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Abstract— The objective of this paper is to propose an
approach to decentralized resilient robust observer-based sta-
bilization with delayed feedback for uncertain delayed systems
which are composed of identical nominal subsystems and sym-
metric nominal interconnections. The proposed method employs
the structural properties of the system to construct a low order
control design model and the convex optimization approach.
It is shown how this methodology can lead to a reduced-order
control design with delayed feedback when considering a delay-
dependent approach and additive gain perturbations in the gain
matrices to obtain a quadratically stabilized global closed-loop
system.

I. INTRODUCTION

Time delays, uncertainties, information structure con-

straints, and dimensionality belong often to important issues

in large scale complex systems. To cope effectively with

control designs for such systems means to deal with de-

centralization of the design problems. Time-delayed systems

represent a class of infinite-dimensional systems largely used

to describe transport or heredity phenomena. Their stability is

a problem of recurring interest since the existence of a delay

in a system model may induce instability, oscillations, or bad

performance. This feature motivates the study of dynamic

systems with time delays over the past decades. The various

criteria for the stability and the stabilization of delayed

systems have been developed. The relevant methods belong

to two categories according to their measure of the influence

of the delays in the corresponding stability conditions. Delay-

independent criteria and delay-dependent criteria have been

distinguished. The majority of the proposed methods present

delay-independent criteria. These criteria are generally more

conservative than the delay-dependent ones when consider-

ing small time delays.

A standard assumption on the controller design is that

they can be implemented exactly on real world systems. In

practice, controllers are implemented imprecisely because of

various reasons determined by digital controller properties or
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the need for additional tuning of parameters. Even small im-

plementation changes in the controller parameters may either

destabilize the closed-loop system or cause a deterioration

some of its performance indices. While robustness relates to

uncertainties in the plant, fragility relates to uncertainties or

inaccuracies in the implementation of a controller. The need

to have a certain degree of freedom in controller parameters,

i.e. the robustness of stability against perturbations in con-

troller parameters, in the feedback loop is underlined when

considering the implementation of low cost local controllers

resulting from the control design of large scale complex

systems. Similar composite systems represent an important

class of these systems.

1.1 Prior Work

The motivation for studying symmetric composite systems

arises in very different real world systems. Systems with

identical subsystems and symmetric coupling can be found

in parallel systems such as flow splitting parallel reactors [1],

paper machines control [2], electric power systems operating

in parallel [3], [4], industrial manipulators [5], mechanic

systems [6], space crystal furnace [7], homogeneous inter-

connected systems such as seismic cables [8], or in the

problem of formations of vehicles in cyclic pursuit solved

using circulant matrices [9]. More complete survey presents

[1].

Several control design methods have been developed for

symmetric composite systems [1], [10], [11], [12], [13].

Their extension to uncertain systems is presented in [14]

and [15]. Both delay-independent and delay-dependent con-

trol design methods are surveyed in [16] including several

methods for uncertain systems with time delays. However,

their extension to uncertain similar composite systems with

time delays is unusual. [17] and [18] proposed a state space

approach to cope with this class of systems with time delays.

A more exhaustive presentation is discussed in this context in

the survey paper [19]. All previous results deal with a delay-

independent approach and low order control design models.

Delay-dependent criteria have been used for control design

with delayed feedback by [20], [21], [22] for the centralized

case, while [23] deals with the decentralized case.

The motivating reasons for introducing the notion of

fragility, practical examples, and the design methods are

surveyed in [24] and [25] for centralized systems. Decen-

tralized resilient control design for uncertain interconnected

systems with time delays is developed in [26] by using the

delay-independent approach. A resilient stabilization method
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is proposed in [18] for state delayed uncertain symmetric

composite systems.

The paper extends the results by [21] and [25] into resilient

decentralized setting by using the reduced-order control de-

sign when considering the delay-dependent approach within

the framework of the LMI constraints by [27].

To the author’s best knowledge, the problem of resilient

decentralized robust observer-based controller design with

delayed feedback has not been solved up to now for this

class of similar composite systems.

