
 
 

 

  

Abstract—Biological macromolecules are highly 
dynamic. Their functions results from dynamic structural 
changes and dynamic interactions with other molecules. 
The visualization of the dynamic processes at high spatial 
and temporal resolution appears to be straightforward to 
understanding the functional mechanisms of biological 
macromolecules. Such visualization is only possible by the 
atomic force microscope (AFM) with a high-speed 
imaging capability, since dynamic biomolecular processes 
generally occur on a millisecond timescale. Therefore, we 
have been improving both the scan speed as well as the tip 
force exerted on the sample by developing various devises 
and techniques. The latest version of our high-speed AFM 
can capture biological processes at an imaging rate of 
30-100 ms/frame without disturbing their functions.  
Here, we report the devices and techniques that realized 
this performance.     

I. INTRODUCTION 

FM was invented in 1986 by Binnig et al. [1] and opened 
the door to the visualization of nanometer-scale worlds 
in liquids [2]. This unique capability was received with 

excitement by researchers of biological sciences as 
biomolecules only show vital activities in aqueous solutions. 
Before the AFM era, the high-resolution visualization of 
individual biopolymers (proteins, DNA) was only possible by 
electron microscopy in a vacuum environment.  However, the 
AFM’s unique capability does not seem to have contributed 
significantly to answering many biological questions.  
    One of the essential features of biological systems is 
“dynamics”. The functions of biological systems are 
produced through dynamic processes that occur in 
biopolymers, biosupramolecules, organelles, and cells. 
Therefore, what required of AFM for biological sciences is 
the ability to rapidly acquire successive high-resolution 
images of individual biomolecules at work. This is solely 
because this type of imaging is impossible to perform using 
other techniques. However, the imaging rate of conventional 
AFM is too slow to observe dynamic behavior of active 
biomolecules. Thus, endowing AFM with high-speed 
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imaging capability is expected to have a revolutionary impact 
on biological sciences.   

The low imaging rate of AFM mainly originates in that 
AFM uses the mechanical detection of the sample surface and 
the mechanical scanning of the sample stage. The sample 
surface is detected by its interaction with a sharp tip attached 
to the free end of a soft cantilever, and this interaction is 
reflected on the cantilever’s mechanical behavior. The 
relative position between the tip and the sample is changed by 
scanning the sample stage in the three dimensions. To 
increase the surface detection speed, we first need a scanner 
with high resonant frequencies as well as small cantilevers 
with high resonant frequencies and small spring constants. 
After having these devices, we need control techniques to 
realize fast and accurate positioning of the scanner. Since 
biological samples are fragile and dynamic biomolecular 
interactions are more delicate, we further need control 
techniques to maintain the tip-sample interaction force at a 
small level without sacrificing the scan speed. 

At present, digital mode controllers are not sufficiently 
fast for realizing high-speed AFM capable of imaging at a 
video rate of 30 ms/frame. Therefore, recently reported 
sophisticated control algorisms [3]-[5] are not applicable to 
the video-rate high-speed AFM. We have been exploring 
simple control techniques [6]-[8] that can be implemented in 
analog circuits. These controllers have enabled the maximum 
imaging rate of 30-50 ms/frame, together with other devices 
optimized for high-speed scanning. The tip force acting on 
the sample has been reduced greatly. These capacities 
allowed us to observe biological processes that involved 
weak protein-protein interactions [9]-[11]. In this article, I 
review our studies that realized the high-speed AFM with this 
capability, focusing on the devises and techniques.  

II. THEORETICAL CONSIDERATIONS 
In the development of high-speed AFM apparatuses, it is 

important to have practical guidelines that can quantitatively 
indicate how each device performance affects the scan speed 
and the imaging rate. An early theoretical consideration of the 
scan speed limit in contact mode AFM was given in [12]. 
Concerning taping mode AFM, the dependence of feedback 
bandwidth on various factors has been quantitatively 
described [13]. Numerical simulations have also been 
performed for this purpose, including the effect of the 
dynamics of the tip-sample interaction [14]. However, they 
are not sufficient as practical guidelines. Here, we derive the 
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quantitative relationship between the feedback bandwidth 
and the various factors involved in AFM devices and the 
scanning conditions, based on an idea previously presented 
for the derivation [7]. 
 
