
  

  

Abstract— System identification is the process of deriving 

dynamic equations from observed system behavior, the inverse 

of the common problem of deriving solutions to a given set of 

dynamics.  The system identification process generally consists 

of two steps, a model synthesis step followed by a model tuning 

step.  For complex systems, standard system identification tools 

often fail to provide satisfactory results without extensive 

manipulation by an experienced engineer.  Input, output, and 

frequency weightings are often used to adjust the properties of 

the identified model in model tuning.  In this effort, we examine 

the impact of model synthesis weightings on model tuning 

results.  Model synthesis weightings are shown to improve the 

initial models used for model tuning.  However, it is shown that 

an improved initial model for model tuning does not necessarily 

lead to faster model tuning or more accurate identified models. 

I. INTRODUCTION 

System identification is the process by which models are 

derived from measured data. System identification is often 

used to derive models for controller design. The system 

identification process generally consists of two steps: a 

model synthesis step followed by a model tuning step. In the 

model synthesis step an initial model is constructed directly 

from the measured data.  In the tuning step the synthesized 

model is updated based on a user specified cost function in 

an optimization algorithm. In general, model synthesis is 

computationally faster than model tuning.    

Standard system identification tools often fail to provide 

satisfactory results for complex systems without extensive 

modification by an experienced engineer [1,3,6,9]. In 

particular, input, output, and frequency weightings are used 

to affect the properties of the resulting model.  These 

weightings are often applied only in the model tuning phase 

of system identification. 

In this effort, various weighting techniques are applied to 

both model synthesis and model tuning to create high-fidelity 

state space models for use in controller design.  To facilitate 

this comparison, analytic gradients are computed for a 

general least squares model tuning cost function. It is the 

goal of this research to show that model synthesis weighting 

can improve the initial model used in model tuning.  An 

improved initial model can result in a significant reduction in 

model tuning time, in turn reducing the overall time of the 
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entire system identification process. 

II. MODEL SYNTHESIS 

A. FORSE 

A number of subspace based techniques have been 

developed to create state space models from measured data 

[1-4]. The FORSE identification algorithm was chosen for 

this study because it has been shown to be effective at 

producing accurate high dimensional models.  The FORSE 

identification algorithm is based on a singular value 

decomposition of the extended observability matrix derived 

from frequency domain data [5].  FORSE has a built in 

frequency weighting scheme, and can use non-uniformly 

spaced frequency data. 

B. Weightings for Model Synthesis 

Weightings are implemented when standard system 

identification tools fail to provide a model that meets desired 

accuracy or other characteristics. The goal of weighting 

during model synthesis is to improve the initial model used 

in model tuning.  Two types of weighting schemes were used 

in model synthesis, input-output weighting and frequency 

weighting. 

The frequency weighting in the FORSE algorithm allows 

the user to apply a specific weighting at each input for each 

frequency point [5]. Due to the construction of the weighting 

scheme the input channels can be weighted independently, 

but all of the outputs carry the same weight.  

Modelers can weight the individual frequencies in any 

manner they deem fit.  The two weighting techniques used in 

this study were to apply a constant weight over a frequency 

band, and weighting by the inverse of the standard deviation 

of the measured data.  A constant frequency band weighting 

can be used to reduce or amplify model errors in a specific 

frequency band.  This technique may be used to improve 

model accuracy near zeros, which are often important for 

control design. This can provide an improved model fit in 

the weighted frequency band, often at the expense of larger 

model errors elsewhere.  Weighting by the inverse of the 

variance or standard deviation ensures that the data points 

with the lowest uncertainty receive the highest weight.  Since 

only the input channels can be weighted in FORSE, the 

variance weighting was based on the average of the variance 

data over all of the output channels.     
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Figure 1: FRF for unweighted (dotted) and weighted (dashed) models  

 

The goal of input-output weighting is to improve the 

identified model by adjusting the relative signal levels 

between various input-output channels [6].  Input-output 

weighting is only applicable to MIMO systems.  For system 

identifications algorithms which are sensitive to the scale of 

the data, such as FORSE, proper input-output weighting can 

result in an improved identified model. 