1.2 Outline of the Paper

This paper presents a sufficient condition for the reduced-

order design of resilient decentralized observer-based con-

troller with delayed feedback in the convex optimization

context for stabilization of a class of uncertain delayed

similar composite systems. This controller requires the con-

struction of a low order design model as well as the selection

of the gain matrices for this model. These gain matrices

guarantee the quadratic stability of the global closed-loop

system when implemented into the global system. A delay-

dependent approach and additive gain perturbations are used.

II. PROBLEM FORMULATION

Consider an uncertain linear similar composite system

consisting of N subsystems, where the ith subsystem is

described as follows

ẋi(t) = (A + ∆Ai(t))xi(t)

+ (Ad + ∆Adi(t))xi(t − d)

+ Bui(t) + szi(t)

yi(t) = Cxi(t) xi(t) = Φi(t) ∀t ∈ [−d, 0]

i = 1, . . . , N N ≥ 2
(1)

xi, ui, szi, yi are n−, m−, ps−, py−dimensional vectors of

the subsystem states, control inputs, interconnection inputs

and measured outputs, respectively. Given initial functions

Φi(t) : [−d, 0] → Rn are absolutely continuous vector

functions satisfying xi(0) = Φi(0) for all i. d denotes a

point time delay. Interconnections are described in the form

szi =

N
∑

j=1

(Lijyzj + Ldijydzj) (2)

where yzj is the pz-dimensional vector of the interconnection

output from the subsystem j which is related to the state

vector in the form

yzj = Czxj ydzj = Cdzxj(t − d) (3)

The interconnection matrices Lij , Ldij have the structure as

follows

Lii = 0 Lij = Lq + ∆Lqij(t)

Ldii = 0 Ldij = Ldq + ∆Ldqij(t), (i 6= j)
(4)

A, Ad, B, C, Cz and Lq, Ldq are constant nominal matrices.

∆Ai(t), ∆Adi(t), ∆Bi(t), ∆Ci(t), and ∆Lqij(t), ∆Ldqij(t)
are norm bounded uncertainties which admit the following

structure

∆Ai(t) = DAFAi(t)EA

∆Adi(t) = DdAFdAi(t)EdA

∆Lqij(t) = DLFLij(t)EL

∆Ldqij(t) = DdLFdLij(t)EdL

(5)

FAi(t), FdAi(t), FLij(t), FdLij are unknown time-varying

real pA × qA, pdA × qdA, pL × qL, pdL × qdL matrices with

Lebesgue measurable elements, respectively. F(∗)(t) satisfy

FT
(∗)(t)F(∗)(t) ≤ I for all t ≥ 0. I denotes a unit matrix of

appropriate dimensions. DA, ..., EdL are known real constant

matrices of appropriate dimensions.

Supposing that all states are not available, we seek for

a decentralized controller–observer scheme stabilizing the

system (1)–(5) for t ≥ 0. We propose this scheme to

be composed of N decentralized resilient controllers with

delayed feedback and full state observers of the form

˙̂xi(t) = (Ar + ∆Ari)x̂i(t)

+ (Adr + ∆Adri)x̂i(t − d) + Bui(t)

+ (Ko + ∆Koi)(yi(t) − Crix̂i(t))

ui(t) = (Kc + ∆Kci)(x̂i(t) +

∫ t

t−d

Adrx̂i(s)ds)

x̂i(t) = 0 ∀t ∈ [−d, 0] i = 1, . . . , N
(6)

where x̂i(t) is the n−dimensional observer state of the

subsystem i. Ari and Adri are the observer state nominal

matrices. Ko and Kc are the observer gain matrices and the

feedback gain matrices, respectively. The uncertainties in the

state matrices as well as the additive gain perturbations are

defined as follows

∆Ari(t) = DrFri(t)Er

∆Adri(t) = DdrFdri(t)Edr

∆Koi(t) = DoFoi(t)Eo

∆Kri(t) = DcFci(t)Ec

(7)

Fri(t), Fdri(t), Foi(t), Fci(t) are unknown time-varying real

pr × qr, pdr × qdr, po × qo, pc × qc matrix functions with

Lebesgue measurable elements, respectively. They all satisfy

FT
(∗)(t)F(∗)(t) ≤ I for all t ≥ 0. I denotes a unit matrix of

appropriate dimensions. Dr, ..., Ec are known real constant

matrices of the corresponding dimensions.