A.   Acquisition Time and Feedback Bandwidth 

Suppose that an image is acquired in time period T over 
scan range W × W with N scan lines, then the scan velocity Vs 
in the x-direction is given by Vs = 2WN/T. Assuming that a 
sample has a sinusoidal shape with periodicity λ, the scan 
velocity Vs requires a feedback operation at  frequency f = 
Vs/λ to maintain the tip-sample distance. The feedback 
bandwidth fB should be greater than or equal to f and therefore 
be expressed as 

T/WNfB λ2≥      (1). 

Eq.1 gives a relationship between the image acquisition time 
T and the feedback bandwidth  fB. For example, for T = 30 ms 
with W = 240 nm and N = 100, the scan velocity is 1.6 mm/s. 
When λ is 10 nm, fB ≥  160 kHz is required for this scan 
velocity. 

B. Feedback Bandwidth as a Function of Various Factors 
Although not described here, the relationship between the 

open-loop phase delay Ф(ω) and the closed-loop phase delay 
φ(ω) is given by φ(ω) = 2Ф(ω), provided the feedback gain 
is maintained ~1. The phase delay Ф is given by 2πfΔτ, where 
Δτ is the total time delay in the open-loop and f is the feedback 
frequency. In tapping mode AFM, the main delays are the 
reading time of the cantilever oscillation amplitude (τd), the 
cantilever response time (τc) , the z-scanner response time (τs), 
the integral time (τI) of error signals in the feedback controller, 
and the parachuting time (τp). Here, “parachuting” means that 
the cantilever tip completely detaches from the sample 
surface at a steeply inclined region of the sample, and 
thereafter, time elapses until it lands on the surface again. It 
takes at least a time of (1/2fc) to measure the amplitude of a 
cantilever that is oscillating at its resonant frequency fc. The 
response time of second-order resonant systems such as 
cantilevers and piezoelectric actuators is expressed as Q/πf0, 
where Q and f0 are the quality factor and resonant frequency, 
respectively. The feedback bandwidth is usually defined by 
the feedback frequency that results in a phase delay of π/4. On 
the basis of this definition, the feedback bandwidth fB is 
approximately expressed as 
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where fs is the z-scanner’s resonant frequency; Qc and Qs are 
the quality factors of the cantilever and z-scanner, 
respectively. α represents a factor related to the phase 
compensation effect given by the D component in the 
proportional- integral-differential (PID) feedback controller.  
   The parachuting time is a function of various parameters 
such as the sample height h0, the free oscillation amplitude A0 

of the cantilever, the amplitude set point r, the phase delay φ, 
and the cantilever’s resonant frequency. Its analytical 
expression was previously obtained under rough 
approximation [7] as  

( )[ ] cp f//tan 1−≈ ββτ     (3), 

where ß is ( ) ( ){ }[ ]212 00
1 /sinh/rAcos φ−− . However, 

experimental estimations of the feedback bandwidth imposes 
a modification on ß as 

( ) ( ){ }[ ]2512 00
1 /sinh/rAcos φβ −≈ −    (4). 

It is difficult to theoretically estimate the integral time (τI) 
with which the optimum feedback control is attained. Its 
experimental estimation approximately resulted in 

( ) ( ).fA//sinh cI 00 24 φτ ≈ The feedback bandwidths 
obtained theoretically and experimentally are shown in Fig.1 
as a function of r and 2A0/h0.  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

III. MECHANICAL  DEVICES 

A. Small Cantilevers 
The small cantilevers recently developed by Olympus are 

made of silicon nitride  and are coated with gold of thickness 
of ~20 nm [15]. They have a length of ~6 μm, a width ~2 μm, 
and a thickness ~90 nm, which results in the resonant 
frequencies of ~3.5 MHz in air and ~1.2 MHz in water, a 
spring constant kc  ~0.2 N/m, and Qc ~2.5 in water. Therefore, 
their response time τc (= Qc/πfc) is 0.66 μs in water. The tip is 
not sufficiently small (the apex radius, ~17 nm) for the 
high-resolution imaging of biological samples. We usually 
attach a sharp tip on the original tip by electron beam 
deposition in naphthalene gas, which can be sharpen to ~4 nm 
by plasma etching in argon or oxygen gas. To detect the 
cantilever’s oscillation amplitude at every half oscillation 
period, we developed a peak-hold method; the peak and 
bottom voltages are captured and then their difference is 
output as the amplitude [16]-[17].  The amplitude detection 

Fig.1. Feedback bandwidth as a function of the set point (r) and the ratio 
(2A0/h0) of the free oscillation peak-to-peak amplitude to the sample height. 
The number attached to each curve indicates the ratio 2A0/h0. The feedback 
bandwidths were obtained under following conditions: the cantilever’s 
resonant frequency, 1.2 MHz; Q factor of the cantilever oscillation, 3; the 
resonant frequency of the z-scanner, 150 kHz; Q factor of the z-scanner, 0.5. 
Black lines, experimentally obtained feedback bandwidths using a mock 
AFM; gray lines, theoretically derived feedback bandwidths. 
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Fig.4. Active Q-controller for the z-scanner. The mock z-scanners are 
RLC circuits characterized with the transfer functions similar to those of 
z- and z’-scanners. 

