
 

 

 

  

Abstract— We develop a new residual generator design which 

decouples the faults and disturbances in a linear time-invariant 

system.  The decoupling is achieved using feedback to endow the 

residual generator with additional robustness to modeling errors 

and disturbances.  We provide feasibility conditions for feedback 

decoupling.  We illustrate the new approach using a design 

example. 

 

I. INTRODUCTION 

Fault detection is an important practical problem and 

several texts are already available on the subject [1], [2]. 

Approaches to fault detection include: the parity approach, 

observer-based methods [3], [4], [5], Kalman filters [6], 

parameter estimation [7], neural networks and fuzzy logic[8].  

A drawback of many well known fault detection 

approaches is that they fail if the control input matrix is 

linearly dependent on the fault input matrix or the 

disturbance input matrix.  For example, parity approaches 

that annihilate the effect of the control input typically 

annihilate faults with the same input matrix.   

We present a new observer-based method that allows us 

to decouple faults and disturbances. The observer used is 

standard Luenberger observer.  The columns of the control 

input matrix need not be linearly independent of those of the 

input matrices for the fault and the disturbance.  The 

decoupling is achieved using a feedback residual generator 

that replaces the controller in feedback decoupling. Unlike 

the controller, the residual generator is on the output side of 

the plant but otherwise its design is similar to that of the 

controller.  We use a synthesis approach to select the 

dynamics of the residual generator.   

The input to the residual generator is the primary 

residual obtained by comparing the estimated output to the 

plant output.  However, a transformed version of the output 

is used so that the overall system is square and decoupling is 

feasible. 

The paper is organized as follows.  In Section 2, we 

obtain the transfer function whose output is the primary 

residual.  In Section 3, we derive the decoupling residual 

generator.  In Section 4, we provide an example that 

illustrates the design methodology.  Section 5 is the 

conclusion and suggestions for future work. 

II. OBSERVER-BASED FAULT DETECTION 

Consider the continuous-time equations for a linear 

system with disturbance d(t) and a fault f(t) is 
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where x∈R
n
 is a state vector, u∈R

m
, is the system input, and 

y∈R
l
, is the system output vector, and A, B

u
, B

w
, B

f
, C are 

matrices of appropriate dimensions.  We assume that d is nd 

by 1 and f is nf by 1.  From the state-space model, we can 

write the system transfer function relation 
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Figure 1 shows a block diagram of the fault detection 

methodology proposed in this paper.  We use an observer to 

estimate the output of the system and compare the actual 

output to the estimate to detect a fault.  We include a 

feedback loop in our design rather than simply feeding the 

output to the observer.  Thus, unlike traditional fault 

detection observers, the input to the observer is given by 
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Figure 1. Closed-loop fault detection. 
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where w(s) is the secondary residual output of a residual 

generator with transfer function Gr(s). 

The system observer is in the form 
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The estimate of the output is 
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where  
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The primary residual is the difference between the estimate 

and the actual state/output of the system.  The primary 

residual is 

yyey
ˆ−=  (9) 

 

We first prove the following lemma. 

 

Lemma 1 

For the closed-loop residual generator scheme, the control 

input is decoupled from the primary residual. 

 

Proof 

The component of the primary residual due to the control u 

is 
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We substitute to obtain 
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Hence, the coefficient of u is zero. 
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The primary residual generator is given by 
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The secondary residual generator is given by 
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where Gr(s) is the transfer function of the residual generator. 

The secondary residual generator can now be expressed as 
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The following lemma gives the transfer function of the 

closed-loop residual generator with the faults and 

disturbances as input. 

 

 

Lemma 2 

For the closed-loop residual generator scheme, the transfer 

function with the faults and disturbances as input and with 

the secondary residual generator w as output is given by 
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Proof 

We simplify the term 
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Because our objective is to decouple the faults and 

disturbances, we require the system to be square.  This is 

possible provided that the number of outputs exceeds the 

sum of the number of faults and disturbance.  In other words, 

we can obtain a square system if we can satisfy the condition 

df nnl +≥  (15) 

 

If the above condition is satisfied with equality, the system is 

square.  If the condition holds as a strict inequality, then pre-

multiplication of the primary residual will “square down” the 

system. 

III. DECOUPLING BY OUTPUT FEEDBACK 

 

Consider the residual generator of (14) as represented by the 

block diagram of Figure 2. 
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Figure 2. Block diagram of closed-loop fault detection. 