The controller-observer parameters of (6) to be determined

are the system matrices Ar, Adr and the gain matrices

Ko, Kc.

The global system description of the system (1)–(5) has

the form

ẋ(t) = (A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t − d)

+ Bu(t)

y(t) = Cx(t) x(t) = Φo(t) ∀t ∈ [−d, 0]
(8)
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where x, u, y are nN−, mN−, pN−dimensional vectors of

the system states, control inputs and measured outputs,

respectively. Φo(t) is a given initial function. Further xd(t) =
x(t − d). The nominal matrices are defined as

A = (Aij) Aii = A Aij = LijCz

Ad = (Adij) Adii = Ad, Adij = LdijCdz

B = diag(B, ..., B)

C = diag(C, ..., C) i = 1, . . . , N
(9)

The uncertainty terms have the form

∆A(t) = DAFA(t)EA

∆Ad(t) = DdAF dA(t)EdA

∆B(t) = DBFB(t)EB

∆C(t) = DCFC(t)EC

(10)

The constant matrices are defined as follows

DA =diag(D1, ...,DN )

Di = (DL...DL DA DL...DL)

EA =diag(E1 ..., EN )

Ei = (EL...EL EA EL...EL)

DdA =diag(Dd1, ...,DdN )

Ddi = (DdL...DdL DdA DdL...DdL)

EdA =diag(Ed1 ..., EdN )

Edi = (EdL...EdL EdA EdL...EdL)

(11)

while the remaining matrices have the form

DB =diag(DB, ..., DB) EB = diag(EB , ..., EB)

DC =diag(DC , ..., DC) EC = diag(EC , ..., EC)
(12)

DA is located at the i-th position in Di. Each Di has N

elements D(∗). Symbols with an analogous meaning are used

for the locations of EA, DdA, EdA in Ei, Ddi, Edi, re-

spectively. The uncertainty structure is lumped in uncertainty

functions in the form

FA(t) =diag(FA1, ..., FAN )

FAi = diag(FLi1, ...

..., FLi i−1, FAi, FLi i+1, ..., FLiN )

F dA(t) =diag(FdA1, ..., FdAN )

FdAi = diag(FdLi1, ...

..., FdLi i−1, FdAi, FdLi i+1, ..., FdLiN )

FB(t) =diag(FB1, ..., FBN )

FC(t) =diag(FC , ..., FCN )

(13)

Denote the overall decentralized controller (6) rewritten into

a compact form as follows

˙̂x(t) = (Ar + ∆Ar)x̂(t) + (Adr + ∆Adr)x̂(t − d)

+ Bu(t) + (Ko + ∆Ko)(y(t) − Cx̂(t))

u(t) = (Kc + ∆Kc)(x̂(t) +

∫ t

t−d

Adx̂(s)ds)

(14)

where all matrices have a diagonal form of the corresponding

dimensions. Note only that Ko = diag(Ko, ..., Ko) and

Kc = diag(Kc, ..., Kc).

2.1 The Problem

The goal is to derive a procedure reducing the control de-

sign complexity of a resilient observer-based output feedback

decentralized controller with delayed feedback (6)–(7) for the

system (1)–(5) such that the closed–loop system (8)–(13),

(14) is quadratically stable for all admissible uncertainties.

Solve the problem by using a delay-dependent approach.

Remark 1. The notion of fragility means the sensitivity of

controller to parameters perturbations. An attempt is made to

construct non-fragile controllers, i.e. controller which ensure

robustness of stability against parameter perturbations of the

controller in the feedback loop. More precisely, the formu-

lated problem considers norm bounded additive uncertainties

in the controller (6) for the system (1). When all controller

uncertainties disappear, The problem reduces on a robust

decentralized control design problem without any fragility

issues.

III. MAIN RESULTS

The solution of the problem requires finding the system

matrices of the controller as well as its gain matrices. Let us

divide the solution into two steps. The first part consists of

the construction of the control design model which includes

the required system parameters of the controller. The second

part presents the method of the design of the required gain

matrices.

The structural properties of the system (8)–(13) are em-

ployed to obtain the control design model. Consider the

transformation of the states

x̃(t) = Sx(t) (15)

by using the transformation T = S−1. Suppose a real snxsn

matrix T (n, s) in the form

T (n, 1) = I

T (n, s) =















I 0 . . . 0 I

0 I . . . 0 I
...

...
. . .