 
Fig. 3: Effect of feedforward active-damping control on the 
x-scanner vibrations. (a) X-scanner displacement driven by 
triangle waves without damping. (b) X-scanner displacement 
driven by triangle waves compensated by the feedforward 
control. (c) Mica surface images acquired at 33 frames/s (c) 
without and (d) with damping. 

time τd (=1/2fc) is 0.42 μs for our small cantilevers with a 
resonant frequency of ~1.2 MHz in water.  

B. Sample-stage Scanner 
We use a flexure-based stage for the x- and y-scanners 

[10]. The flexure stage is produced by monolithic processing 
to minimize the number of resonant elements.  The slowest 
y-scanner displaces the x-scanner, and the x-scanner 
displaces the z-scanner, on top of which a sample stage is 
placed. The maximum displacements at 100 V of the x- and 
y-scanners are 1 μm and 3 μm, respectively. The x-scanner 
shows resonant peaks at 45 kHz, 65 kHz, and higher 
frequencies, as shown in Fig. 2. The peak at ~20 kHz does not 
originate from vibrations of the x-scanner but from the 
measurement method used.  

 
 
 
 
 
 
 
 

 
 
 

Two z-piezoelectric actuators (maximum displacement, 2 
μm at 100 V; self-resonant frequency, 360 kHz) are used to 
alleviate the z-scanner vibrations; impulsive forces are 
countered by the simultaneous displacements of the 
z-piezoelectric actuators of the same length in the counter 
direction. In this arrangement, the counterbalance works 
effectively below the resonant frequencies. The vibration 
phase changes sharply around the resonant frequencies, and 
therefore, a slight difference in the mechanical properties of 
the two actuators disturbs the counterbalance. To solve this 
problem, we are now attempting to use a different design for 
the z-scanner, as mentioned later.    

IV. ACTIVE DAMPING 
It is impossible to manufacture a scanner that exhibits no 

resonance around the harmonic frequencies contained in its 
driving signals. Therefore, the elimination of unwanted 
vibrations from the scanner is a key to realizing high-speed 
AFM. Furthermore, the bandwidth of any mechanical 
systems is limited by its dimensions and materials, and hence, 
some manipulation techniques are also required to overcome 
this limitation and expand the scanner bandwidth. 

A. Active Damping of X-scanner 
The active damping of the x-scanner is easy because their 

scan speed is not high, and their scan waves are known 
beforehand and periodic, and therefore, feedforward control 
for active damping can be implemented in a digital mode 
[18]-[20]. When the line scan was performed at 3.3 kHz 
without damping, its displacement exhibited vibrations [Fig. 
3(a)]. When it was driven with inverse compensation 

damping, the x-scanner moved approximately in a triangle 
waveform [Fig. 3(b)]. This damping was also verified by 
imaging mica surfaces at 33 frames/s over a scan range of 240 
× 240 nm2 with 100 scan lines (this imaging speed 
corresponds to an x-scan frequency of 3.3 kHz). When no 
active damping was applied, striation patterns parallel to the 
y-axis appeared [Fig. 3(c)]. The periodicity of the patterns 
indicates that the vibrations had a frequency of ~60 kHz, 
which corresponded with the frequency of the main resonant 
peak shown in Fig. 2. When active damping was applied, the 
striation patterns disappeared [Fig. 3(d)]. Here, note that the 
resonant vibrations in the x-scanner also produce vibrations 
in the z-direction. 

