i∈R

Ei (9)

Ê =
∑

i∈R

Êi (10)

We will call E the global energy reserve.

This brings us to the graph filter definition that provides

convergence, defined by

χ(G(t), x(t), t) =

{

G if Êi > 0
limt̃→t− χ(G(t), x(t), t̃) otherwise.

The filter χ is an identity on G, except for the added condition

that any switch that would cause Êi < 0 for any agent i
is prohibited. Note that the value of Êi cannot decrease in

the absence of switching if di ≤ 0 for all i (this can be

thought of as a conservative estimate of the stability margin

of the system for a graph at time t). Also, this computation is

decentralized; the agents only need access to the local values

Ei, di, and si.

The immediate consequence of modifying σ in this way

is that Ê ≥ 0, since it is the sum of all nonnegative terms.

It follows from Equations 9 and 10 and the definitions of si

and ŝi that E ≥ Ê. Thus if Ê ≥ 0, then E ≥ 0 as well. This

allows us to prove the following statement.

Theorem 4.1: The states in the system in Eq (1) and (2)

all converge to a state of of unchanging potential for any

sequence of graphs G(t).
Proof: For purposes of notational simplicity, we will

take V to denote Vσ(t) for the remainder of this section

unless otherwise specified.

We start with the case T = 0 and then adapt accordingly

for the case T 6= 0. On a time interval going from t0 to

tf , let the proximity graph G(t) change at times ti. We will

show stability of the system using the function W, defined

as:

W = V + E

The function V is positive-definite on any interval (ti, ti+1)
by the assumption that for each static choice of G the system

is stable with negative semi-definite derivative. Moreover,

since E > 0 by definition, it is clear that W ≥ 0.

Differentiating, we see that on any interval (ti, ti+1) on

which there are no switches:

Ẇ = V̇ + Ė.

Note that

Ė =
∑

i∈R

Ėi =
∑

i∈R

−kedi + wi =
∑

i∈R

−kedi (11)

because of the zero-sum property. Substituting for Ė (with

T = 0) gives:

Ẇ = V̇ +
∑

i∈R

−kedi ≤ 0, (12)

so Ẇ is negative definite on the interval (ti, ti+1) ∀i.
To address the times ti, we must look back to the definition

of si:

lim
t̃→t+

V(t̃) = lim
t̃→t−

V(t̃) +
∑

i∈R

si(t).
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Thus, at any instant t when a switch occurs (that is, when

any si 6= 0),

lim
t̃→t+

W(t̃) = lim
t̃→t−

V(t̃) +
∑

i∈R

si(t) + E(t)

Substituting for E from Equation 6,

lim
t̃→t+

W(t̃) = lim
t̃→t−

V(t) +
∑

i∈R

si(t) + lim
t̃→t−

E(t̃)−
∑

i∈R

si(t)

(13)

which simplifies in the following way:

limt̃→t+ W(t̃) = limt̃→t− V(t) + limt̃→t− E(t̃)
= limt̃→t− W(t̃)

(14)

Thus, the discontinuity in W has been removed, as the

limits from both sides are the same. Further, since V̇ is

negative semi-definite by assumption, 0 < ke < 1, and

V̇ <
∑

i∈R kedi ≤ 0, it must be the case that Ẇ is negative

semi-definite.

We now follow the proof of Barbalat’s lemma [9], which

states that if f(t) is lower bounded, ḟ(t) is negative semi-

definite, and ḟ(t) is uniformly continuous (or equivalently,

f̈(t) is finite), then ḟ(t) approaches zero as t approaches

infinity. Unfortunately, Barbalat’s Lemma as stated does not

apply to our system because at the times ti, the function

Ẇ(ti) discontinuous. However, these discontinuities are

separable, allowing the basic result to still hold. The true

generalization of Barbalat’s lemma requires the technical

use of meagre functions [10], which are heavy machinery

for what (for our purposes) is a reasonably straight forward

result. We will show that Ẇ → 0 as t → ∞. To see this,

suppose Ẇ did not go to zero as as t → ∞. Then there

exists a sequence of times tn → ∞ such that |Ẇ| > ǫ ∀
n ∈ N. On all intervals [ti, ti+1) Ẅ is bounded, so on these