...
...

0 0 . . . I I

−I −I . . . −I I















s > 1
(16)

where I denotes here nxn identical matrix. Then T is defined

as

T (i) = diag[T (n, N − i), I, ..., I] i = 0, ..., N − 1

T = T (0) T (1) ... T (N − 1)
(17)

The constructive way how to use this transformation is

presented the subsequent lemma by [14]. First, define the

nominal matrices

As = A − LqCz Ac = As + NLqCz

Ads = Ad − LdqCdz Adc = Ads + NLdqCdz

(18)
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Lemma 1. Consider the matrix A in the system (8)–(13)

and any given J = diag[Jo, ..., Jo], where J, Jo are nNxnN ,

nxn matrices. Then, the following equalities hold

T−1AT = diag(As, ..., As, Ac)

T T AT = diag(2As, 6As, ..., N(N − 1)As, NAc)

T−1J(T−1)T = diag(
1

2
Jo,

1

6
Jo, ...,

1

N(N − 1)
Jo)

T T JT = diag(2Jo, ..., N(N − 1)Jo, NJo)

(19)

The same relations hold when applying Lemma 1 on the

matrix Ad. It leads to analogous matrices Ads and Adc for

the delayed terms.

The terms NLqCz and NLdqCdz can be decomposed into

the nominal parts and the uncertain parts. The nominal part

has the form

N

2
LqCz = DE

N

2
LdqCdz = DdEd (20)

where D, E, Dd, Ed are constant matrices. Note only that

such decomposition is not unique. The uncertain part has

the standard form of norm bounded uncertainties

∆Av = DF (t)E ∆Adv = DdFd(t)Ed (21)

Define the n-dimensional system using the decomposition

(20), (21) as follows

ẋr(t) = (Ar + ∆Ar(t))xr(t)

+ (Adr + ∆Adr(t))xr(t − d) + Bur(t)

yr(t) = Cxr(t)

(22)

The nominal matrices in (22) are defined as

Ar = A + (
N

2
− 1)LqCz Adr = Ad + (

N

2
− 1)LdqCdz

(23)

while the uncertainties are given as follows

∆Ar(t) = DAFrA(t)EA

+ (
N

2
− 1)DLFrL(t)EL + DF (t)E

= DrFrAm(t)Er

∆Adr(t) = DdAFdrA(t)EdA

+ (
N

2
− 1)DdLFdrL(t)EdL + DdFd(t)Ed

= DdrFdr(t)Edr

(24)

Consider an observer-based output resilient controller with

delayed feedback for the control design model (22) in the

following form

˙̂xr(t) = (Ar + ∆Ar)x̂r(t)

+ (Adr + ∆Adr)x̂r(t − d) + Bur(t)

+ (Ko + ∆Kor)(yr(t) − Crrx̂r(t))

ur(t) = (Kc + ∆Kcr)(x̂r(t) +

∫ t

t−d

Adrx̂r(s)ds)

x̂r(t) = 0 ∀t ∈ [−d, 0]
(25)

where ∆Kor = DoFo(t)Eo and ∆Kcr = DcFc(t)Ec.

The selection of the gain matrices Ko, Kc in (25) must

guarantee the quadratic stability of the closed-loop system

(22), (25). Denote the error vector er(t) = xr(t) − x̂r(t)).
The quadratic stability of the closed-loop system can be

established when using the neutral transformation in the state

and the error vectors by [21] or [16] in the form

D(xr) = xr(t) +

∫ t

t−d

Adrxr(s)ds

D(er) = er(t) +

∫ t

t−d

Adrer(s)ds

(26)

for the system (22), (25). Consider the Lyapunov function

candidate as follows

V (t) = V1(xr) + V2(er) (27)

where

V1(xr) = DT (xr)PxD(xr) +

∫ t

t−d

∫ t

s

xT
r (u)Qxxr(u)duds

+

∫ t

t−d

xT
r (s)Txxr(s)ds

(28)

V2(er) = DT (er)PeD(er) +

∫ t

t−d

∫ t

s

eT
r (u)Qeer(u)duds

(29)

Px, Qx, Tx, Pe, Qe are positive definite matrices of appropri-

ate dimensions.

