
 
 

 

  
Abstract—Motion and control of a Bernoulli-Euler beam fixed 

on a moving cart will be analysis in this study. The moving cart is 
mounted on the ball-screw mechanism system. Dynamic 
formulation for control purposes is first investigated for such 
beam-cart system in this research. The controller has two separate 
feedback loops for positioning and damping, and the vibration 
suppression controller is independent of linear motion stage 
positioning control. An experimental apparatus was constructed, 
constituted of a flexible cantilever aluminum beam type structure 
with piezoelectric patches symmetrically bonded on both sides to 
provide structural bending. Strip-bender type piezoelectric patches 
were attached to the surface of the beam to serve as actuators and 
sensor, respectively. Experimental validation of for such structure 
demonstrates the effectiveness of the proposed controller. The 
results of this study can be feasible to various mechanical systems, 
such as high tower cranes, ladder cars or overhead cranes. 

 

I. INTRODUCTION 

Many researchers [1-6] have studied dynamic responses 
of a flexible beam subjected to a moving cart. There has been 
a lot of research works on the vibration analysis of flexible 
structures or flexible beams subject to various boundary and 
load conditions. They arise, for example, in a railroad tracks 
and bridges traversed by high-speed trains, elevated 
roadways that support moving vehicles, overhead cranes, 
high-speed precision machining and computer disk drives 
used for storage. In each of these systems, estimates of the 
moving loads and the accurate calculation of the response 
and stresses of the structures are crucial for a reliable design, 
the prediction of lifetimes and the implementation of control 
strategies [7-8]. 

One kind of such beam-mass systems considered in a 
vast number of previous studies is a uniform cantilever beam 
that carries a concentrated mass or body at one end and the 
other end is fixed or restrained to a large inertial frame or the 
ground. For example, when the reclaims in automatic 
warehouses, high tower cranes, ladder cars or overhead 
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cranes carry heavy loads, the vibrational motion due to the 
flexibility of the main beam is unavoidable [3-6]. 

The equations of motion of the beam-mass-cart system 
are analyzed through unconstrained modal analysis, and a 
unified characteristic equation for calculating the natural 
frequencies of the system is established in [3-4]. Moreover, 
the vibrational motion of an elastic beam fixed on a moving 
cart and carrying a moving mass is investigated in [5]. 
However, the above papers are concentrated on the dynamic 
analysis; no control methodology was presented for such 
researches. Similarly, reference [6] proposes a modified 
pulse sequence method with robust internal-loop 
compensator (RIC) to suppress single-mode residual 
vibration and to get accurate positioning of the 
beam-mass-cart system. However, it is only possible to 
suppress initial vibration, no further vibration reduction 
discussion during the reciprocal motion. 

When used in flexible structures, the piezoelectric 
materials are bonded to the body of the structure using strong 
adhesive material. A distinct characteristic of piezoelectric 
actuators or sensors is that they are spatially distributed over 
the surface that is being sensed and/or controlled. This 
property makes them different from the discrete actuators 
and sensors, which are often used in the control of flexible 
structures [9-14]. However, all the papers considered above 
are limited to the vibration control of a laminated beam, and 
none have presented control methodology for the elastic 
beam fixed on a moving cart. 

In fact, the vibration phenomenon of an elastic beam is 
strongly affected by the moving cart, especially for 
reciprocal motion of the cart. Therefore, the motion and 
control of a Bernoulli-Euler beam fixed on a moving cart 
will be analysis in this study.  

II. DYNAMIC SYSTEM MODELING 

Figure 1 shows the cart-beam system considered in this 
study. The elastic beam is assumed to follow the 
Bernoulli-Euler beam model and to be clamped tightly on the 
moving cart. The base cart moves on the horizontal plane by 
the applied force f(t). The equation of motion and the 
boundary conditions of the cart-beam system in Fig. 1 are 
derived by Hamilton’s principle as follows [15] 
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where m is the mass of the cart, l is the length of the elastic 
beam, γ  is the mass per unit length of the elastic beam, EI is 
the flexural rigidity of the unloaded beam, x is the position of 
the cart, ttyww ∂∂= /),(&  and 22 /),( ytyww ∂∂=′′ , where 
w(y,t) is the deflection of the beam at y.  