In the frequency domain the input-output weighting 

matrices are applied at each frequency point, 
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×ℜ∈  are the weighting matrices 

for the input and output channels, respectively, and 
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w CGG
×∈)(ˆ),(ˆ ωω  are the unweighted and weighted frequency 

response functions.  There are numerous techniques for 

selecting Wout and Win [6].  The weighted frequency response 

can be used in model synthesis, model tuning, or both the 

synthesis and tuning steps.  The final weighted model must 

be unweighted to obtain the identified model in natural 

(original) coordinates.  For a state space model, this is done 

by 
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where nn

wAA
×ℜ∈, , mn

wBB
×ℜ∈, , np

wCC
×ℜ∈, , and mp

wDD
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represent the natural and weighted system matrices.  Input-

output weighting must be used judiciously because it 

essentially warps the space from which model parameters are 

extracted.  The net effect of input-output weighting on the 

final unscaled identified model may be smaller errors in the 

low response paths at the expense of larger errors in the high 

response paths. 

III. MODEL TUNING 

Model synthesis may produce a suboptimal estimate of the 

state space system.  To improve the initial model, it can be 

tuned to a specified metric [7].   

A. Cost Functions 

The accuracy of an identified model can be gauged by the 

difference between the measured and modeled frequency 

response functions 
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where ℜ∈∆t  is the sampling time interval, and 
F

L  

represents the Frobenius norm. The least squares 

optimization minimizes the absolute error between measured 

and modeled FRF, so (3) naturally places a greater emphasis 

on the high magnitude response while devaluing the zeros.  

An input-output weighting scheme can be used to alter the 

resulting model by varying the cost associated with each 

input-output pair.  Alternatively, there are a number of other 

cost functions that can be used to even out the scaling of the 

data, such as correlation-based metrics or the logarithmic 

least squares error metric 
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An optimization scheme was by developed in [1] that used 

the log least squares cost function in the early tuning 

iterations to better fit the low magnitude response associated 

with the transfer function zeros.  The scheme then uses the 

cost function (3) to tune the final model. 

B. Correlation Metrics 

Correlation metrics are used to compare two vectors.  In 

this work the Frequency Response Assurance Criterion 

(FRAC) [7] is the correlation metric. The FRAC is a SISO 

correlation metric with a scalar value between 0 and 1, with 

perfect correlation indicated by a FRAC value of 1.  The 

FRAC can be generalized into a MIMO correlation metric in 

several ways, including by creating a matrix of FRAC values 

for each input-output pair [7]. For the examples used in this 

work the FRAC values were averaged over all input-output 

pairs [7] 
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The FRAC metric effectively neutralizes the differences in 

the scaling of the data, and places importance on both the 

poles and zeros of the frequency response functions.  

C. Parameterization 

Selecting the proper model parameterization can lead to 

tremendous time savings in the model tuning step. Using a 

straight forward full parameterization is the simplest 

technique, but is greatly over parameterized and time is 

wasted tuning a large number of parameters.  A minimal 

parameterization can be created from the real-modal state 

space form [3,8], in which A takes a form similar to 
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where �1, �2, .+i�, and .-i� .are the eigenvalues of the state 

matrix.  Modal canonical form places the real eigenvalues of 

the A matrix on the diagonal and the complex conjugate 

eigenvalues in real 2x2 blocks along the diagonal of A.  Note 

that the entries of A in modal canonical form (6) are 

dependent.  This dependence in A creates difficulties later on 

when calculating the derivative of the A matrix for use in the 

optimization.    

A tridiagonal modal parameterization can be used to avoid 

the dependence of the complex conjugate pairs in the A 

matrix [9]. The tridiagonal parameterization treats each 

element on the tridiagonal as a free parameter during tuning.   

This technique over parameterizes the system by 2n-2 

parameters.  One advantage of this parameterization is that it 

allows the tuning algorithm to determine how many of the 

final eigenvalues are real and complex conjugate pairs. 

D. Optimization 

The Matlab function fminunc from the Optimization 

Toolbox was used to optimize the models in the model 

tuning step.  The fminunc function finds a minimum of a 

scalar function of several unconstrained variables, starting 

with an initial estimate obtained in the model synthesis step. 

If analytic derivatives are not supplied, the optimization can 

entail a large number of function evaluations and therefore 

be very time consuming. 

To improve the model tuning speed the analytical 

gradients of the least squares cost function (3)  
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were evaluated.  Equation (7) can be expanded to  
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Writing the model frequency response as 
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we can compute the partial derivatives of J with respect to A, 

B, C, and D as   
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The above gradients were used with the tridiagonal 

parameterization.  The derivation of gradients for other cost 

functions, such as logarithmic least squares (4) as well as the 

derivation of Hessians are left for future work.   