The time derivative of V (t) leads after tedious manip-

ulations to the sufficient condition for the existence of

stabilizing gain matrices. This condition is invoked in the

following theorem which is stated in terms of the LMIs

when introducing the linearization variables Xx = P−1
x ,

Yx = KcXx, Wx = T−1
x , Rx = dQ−1

x , Re = d−1Qe,

Ge = KoPe.

Theorem 1: Given the system (22) and the controller (25).

Ko, Kc are unknown gain matrices to be determined in (25).

For any given time delay d > 0, consider the following

inequalities

M1(Ar) < 0 M2(Ar) < 0 M3(Ar) < 0 (30)

where

M1(Ar) =





















Φ1 Φ12 0 dXx Xx Φ16 Φ17

• −Rx Φ23 Φ24 Φ25 Φ26 0
• • −ε4I 0 0 0 0
• • • −Rx 0 0 0
• • • • −Wx 0 0
• • • • • Φ6 0
• • • • • • Φ7





















(31)

M2(Ar) =





−Wx WxET
d WxET

d

• −ε3I 0
• • −I





(32)
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M3(Ar) =









Π1 Π2 dRe Π3

• −Re + CT ET
o EoC −dAT

drRe 0
• • −Re 0
• • • Π4









(33)

and

Aor = Ar + Adr

Φ1 = AorXx + XxAT
or + BBT + BYx + Y T

x BT

+ (ε1 + ε4)DADT
A + (1 + ε2)DcD

T
c + ε3DdD

T
d

Φ12 = −AorAdrRx

Φ16 = (XxET
A , XxET

o )

Φ17 = (XxET
A , Y T

x ET
c , Y T

x ET
c )

Φ23 = RxAT
drE

T
d

Φ24 = −dRxAT
dr

Φ25 = −RxAT
dr

Φ6 = diag(I, I)

Φ7 = diag(ε1I, ε2I, I)

Π1 = PeAor + AT
orPe − GeC − CT GT

e

+ (1 + ε5)X
−1
x Y T

x ET
c EcYxX−1

x

Π2 = −PeAor + GeCAdr + CT ET
o EoC

Π3 = (PeDA, PeDA, PeDc, PeDc, GeDo)

Π4 = diag(−I, −I, −I, −ε5I, −I)

(34)

If there exist positive definite matrices Xx, Pe, Wx, Rx, Re,

constants εi > 0 for i = 1, ..., 5, and the matrices Yx, Ge

satisfying the inequalities (30), then the system (22), (25) is

quadratically stabilized with the gain matrices

Kc = YxX−1
x Ko = P−1

e Ge
(35)

Remark 2. We solve first the LMIs (31), (32) to obtain the

matrices Xx and Yx. Then, the LMI (33) is solved by using

the matrices Xx and Yx to obtain the solutions Ge and Pe.

Remark 3. Theorem 1 is an extension of Theorem 3.1 in [21]

for centralized systems. In particular, the extension concerns

the inclusion of additive gain perturbations in the controller

when considering the nominal input and output matrices of

the system. Thus, the resilient controller design is performed.

Remark 4. Theorem 1 may hold for some given constant time

delay d > 0. However, the stabilizing solution satisfying the

inequalities (30) for such a d cannot be considered as an

upper-bound in the sense that all time delays less than d

belong to an admissible delay interval which guarantees the

stabilizing solution with the same gain matrices [21].

The following theorem states the main result.

Theorem 2: Given the symmetric composite system (1)–

(5). Construct the reduced control design system (22)–(24).

Select the observer gain matrix Ko and the controller matrix

Kc (35) in the controller (25) for the system (22)–(24)

satisfying the inequalities (30) for any given time delay

d > 0. Implement the matrices Ko, Kc into (6). Then, the

closed-loop overall system (8)–(13), (14) is quadratically

stable.

The proof is given in the Appendix.

Remark 5. To get a deeper insight into this result, note

that Lemma 1 uses the structural properties of this class of

systems transforming the original nN ×nN system into two

n × nsystems with the state matrices defined by (18). This

is a particular simultaneous stabilization problem which can

be further reduced to a single robust control design problem

for the n×n system (22) by using the construction (23)-(24)

while keeping the dynamical properties of the original sys-

tem. Theorem 2 surveys this derivation. Thus, the procedure

essentially simplifies the control design complexity.