intervals Ẇ is uniformly continuous. Because of this, there

exists a δ such that |tn − t| < δ ⇒ |Ẇ(tn) − Ẇ(t)| ≤ ǫ/2
on any interval that does not include ti. We know that Ẇ

is integrable by the existence of W (which is bounded

below by 0 and above by W (0)), which means that the

quantity |
∫ tn+δ

0
Ẇdt −

∫ tn+δ

0
Ẇdt| → 0 as n → ∞.

Hence, |
∫ tn+δ

tn
Ẇdt| → 0 as n → ∞, which implies that

∫ tn+δ

tn
|Ẇ|dt → 0 as n → ∞ (since Ẇ ≤ 0). Now, if

ti ∈ [tn, tn + δ], the value of Ẇ(ti) does not affect the

integral since Ẇ(ti) ∈ co{limt̃→t
+

i
Ẇ(t̃), limt̃→t

−

i
Ẇ(t̃)}.

Hence,
∫ tn+δ

tn
|Ẇ|dt =

∫ tn+δti

tn
|Ẇ|dt +

∫ tn+δ

tn+δti

|Ẇ|dt ≥
ǫδti

2 +
ǫ(δ−δti

)

2 = ǫδ
2 . This contradicts the convergence of the

Riemann integral and therefore contradicts the integrability.

Hence, Ẇ → 0 as t → ∞. It follows directly (since Ė → 0
as t → 0) that V̇σ(t) → 0 as t → ∞. That is, all agents

reach a state of unchanging potential.

To address the case where T 6= 0, we simply need to

confirm that Ẇ ≤ 0 when using ui(χ(GN (t)), x(t)). Again,

we have

W = V + E > 0

and

Ẇ = V̇ + Ė.

Hence, we need to evaluate Ė and V̇.

Now consider a time interval [tj ...tj+1). First, let T <
tj+1−tj . Then Ė = 0 on [tj ...tj +T ) and Ė =

∑

i∈R −kedi

on [tj + T ...tj+1), hence Ė ≤ 0 on the complete interval.

Under these same conditions, V̇ a new Lyapunov function

has derivative −ẋ
T
ẋ when t ∈ (tj , tj + T ) and Ẇ =

∑

i∈R(1 − ke)di when t ∈ (tj + T, tj+1). Therefore, on

this interval a different V (t) (corresponding to the Euclidean

norm on R
2) is decreasing. In the case that T ≥ tj+1 − tj ,

Ė = 0 on that interval. We simply consider the next time ti
such that tj + T ∈ (ti, ti+1). Then, by the logic just given,

we have Ẇ ≤ 0 and are done.

Note that in the proof of Theorem 4.1 we are effectively

changing both at what time changes in G are allowed to occur

and potentially if they are allowed to occur if the delay T
is too large. However, it is important to notice that network

dropouts do not affect the analysis; a link can always be lost

because that will only decrease potential energy associated

with the control, but it may not be possible to add it back in.

If a communication is re-established, the link still may not

be added back into the control graph; thus, it is possible to

control the switch in the positive direction. In general, it is

necessary to define systems such that uncontrollable events

cannot increase the overall potential.

Now we may state the algorithm for ensuring convergence

in the face of arbitrary time-varying proximity graph topolo-

gies.

Algorithm for Filtering Proximity Graphs

Given a proximity graph G(x(t)):

1) Choose a set of initial values Êi greater than

zero;

2) Update Êi using Eq. (7) and (8);

3) Apply χ to G(x(t)) using Êi;

4) Calculate the control law u using χ(G(x(t))).

Note that the algorithm is completely decentralized and

only adds one state (Ê) to each vehicle that needs to be

maintained.