IV. RESULTS: DEPLOYABLE OPTICAL TELESCOPE (DOT) 

The Deployable Optical Telescope (DOT), as shown in 

Figure 2, is a space traceable sparse-aperture telescope 

developed by the Air Force Research Laboratory.  DOT is 

being used to develop and evaluate critical technologies for 

use in future large space telescopes.  DOT has 10 actuators 

and 9 sensors for high-bandwidth control. The three primary 

mirrors each have three actuators and a tenth actuator is 

located at the base of the secondary mirror support tower.  

There are three sensors for each primary mirror measuring 

piston, tip, and tilt [10].  
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Figure 2: Deployable Optical Telescope 

 

The frequency response data used in this work contains 10 

inputs and 9 outputs for 3011 frequency points ranging from 

5 to 400 Hz.  To determine if proper weighting schemes 

could reduce model tuning time, smaller pieces of the FRF 

data were used in the system identification.  Numerous trials 

were performed using abbreviated frequency bands of up to 

100 Hz with two or three inputs and outputs.  For each trial, 

a model was identified for the unweighted system. Next, a 

weighting scheme, which used frequency weighting, input-

output weighting, or a combination of both, was applied to 

the FRF data and a second model was identified. If the initial 

cost (3) of the weighted model was less than the cost of the 

unweighted model, both models were tuned to determine if 

the synthesis weighting produced more accurate final models 

or reduce tuning times. 

The results from four trials are discussed below to 

illustrate the variety of results that were obtained from the 

model weightings.  The reader should only compare the 

values for the costs functions and tuning times on a trial by 

trial basis, since the cost function magnitudes vary greatly by 

input-output pair and the tuning times are highly dependent 

on the number of states used in the model. 

A.   Trial 1: MIMO with Input-Output Weighting 

Trial 1 was a MIMO system using two inputs and three 

outputs for a frequency range of 10-100 Hz.  The model was 

synthesized with 13 states, which is a low order estimate 

allowing for greatly reduced tuning time. Input-output 

weighting was used in Trial 1 to increase the response of the 

second input channel and the first and third output channels. 

The weighting reduced the initial cost (3) by approximately 

10%. Trials were carried out for three test cases: no 

weighting, weightings in just the synthesis step, and 

weighting in both the synthesis and tuning steps.  The FRFs 

for one of the input-output pairs are shown in Figure 3.   In 

Figure 3 the tuned models for the unweighted and synthesis 

only weighting are shown as one model, because both 

models converged to the same solution after tuning. 

 
Figure 3: FRF for Trial 1 

 

The results from Trial 1 are summarized in Table 1.  For 

clarity, we adopt the following naming convention: Gs is the 

unweighted synthesized model, Gws is the weighted 

synthesized model, Gst is the tuned unweighted model, Gwst is 

the tuned weighted model, and Gwswt is the weighted model 

with weighted tuning.   
 

Trial 1 J FRAC Tuning Time (s) 

Gs 1803 .653 -- 

Gws 1616 .650 -- 

Gst 1166 .687 802 

Gwst 1166 .687 589 

Gwswt 1225 .711 714 

Table 1: Costs and tuning times for Trial 1 

 

In Trial 1, both of the models that were unweighted in the 

tuning step converged to the same solution, with the 

weighted model having a time savings of 27%. For this Trial, 

the improvement in initial cost was accompanied by an 

improvement in tuning time. The model that was weighted in 

both steps had the highest post tuning cost, but it also had the 

highest FRAC value.  The use of weighting in the tuning step 

improved the correlation of the low magnitude FRF’s by 

increasing their value in the cost function.   

B. Trial 2: SIMO with Frequency and Output Weighting 

Trial 2 was a SIMO case with frequency weighting and 

output weighting.  Trial 2 used 15 states to identify a model 

from 100-200Hz.  Figure 4 shows the FRF’s for one of the 

two input-output pairs.  In Figure 4 only one tuned model is 

shown because the unweighted and weighted models 

converged to the same solution after tuning. 
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Figure 4: FRF for Trial 2 

 

Table 2 shows that after tuning the unweighted and 

weighted synthesis models converge to the same solution.  