Then, assuming a Bernoulli-Euler beam model, the 
deflection of elastic beam w(y,t) can be expressed as a 
summation of the infinite series terms 
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where )(tqi
 are generalized modal coordinates and )(yiφ  

are mode-shape functions that are dependent upon the 
boundary-value problem. Furthermore, n is the number of 
retained modes. 

Moreover, natural frequencies of the cart-beam system in 
Fig. 1 are represented as  
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where 
ik  are the roots of the frequency equation changed 

along the weight ratios of the cart-beam system and as 
follows [4]: 
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The mode shape function can be obtained as in the 
following 
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where 875104.11 =ξ , 694091.42 =ξ , 854757.73 =ξ , 

734096.01 =α , 018446.12 =α , 999225.03 =α , lkii =ξ  
[16]. 

Furthermore, the kinetic energy, K(t), and the potential 
energy, P(t), of the cart and the flexible beam are represented 
as 
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where )(tKr
 and )(tPr

 are the kinetic and potential energy 
functions due to the motion of the cart, and ),( tyKe

 and 

),( tyPe
 are the kinetic and the potential energy density 

functions due to the flexibility of the beam, respectively. 
Moreover, Equation (8) can be also represented as  
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In such case, the cart position – x is not measurable and 
the ball-screw rotation angle θ  is measured from the optical 
encoder, which is attached on the servomotors. Therefore, 
equation (9) can be rewrite x as the terms of the rotation 
angle θ  ( θplx = ,

pl  is the lead pitch of the ball-screw) as in 

the following: 
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The equations of motion are derived using Lagrangian 
formulation, 
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with [ ]T
nqqqX L21θ= . Hence, the Lagrangian L 

can be defined as 
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The equations of motion for the cart-beam system are  
τBFKXXDXM d =+++ &&& ,                                             (13) 

where M is the inertia matrix, D is damping matrix, K 
stiffness matrix, 

dF  is the equivalent friction torque caused 
by the motor brushes, support bearing, and nut interfaces; 
and [ ]Tuu 21=τ . Moreover, 

1u  is the motor torque 
generated by a current-controlled servo-amplifier driven by 
voltage command from the DSP, and 

2u  is the control 
voltage from the piezo-actuator.  
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Fig. 1 Conceptual model of the cart-beam system 

III. SYSTEM CONFIGURATION 

The experimental system, in Fig. 2 consists of the 
following components. A Panasonic AC servomotor with 
encoder is attached to the ball-screw through a 
noninfluencing helical coupling. In addition, the ball-screw 
has a low-friction ball-nut around it, which, in turn, is 
connected to the translating stage. The ball-nut assembly is 
spring loaded against the ball-screw in an attempt to 
eliminate backlash in the system. The system is mounted on 
granite table for vibration isolation and located in a 
temperature-controlled room [17]. Figure 3 indicates the 
schematic diagram of the control experiment. The complete 
system is installed in the Sensor and Control Laboratory at 
the Department of Mechanical Engineering at Ching Yun 
University, Fig. 4. 

 
Fig. 2 Schematic view of the system configuration 

 
Fig. 3 Schematic diagram of the control experiment 

 
Fig. 4 Experimental apparatus 

 
IV. CONTROLLER DESIGN 

4.1 Fuzzy Tracking Controller (FTC) 
In this investigation, we consider the neural fuzzy control 

systems that can be built from a set of input-output training 
data pairs through hybrid structure-parameter learning. An 
adaptive network-based fuzzy inference system (ANFIS) has 
been used to optimize the fuzzy IF-THEN rules and the 
membership functions to derive a more efficient fuzzy 
control. The algorithm that uses the Takagi-Sugeno-Kang 
(TSK) inference system then optimizes the controller. By 
employing a hybrid learning procedure, the proposed 
architecture can refine fuzzy if-then rules obtained from 
human experts to describe the input-output behavior of a 
complex system [18].  