V. EXAMPLE: CONNECTED TARGET TRACKING WITH

UNDERACTUATED DYNAMICS USING FILTERED GABRIEL

GRAPHS INTERACTIONS

We now introduce an example that takes advantage of

Thm. 4.1. We assume we have each agent i with the

normalized nonholonomic vehicle dynamics:

ẋi = vi
x v̇i

x = cos(θ)ui
1

ẏi = vi
x v̇i

y = sin(θ)ui
1

θ̇i = vi
θ v̇i

θ = ui
2

(15)

and control laws defined in the next sections. We will show

in detail how the hybrid filtering works for this system,

first generating the potentials for target tracking, collision

avoidance, and the Gabriel graph itself. We will assume that
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the control has the following structure:

ui
1 =

{

ui cond < ǫ
−ẋ − ẏ else

ui
2 =

{

d
dt

arctan(ẏ, ẋ) cond < ǫ
−Kθ(θ(t) − ∠(

∑

j ∇P (xi, xj)) else

where cond = |θ(t) − ∠(
∑

j ∇P (xi, xj)|. This control

ensures that the vehicle turns when it is not oriented properly

and, when it is, it follows the Gabriel graph control laws. To

generate u, we create separate potentials for target tracking,

collision avoidance, and our ad-hoc proximity graph of

choice, the Gabriel graph itself.

Although the decision to prohibit a switch is made by each

agent based on its local energy reserve, it may be desirable to

allow switches to occur whenever the global energy reserve

is sufficiently large. That is, we do not want to prevent a

switch due to low energy reserves in one part of the system,

when there are sufficient energy reserves unused somewhere

else. Thus, we need some mechanism for sharing information

about the energy reserve levels between agents.

We will take advantage of the average-consensus algo-

rithm described by Olfati-Saber and Murray [8]. This algo-

rithm allows a distributed set of agents to reach a consensus

on a common global value, while sharing information only

with their local neighbors. If an agent i has a set of neighbors

Si that it can sense,

ūi =
∑

l∈Si

(El − Ei). (16)

The system evolves somewhat differently, as the times

when we must prohibit a switch have changed due to the

differing local values of E, but the system meets all the

conditions necessary for the proof in Section IV (in Eq.(11))

because the global behavior of E still has the required

properties. However, as described in [8], all of the local

energy reserves will now converge to a single value.

The consensus function [8] is just one example of a valid

consensus function. In fact, any consensus algorithm with

the zero-sum property is acceptable, as is clear from the

proof of Thm. 4.1. The consensus on E is independent of

the normal control of the system, although a faster consensus

will improve performance in terms of convergence rate.

To generate a control law from the Gabriel Graph set of

neighbors for a given agent i, we choose the following:

ui =
[

∑

j∈Ni

ks(‖xi − xj‖ − l0)v̂ij

]

− kdẋi

where xi represents the Cartesian coordinates describing the

agent’s position, ẍi is the agent’s acceleration, ẋi is the

agent’s velocity, Ni is the set of links connected to this agent,

and v̂ij is the unit vector from agent i to agent j. Control

constants are the natural length (l0), the stiffness (ks), and

the damping coefficient (kd). We require that the system be

symmetric: if an agent a has a link connected to agent b,

then agent b must have a link connected to agent a.

For each interval (ti, ti+1) between switches, the potential

function is:

Vσ(τj) =
∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi

]

.

Since P is conservative (in this case a quadratic function),

it can be shown that:

V̇σ(τj) =
∑

i∈R

−kdẋ
T
i ẋi

and hence we simply let:

di = −kdẋ
T

i
ẋi.

We define si such that:

si =
∑

j∈N
+

i

P (xi,xj) −
∑

j∈N
−

i

P (xi,xj)

where N+
i represents the limit of Ni from the right, and N−

i

represents the limit of Ni from the left. Lastly, we allow Êi

to evolve as in Eqs. (5) and (6).