 

The block diagram of the system of Figure 2 has the overall 

transfer function 
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where 
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For the system to be internally stable, we must guarantee 

that all four transfer functions are stable. Clearly, a good 

observer design guarantees its stability.  However, the 

residual generator transfer function Gr may or may not be 

stable. The following Lemma based on [7] provides 

sufficient conditions for stability. 

 

Lemma 3 

If H1 and H4 are stable, then the closed-loop residual 

generator in internally stable for any stable observer. If H1 is 

stable and Gr is minimum phase, then the closed then the 

closed-loop residual generator in internally stable for any 

stable observer. 

 

Proof 

The lemma follows from the equalities 
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Our design seeks to decouple the system of Figure 2 and 

yield a diagonal transfer function H1Godf .  Clearly, we 

assume that H1 is square. The decoupled transfer function is 

in the form 
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We adopt a synthesis approach where we select the 

appropriate dynamics and then obtain the transfer function 

Gr to realize it. In terms of the desired transfer function, Gr is 

given by 
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Since 1H  is a diagonal matrix, it can be easily factorized as 
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The residual generator transfer function can then be 

simplified to 
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−= HoyHodfHr NGDGNG  (20) 

 

The residual generator plays the part of a, possibly 

unstable, plant in a feedback loop. We now need to examine 

conditions for decoupling the system using output feedback.   

Lin [9] derived necessary and sufficient conditions for 

decoupling both for the case of distinct RHP poles as well as 

repeated RHP poles.  However, these results are of no use in 

our decoupling problem since the presence of the prefilter 

converts it into a model matching problem.  For model 

matching, we can either seek exact model matching using 

(20), or approximate model matching using H-infinity 

optimization as in [10].  For approximate model matching, 

we minimize the function 
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For exact model matching the norm of (21) is zero. 

We expand the desired transfer function as 
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For a proper controller and desired transfer function, we 

must satisfy the condition 

{ } { } { } ljipzdpzdshpzd oidfjj ,,1,,0)( L=≥++ gg  

where pzd{.} denotes the pole-zero difference or number of 

poles minus number of zeros and gdf,j is the jth row of the 

inverse of Godf.   

• 

IV. EXAMPLE 

Consider the plant with state-space model 
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Let the desired observer poles be {−4± j4, −12, −12}, then 

the observer gain L and observer state matrix Ao are given by 
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The transfer function of the plant for residual generator 

design is 
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Its inverse has all entries with pole-zero difference equal to 

−1. 

 

The prefilter transfer function of Figure 2 is inverted to give 
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The inverse of the prefilter transfer function is stable 

and has the first row with pole-zero difference equal to −1 

and the second with pole-zero difference equal to 1. We 

select second order diagonal entries for the desired closed-

loop transfer function for a realizable residual generator.  We 

select the closed-loop transfer function 
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The decoupling residual generator obtained using 

MATLAB is given by 
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The system was simulated using the MATLAB 

toolbox SIMULIMK. The outputs of the residual generator 

are shown in Figures 3 and 4.  The simulation diagram is 

shown in Figure 5. 

The simulation includes a sinusoidal disturbance and a 

step fault. The simulation results show that the closed-loop 

residual generator can identify the disturbance and the fault.  

Figure 3 shows the sinusoidal disturbance with no 

contribution from the fault while Figure 4 shows a step 

response due to the step fault with no contribution from the 

sinusoidal disturbance.  
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Figure 3.  First output of the closed-loop residual generator. 
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Figure 4.  Second output of the closed-loop residual 

generator. 

V. CONCLUSION 

This paper presents a new closed-loop approach for fault 

detection and decoupling.  The approach is valid for systems 

whose input matrix columns are linearly dependent on those 

of the fault and the disturbance. However, the fault input 

matrix and the disturbance input matrix are assumed to be 

linearly independent. The approach allows the decoupling of 

the faults and disturbances using a closed-loop residual 

generator. Thus, we are able to achieve fault diagnosis as 

well as detection in addition to disturbance detection. 

Although not explored in this paper, it is possible to design 

robust and fault tolerant systems that will adapt differently to 

different faults and can better reject disturbances.  These new 

research directions will be the subject of future research. 
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Figure 5.  Simulation diagram for the closed-loop residual generator. 
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