Joint angle tracking error ( θθ −= de ) of the moving cart 
and its rate variable ( e& ) are two typical variables in fuzzy 
control system. This investigation uses the ANFIS to 
optimize fuzzy IF-THEN rules and membership functions 
for driving a more efficient fuzzy control. Usually we choose 
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μ  to be bell-shaped with maximum equal to 1 and 
minimum equal to 0, such as 
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where },,{ j
i

j
i

j
i cba    is the parameter set to be tuned. 

Moreover, in this research, linguistic variables 
corresponding to large negative (LN), small negative (SN), 
zero (ZE), small positive (SP), and large positive (LP) are 
used to represent the domain knowledge.  

Let us now derive the parameter learning for such system. 
The derivation procedure is similar to the corresponding 
author previous work [18]. Assume that dy  is the desired 

output for input vector [ ] [ ]TT eexx &== 21x . The objective 
error function to be minimized is defined by 
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where jw  is a crisp number of the consequent part. 
Since the shape of the bell-shaped membership function 
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objective function E consists of the tuning parameters j
ia , 

j
ib , j

ic , and iw  for i=1,2 and j=1,…,5. Therefore, the 
learning rules can be derived as follows: 
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where k=0,1,2,…is the training index, η  is the learning rate.  
Moreover, the derivatives can be found from Eqs. (14) 

and (15) and shown as 
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Based on these update rules, the training algorithm can be 
summarized as in the [18]. 
 
4.2 Vibration Suppression Controller (VSC) 

The controller for suppression vibratory motion can be 
dominated by piezo-material. The sensors are used to get the 
information on modal state variables, which are further 
processed for modal control forces. The actual control inputs 
are synthesized and applied to the system through 
piezoelectric actuators.  

The voltage across the faces of a distributed piezoelectric 
sensor subjected to strain due to bending of a beam, is given 
as [9, 19] 
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where 0Q  is the charge coefficient which depends on the 
piezoelectric constant and geometric parameters, C is the 
capacitance of the sensor, ),( txw ′′  is the beam curvature, 

)(xη  is the spatial distribution of the sensor segment, 1l  and 

2l  are the boundary coordinates of the sensor. Moreover, 
)(xiφ′  is the slope of the mode shape function evaluated at x 

and )(tqi  is the modal coordinate corresponding to the ith 
mode. Compared to strain gauges, piezoelectric sensors offer 
superior signal to noise ratio, and better high-frequency noise 
rejection. Therefore, piezoelectric sensors are quite suitable 
for applications that involve measuring low strain levels [20]. 
Therefore, the feedback control law can be chosen the 

piezoelectric sensor output voltage sV  and its rate variables 

sVΔ  as two commonly used variables in the control. The 
proposed fuzzy vibration suppression controller (VSC) 
applies the vibration states sV  and their rate variables sVΔ  
as inputs, with the voltage applied to the voltage amplifier as 
the output. Since the vibration suppression controller is 
independent of linear motion stage positioning control, the 
individual fuzzy controller is easy to design for each 
collocated actuator-sensor pair. Moreover, the derivation for 
the parameter learning for vibration suppression controller is 
the same as FTC which is shown in Section 4.1. Therefore, 
the feedback voltage applied across the piezoelectric 
actuator may be decided by the control algorithm used in 
Section 4.  
 