While our proof based on Barbalat’s lemma is convenient

for smooth potentials, it is not the only technique that is

compatible with the energy reserve approach. For example,

consider the work of Tanner et. al. in [11]. A control input

u and Lyapunov function V are presented (we have changed

the notation slightly to match the conventions used here):

ui = −
∑

j∈Ni

(ẋi − ẋj) −
∑

j∈Ni

∇P (xi,xj)

where P is some potential function that approaches infinity

as xi approaches xj , and has a unique minimum when

agents i and j are at a desired distance. Ni is the set of

neighboring agents within some threshold distance of agent

i. The Lyapunov function is then

V =
1

2

∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi)

]

and

V̇ = ẋ
T Lẋ

where L is the Laplacian of the neighbor graph GN .

It is simple to add an energy reserve to V, with di =
ẋi − ẋj . This modifies the Lyapunov function as shown:

V =
1

2

∑

i∈R

[

∑

j∈Ni

P (xi,xj) + ẋ
T
i ẋi)

]

+ E

V̇ = (1 − ke)ẋ
T Lẋ

This change carries through the rest of the analysis. The

results in [11] are preserved with the addition of an energy

reserve, which allows for more flexibility in specifying a

switching function.

For some systems, using the modified switching function

may have implications for collision avoidance. If its energy

reserve is depleted, an agent may not allow a switch that

is necessary in order to prevent a collision. However, it is

possible (and fairly straightforward) to design a system that
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Fig. 1. Simulation of Gabriel graph maintaining connectivity. (Agent
orientation is indicated by the small black line pointing in the direc-
tion the agent is facing.) Figures (a) and (b) shows links being created
between nearby agents, but the long link connecting the two groups is
being filtered by χ until Figure (c). After they have connected, they
come closer together in (d). Movies of this simulation may be found at
http://robotics.colorado.edu/AMAI2007.

does not depend on switching for collision avoidance. For

example, consider the following control law:

ui =
[

∑

j∈Ni

∇P1(xi,xj)
]

+
[

∑

k∈R

∇P2(xi,xk)
]

− kdẋi

where Ni is the set of neighbors according to some relation

(such as a Gabriel graph), and R is the set of all agents.

Suppose that P1 and P2 are both conservative functions, and

that P2(xi,xk) approaches infinity as xi approaches xk. It

may be the case that P2 is a “short-range” potential–it rapidly

becomes small as the distance between the agents increases.

Similar to our previous examples, this system satisfies

all of the requirements for Theorem 4.1. In addition, since

P2 affects all pairs of robots at all times, no collision can

occur without overcoming an infinite potential. (We choose

P2(xi, xj) = 1/‖rij‖ for purposes of simulation, where

rij is the distance from agent i to agent j.) A continuity

argument such as that given in [11] is adequate for showing

that collisions are avoided.

It should be noted that some care must be taken to ensure

that a collision-avoidance term does not cause unintended

consequences. For example, a poorly-chosen control law may

avoid collisions but allow undesired local minima in the

potential function. While terms such as P2 do not affect

our ability to cause convergence, they may alter system

performance.

A. Simulation of Filtered Gabriel Graph interactions with

Underactuated Dynamics

A group of six mobile agents with dynamics in Eq. (15)

are given initial conditions in the region (−600, 600) ×

Fig. 2. The energy reserve E for agent 3 versus time. Drops in the value
indicate that there is enough energy reserve to incorporate a new link with
another agent.

(−200, 600) cm such that two groups of three are substan-

tially separated, as seen in Fig. 1(a). The Gabriel graph

structure dictates that a link must be established between the

two groups if they are within sensing range of each other.

However, first the two groups separately create connections

separately (seen in Fig. 1(b)) as the Gabriel graph will inject

too much energy into the system to be able to guarantee

convergence. Then, after the energy reserve condition is met,

the connection between the two groups is made in Fig. 1(c),

after which the two groups converge together, as seen in

Fig. 1(d).