Unlike in Trial 1, even though the weighted model had a 

lower initial cost it took more time for it to converge to the 

same final solution as the unweighted model.  This shows 

that a lower initial cost does not directly lead to time savings 

in the tuning step.  Additionally, Table 2 shows that the 

model with weighting in the synthesis and tuning steps had 

the best FRAC value, but also the highest final cost. 

 

 
Trial 2 J FRAC Tuning Time (s) 

Gs 627.9 0.955 -- 

Gws 603.4 0.981 -- 

Gst 288.3 0.986 668 

Gwst 288.3 0.986 696 

Gwswt 297.6 0.990 670 

Table 2: Costs and tuning times for Trial 2  

 

C. Trial 3: SISO with Frequency Weighting 

Trial 3 used 20 states to identify a SISO model from 50-

150Hz for input 3 and output 3. Trial 3 used a frequency 

weighting to reduce the initial cost by 17%.  However, after 

tuning the unweighted model had a slightly lower cost as 

compared to the tuned weighted model.  The lower final cost 

came at the expense of a much increase tuning time, which 

took roughly 60% longer for the unweighted model. The 

results from this trial show that a reduction in the initial cost 

does not guarantee a lower cost tuned model.  

 
Figure 5: FRF for Trial 3 

 

Trial 3 J FRAC Tuning Time (s) 

Gs 4.716 .994 -- 

Gws 3.897 .995 -- 

Gst 0.850 .999 7586 

Gwst 0.856 .999 4799 

Table 3: Costs and tuning times for Trial 3  

 

D. Trial 4: SISO with Frequency Weighting 

Trial 4 used 10 states to identify a SISO model from 200-

300Hz for input 1 and output 1. The frequency weighting in 

this trial was able to reduce the initial cost by 75%. 

However, the weighted model had a greater final cost after 

the model tuning step.  In this case, the tuning of the 

weighted model reached a local minimum that had a higher 

cost as compared to the tuned unweighted model.  

 
Figure 6: FRF for Trial 4  

 

Trial 4 J FRAC Tuning Time (s) 

Gs 362.1 .927 -- 

Gws 91.7 .980 -- 

Gst 36.7 .992 297 

Gwst 45.1 .990 108 

Table 4: Costs and tuning times for Trial 4 
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The results from these four trials were shown because they 

illustrate the variety of results that were seen from using 

model synthesis weighting.  Some weighting schemes 

reduced the initial cost for model tuning by as much as 75%.  

However, the improved initial cost does not necessarily 

translate into reduced tuning times or lower cost final 

identified models.  This is a result of the fact that the non-

convex model tuning is not a direct path to a minimum 

solution. Varying the initial model, through various 

weightings in the synthesis step, can cause the optimization 

to find a different local minimum for the cost function or it 

can cause the optimization to take a different path to the 

same solution.   

In most cases, using a proper input-output weighting 

scheme in both the synthesis and tuning steps resulted in 

higher average FRAC values, but at the expense of higher 

final cost function values.  This suggests that the final 

models have improved correlation for the lower response 

input-output pairs.   

V. CONCLUSION 

System identification tools can use weighting schemes to 

improve accuracy for complex models. Weightings are used 

to even out the magnitude discrepancies between transfer 

function poles and zeros, as well as input-output pairings. 

Simple weighting schemes were shown to reduce cost 

function values by as much as 75%. It was shown that 

improvement in the initial cost function does not guarantee 

faster tuning or more accurate final models.  It was also 

shown that weighting in both the synthesis and tuning steps 

created models with improved correlation, often at the 

expense of higher cost function values.  

VI. FUTURE WORK 

Future work includes deriving the analytical gradients for 

a variety of cost functions.  This would allow the user to tune 

their model to the cost function that best meets their end 

requirements.  In addition to the gradients, the Hessians of 

the cost functions can be calculated to further reduce the 

tuning time.  Finally, these methods are well suited for 

implementation in a distributed computing framework. 

In this work, models were generally synthesized with low 

order estimates to keep tuning times at a reasonable working 

length.  Another avenue for future work is to synthesize and 

tune models with a more appropriate number of states. This 

will increase tuning time, but it may also alleviate the 

problems with encountering local minima in the tuning 

function. 

Finally, we used the tri-diagonal approach to parameterize 

the system.  This over-parameterizes the system.  There are 

other parameterizations [8,11] that may be less complex and 

more numerically robust.  These alternate parameterizations 

may also entail re-computation of the cost function gradient. 
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