IV.  RESULTS AND DISCUSSIONS 
(i) Experimental Results of the Moving Cart Subjected to 

Sinusoidal Trajectory Command 
The overall results of the experimental results for the 

application of the proposed controller for such structure are 
described in this section. The calculation for controlling 
results is obtained by the aforementioned procedures shown 
in section IV. In order to reject the signal noise from the 
servo motor of the moving cart, the sensor filter is designed 
as 1/(s+1) for the vibration suppression controller (VSC). To 
characterize the tracking controller, an ANFIS network with 
the fuzzifier processing two inputs, the rule base containing 
25rules and the defuzzifier comprising one output was 
trained. During the training, the network achieved a very 
good output prediction with a mean square error 0.0024462 
after 100 epochs for the tracking controller.  

Figure 7 plots the time response for the experimental 
results of the moving cart for sinusoidal trajectory command 
under FTC. The tracking response for the moving cart 
subjected to sinusoidal command is shown in Fig. 7(a). It is 
seen that a FTC plays well transient performance in the 
experiment for tracking purpose. In addition, Fig. 7(b) shows 
the responses for vibrational displacement of the flexible 
beam with and without PD vibration suppression controller 
(VSC) under the same FTC. It can be observed that the Fig. 
7(b) demonstrates that the performance has been 
significantly improvement for vibrational displacement 
while the PD type VSCC applied. Similarly, it can also be 
demonstrated that the vibrational displacement was clearly 
reduced once the fuzzy VSCC was introduced (Fig. 7(c)).  

To further verify the performance of the proposed 
controller, Table 1 makes a comparison of the Normalized 
root mean square (RMS) piezo-sensor output voltage 
subjected to sinusoidal command for the different control 
methodologies. From Table 1, it is seen that a FTC plus VSC 
can reduce the vibrational displacement significantly. This 
experimental finding proves that the active vibration 
suppression controller reduces the vibrational displacement 
owing to uncontrolled vibration by approximately 40% 
under collocated actuator/sensor pairs, and around 35% for 
non-collocated pairs. Compared with the system with 
collocated and noncollocated actuator/sensor pairs, the 
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performance of the vibration VSCC is considerably better 
than that of the VSCN in vibration reduction. Moreover, the 
vibrational displacement can be further reduces to 45% 
while the fuzzy VSCC applied and 37% vibration reduction 
once the fuzzy VSCN introduced. Such a controller is 
observed to result in suppression of the transverse deflection 
of the structure. It express that the proposed FTC with VSC 
control scheme can reduce the vibrational displacement 
effectively, especially in fuzzy VSCC. These experimental 
results verify the effectiveness of the proposed control 
methodology for minimizing vibrational displacement in the 
time domain.  

  
(ii) Experimental Results of the Moving Cart Subjected to 

Vary Amplitude Sinusoidal Command 
The tracking response for the moving cart subjected to 

vary amplitude sinusoidal command is shown in Fig. 8(a). It 
also can see that a FTC plays well transient tracking 
performance in the experiment for such case. In addition, Fig. 
8(b) shows the responses for vibrational displacement of the 
flexible beam with and without PD vibration suppression 
controller (VSC) under the same FTC. Moreover, Fig. 8(c) 
also indicates that the vibrational displacement was clearly 
reduced while the fuzzy VSCC applied. These experimental 
results display that the proposed control system achieves 
excellent tracking performance and satisfactorily attenuates 
vibration due to flexible beam. 

Moreover, Table 2 makes a comparison of the 
Normalized root mean square (RMS) piezo-sensor output 
voltage subjected to vary amplitude sinusoidal command for 
the different control methodologies. Evidently, a vibration 
reduction (%) for PD VSCC is 44.3% and VSCN is 43.5%. 
Furthermore, the vibrational displacement can be further 
reduces to 52.1% while the fuzzy VSCC applied and 50.5% 
vibration reduction once the fuzzy VSCN introduced. This 
investigation results also demonstrate that the fuzzy type 
vibration controller can significantly outperform PD type 
vibration controller.  
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(a) Response for the cart’s position under fuzzy tracking controller 
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(c) Response for the deflection of the flexible beam subjected to fuzzy 

vibration suppression controller 
Fig. 7 Experimental Results of the Moving Cart for Sinusoidal Trajectory 