Figure 2 shows the energy reserve for agent 3. Near

time zero, connections are made to both agents 1 and 2,

substantially increasing the potential energy. Then the energy

reserve remains flat while the vehicle re-orients itself. Then,

it must wait until the first drop is seen to create the link

between the two groups. Without the consensus algorithm

in Eq. (16), this could have taken longer to take place,

but it would have nevertheless eventually created the link.

This simulation was additionally performed on a hardware

test-bed the Roomba robotic vacuum cleaner manufactured

by iRobot as a base. This provides for an inexpensive

hardware platform that can integrate sensors and distributed

computing. The Roomba measures 32cm across and uses

a simple differential drive system. (Hence, its dynamics

are underactuated as in Eq.(15).) We are using a Linux-

based board (the TS-7260 from Technologic Systems) as

the deployed computer. We use wireless for broadcasting

configuration data to neighbors. The experimental results are,

perhaps not surprisingly, nearly identical to those seen in

Fig.1.

B. Potentials and Simulations for Target Tracking

Consider a system in which there are potentials between

the agents, as well as between the agents and targets in

the environment. It may be the case that targets can appear,

disappear, change position, and/or change characteristics in

such a way as to inject large amounts of virtual energy

into the system. Our technique can be applied to prevent

destabilization of the system due to target behavior or false

generation of targets.

For example, let R be a set of agents and T a set of targets,

each of which may appear and disappear arbitrarily. Let the
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Fig. 3. Simulation of Gabriel graph tracking an intruder. This is similar
to Fig.1, but here we see that agent 5 is unable to track the intruder
(agent 6) immediately. Nevertheless, agents 1,2,4 and 5 are eventually
tracking the intruder convergently. Movies of this simulation may be found
at http://robotics.colorado.edu/AMAI2007.

control law for agent i be the following:

ui =
[

∑

j∈Ni

∇P1(xi,xj)
]

+
[

∑

k∈N

∇P2(xi,xk)
]

+
[

∑

k∈T

∇PT (xi)
]

− kdẋi

where P1 = ‖rij‖ is the potential function acting between

the agents due to the Gabriel graph, P2 = 1/‖rij‖ is the

potential function acting between the agents for purposes of

collision avoidance, and PT is the potential function acting

between agents and targets.

If there are no restrictions on the appearance of targets,

then targets may inject an arbitrary amount of energy into the

system. This is not desirable, as the continued appearance

of targets, or the appearing and disappearing of a few

targets in an unfortunate pattern, could destabilize the system

and/or cause collisions between the agents. Modifying the

switching function according to our technique will remove

this problem.

In the simulation seen in Fig. 3, a group of five mobile

agents with dynamics in Eq. (15) are given initial conditions

in the region (−600, 600) × (−200, 600) cm such that two

groups are substantially separated, as seen in Fig. 3(a) and

another vehicle (agent 6) is passing through them that needs

to be tracked. Initially, only agent 1 tracks agent 6, but

soon agent 2’s energy reserve is large enough for it to track

agent 6 as well (seen in Fig. 3(b)). Because of the rapid

switching that occurs for agent 5 between creating a link

with agent 2 and agent 6, agent 5 must wait longer to make

these connections (seen in Fig. 3(c)). At the end, agent 6 has

been handed off to agents 2,4, and 5 successfully, as seen in

Fig. 3(d).

VI. CONCLUSIONS

In this paper we have introduced an approach to coop-

erative control that focuses on monitoring and filtering the

admissible changes in network graph topology used in a

cooperative control law according to a stability criterion. This

method can be distributed across a network of agents by

additionally using consensus algorithms like those found in

[8]. This approach leads to a flexible method of guaranteeing

convergence for arbitrary network graphs, and explicitly

avoids instabilities due to the graph topology switching.

The results presented here allow one to use arbitrarily

chosen proximity graph definitions in the control law spec-

ification, which allows more flexibility in task specification.

Moreover, the presented approach can be adapted to hier-

archical heterogeneous systems almost without modification

[12], where there are different types of agents with different

priorities. However, this work only addresses convergence

under arbitrarily switching graph structures, not configuration

stability (which will be a focus of ongoing research).
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