IV. CONCLUSION

This paper proposes a new scheme for the reduced-order

control design of resilient decentralized robust observer-

based controller with delayed feedback for nonlinear but

nominally linear symmetric composite systems with state

delay. Particular structural properties of the nominal part of

this class of symmetric composite systems are used to con-

struct a reduced order control design model with equivalent

properties as those of the original system. A delay-dependent

procedure and an additive gain perturbation approach in

the controller parameters have been selected for the proper

design of gain matrices by using the LMI constraints. These

gain matrices, when implemented on the original system,

guarantee the quadratic stability of the global closed–loop

system.
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APPENDIX

Consider the global system (8)–(13) and the global con-

troller (14) with the given delay d. Denote the error vector

e(t) = x(t)− x̂(t)) for this closed-loop system. Consider the

neutral transformation in the state and the error vectors in

the form

D(x) = x(t) +

∫ t

t−d

Adx(s)ds

D(e) = e(t) +

∫ t

t−d

Ade(s)ds

(36)

for the system (8)–(14). Consider the Lyapunov function

candidate

V (t) = V 1(x) + V 2(e) (37)

where

V 1(x) = D
T
(x)P xD(x) +

∫ t

t−d

∫ t

s

xT (u)Qxx(u)duds

+

∫ t

t−d

xT (s)T xx(s)ds

(38)

V 2(er) = D
T
(e)P eD(e) +

∫ t

t−d

∫ t

s

eT (u)Qee(u)duds

(39)

The matrices in (38), (39) have the form

P x = diag(Px, ..., Px) Qx = diag(Qx, ..., Qx)

T x = diag(Tx, ..., Tx) P e = diag(Pe, ..., Pe)

Qe = diag(Qe, ..., Qe)

(40)

All these matrices are positive definite ones as follows from

(28), (29).

The quadratic stability of the global closed-loop system

(8)–(14) is proved by using the inequalities in Theorem 1 be-

ing appropriately modified to the global system when directly

implementing the gain matrices Kc = diag(Kc, ..., Kc) and

Ko = diag(Ko, ..., Ko). Note that Kc, Ko are obtained

by using Theorem 1 for the closed–loop system (22)–(25).

Then, the linearization matrices Xx = P
−1

x , Y x = KcXx,

W x = T
−1

x , Rx = dQ
−1

x , Re = d−1Qe, Ge = KoP e are

also available via (40) as well as constants εi, i = 1, ..., 5.

Now, substitute the parameters of the control design system

(22) by the global system (8). Substitute the controller (25)

by the controller (14). Denote simply these changes with

the replacements (22)→(8), (25)→(14) and implement them

together with Xx, Y x, W x, Rx, Re, Ge into the inequal-

ities (30). Denote the resulting matrices M1(A), M2(A),
M3(A). Note they have the same structure as (31)–(33), but

they are reformulated for the global system (8)–(14). Then,

it remains to show that the matrices M1(A) < 0, M2(A) <

0, M3(A) < 0.

To simplify the discussion, consider only the matrix

M1(A). Applying now the transformation of the states T by

(15) and Lemma 1, we get the transformed system resulting

in the relation

P1−1T 1−1M1(A)T 1P1

= diag(M1(As), ..., M1(As), M1(Ac))
(41)

where P1 is a convenient permutation matrix, T 1 =
diag(T, ... , T ). P1 and T are non-singular matrices. Anal-

ogous relations hold for M2(A), M3(A). If M1(Ar) < 0
by Theorem 1, then M1(As) < 0, M1(Ac) < 0 because the

system (22)–(24) includes both systems with the matrices

As, Ads and Ac, Adc by (19) as its special cases.

An analogous way of reasoning leads to the same con-

clusions when applying the transformation on the remain-

ing matrices M2(A), M3(A) while taking into account the

structure of (32), (33).

Thereby, the closed-loop system (1)–(5), (6) with the gain

matrices Ko, Kc determined according to Theorem 1 by

Eqs.(35) is quadratically stable. Q.E.D.
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