Command 

0 1 2 3 4 5 6 7 8 9 10
-3

-2

-1

0

1

2

3

time (sec)

ra
d
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(b) Response for the deflection of the flexible beam subjected to PD 

vibration suppression controller 
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(c) Response for the deflection of the flexible beam subjected to fuzzy 

vibration suppression controller 
Fig. 8 Experimental Results of the Moving Cart under Vary Amplitude 

Sinusoidal Command 
Table 4 Normalized RMS vibrational displacement subjected to sinusoidal command 

Control Type
Tracking 

Controller 
 (PD Type)  

No Vibration 
Controller 

(A) 

Tracking 
Controller 

 (Fuzzy Type)  
No Vibration 

Controller 
(B) 

Tracking Controller 
 (kp=7, kd=0.1)  

Vibration Controller 
(kp=0.1, kd=0.1) 

Tracking Controller 
 (Fuzzy Type)  

Vibration Controller 
(kp=0.1, kd=0.1) 

Tracking Controller 
 (Fuzzy Type)  

Vibration Controller 
(Fuzzy Type) 

Collocated 
actuator-sensor 

pairs 
(C) 

NonCollocated 
actuator-sensor pairs

(D) 

Collocated  
actuator-sensor 

pairs 
(E) 

NonCollocated 
actuator-sensor pairs 

(F) 

Collocated 
actuator-sensor 

pairs 
(G) 

NonCollocated 
actuator-sensor pairs

(H) 

4.484e-4 4.325e-4 2.653e-4 2.894e-4 2.586e-4 3.029e-4 2.482e-4 2.821e-4 

Reduction (A-B)/A (A-C)/A (A-D)/A (A-E)/A (A-F)/A (A-G)/A (A-H)/A 
(%) 3.5% 40.8% 35.4% 42.7% 32.5% 44.6% 37.1% 

Reduction (A-B)/A (B-C)/B (B-D)/B (B-E)/B (B-F)/B (B-G)/B (B-H)/B 
% 3.5% 38.7% 33.1% 40.2% 30.0% 42.6% 34.8% 

Table 5 Normalized RMS vibrational displacement subjected to vary amplitude sinusoidal command 
Control Type

Tracking 
Controller 
 (PD Type)  

No Vibration 
Controller 

(A) 

Tracking 
Controller 

 (Fuzzy Type)  
No Vibration 

Controller 
(B) 

Tracking Controller 
 (kp=7, kd=0.1)  

Vibration Controller 
(kp=0.1, kd=0.1) 

Tracking Controller 
 (Fuzzy Type)  

Vibration Controller 
(kp=0.1, kd=0.1) 

Tracking Controller 
 (Fuzzy Type)  

Vibration Controller 
(Fuzzy Type) 

Collocated 
actuator-sensor 

pairs 
(C) 

NonCollocated 
actuator-sensor pairs

(D) 

Collocated  
actuator-sensor 

pairs 
(E) 

NonCollocated 
actuator-sensor pairs 

(F) 

Collocated 
actuator-sensor 

pairs 
(G) 

NonCollocated 
actuator-sensor pairs

(H) 

4.913e-4 4.636e-4 2.737e-4 2.777e-4 2.508e-4 2.520e-4 2.353e-4 2.432e-4 

Reduction (A-B)/A (A-C)/A (A-D)/A (A-E)/A (A-F)/A (A-G)/A (A-H)/A 
(%) 5.6% 44.3% 43.5% 48.9% 48.7% 52.1% 50.5% 

Reduction (A-B)/A (B-C)/B (B-D)/B (B-E)/B (B-F)/B (B-G)/B (B-H)/B 
% 3.5% 41% 40.1% 45.9% 45.6% 49.2% 47.5% 
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