 
 
    
 
 
 
 
 
 
 
 
 
 

 

 

 

B. Feedback Type of Active Damping for Z-scanner 

For the active damping of the z-scanner, we cannot use 
feedforward control in digital modes as its scan waves are 
unpredictable and the scan speed with high-speed AFM is too 
fast for digital driving signals to be calculated in real time. 
The active Q-control is well known as an active damping 
technique and has been often used to control the quality factor 
of cantilevers [21]-[24]. When this control is applied to the 
z-scanner, its displacement or speed has to be detected. 
However, it is difficult to do this. This problem is solved by 
using a mock scanner characterized by the same transfer 
function as the z-scanner (Fig. 4) [6]. Using this technique, 

Fig. 2. Frequency spectra of mechanical response of the x-scanner. 
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Fig.6. Effect of feedback control for active damping on the resonant 
system that consists of two elemental resonators connected in parallel. 
This effect was theoretically calculated. (a) Bode plots of the resonant 
system before damping. (b) Bode plots of the resonant system after 
damping. 

 
Fig. 5. Frequency spectra of mechanical response of the z-scanner. (a) 
Gain spectra, (b) phase spectra. The gray-line curves represent the 
response without feedback Q-control, and the black-line curves represent 
the response with feedback Q-control. 

we achieved a bandwidth of 150 kHz (Fig. 5) and a quality 
factor of 0.5, which resulted in a response time of 1.1 μs.  
However, the higher resonant vibrations are not damped well. 
This is because the two main elemental resonators are 
connected in parallel judging from the phase spectra [Fig. 
5(b)].  

 
When the elemental resonators are connected in series, 

we can use multiple Q-controllers connected in series, each of  
which contain a mock scanner characterized by the transfer 
function representing one of the elemental resonators. 
However, when they are connected in parallel, active 
damping becomes more difficult. Although we have not yet 
examined experimentally, there is a solution to this problem. 
Here, we consider only the case where two elemental 
resonators are connected in parallel. The feedback 
Q-controller H(s) is expressed as 
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where a and b are the weight factors of two resonators (hence, 
a+b = 1). To eliminate the highest order term from H(s), ω0

2 
should equal aω1

2+bω2
2, which approximately results in 

H(s) ~ [(band-pass filter) × g – 1] × s/ω~     (6). 

The band-pass filter BP(s), ω~ , and the gain parameter g are 
respectively expressed as 
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Where c is given by  
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  (10), 

The effect of this controller H(s) is depicted in Fig. 6. 

C. Feedforward Type of Active Damping for Z-scanner 

In the feedforward type of active damping, the z-scanner 
is driven through a circuit with a transfer function 1/G(s), 
where G(s) is the transfer function of the z-scanner. However, 
for a complicated G(s), it is very difficult to design an electric 
circuit characterized by 1/G(s). We invented a circuit that can 
automatically produce the inverse transfer function (APTIF) 
for a given transfer function. [8, 25]. The transfer function 
K(s) of the circuit shown in Fig.7(a) is given by 

( ) ( )( )[ ]111 −+= sMg/sK ; here, M(s) represents a mock 
scanner. In the case of g = 1, a complete inverse transfer 
function, 1/M(s), can be realized. However, delays occur in 
the electronic components such as the operational amplifiers 
used in the circuit. Therefore, the gain factor g must be less 
than 1, and consequently, the complete inverse transfer 
function cannot be realized. In fact, K(s)M(s) has a large 
resonant peak at a frequency higher than the peak frequencies 
of M(s). However, this peak can be eliminated by a Notch 
filter. When the disagreement between K(s) and 1/M(s) is 
significant, we can reduce the difference by placing a phase 
compensator (1 + differential operation) immediately before 
or after the mock scanner and by using a multiple-loop circuit, 
as indicated in Fig.7(b). The difference is more reduced by 
increasing the number of the nested loops. We examined the 
effectiveness of the APTIF method by applying it to a 
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Fig. 10. Pseudo-AFM images of a sample with rectangles with two 
different heights. (a) A mock AFM sample. The images were obtained 
using a conventional PID controller (b) or using the dynamic PID 
controller (c). These simulations with the mock AFM system were made 
under the following conditions: the cantilever resonant frequency, 1.2 
MHz; quality factor of the cantilever oscillation, 3; the resonant 
frequency of the z scanner, 150 kHz; and quality factor of the z scanner, 
0.5; the line scan speed, 1 mm/ s; the line scan frequency, 1 kHz; the 
frame rate, 100 ms/ frame, the ratio of 2A0 to the total sample height = 1; 
and r = 1. 

 
Fig. 8. Frequency spectra of mechanical response of the z-scanner. (a) Gain 
spectra, (b) phase spectra. Black-line curves represent the responses without 
feedforward active damping, and gray-line curves represents the responses 
with feedforward active damping. 

 
Fig. 9. Feedback bandwidth as a function of the set point r. Solid-line 
curves: feedback bandwidths measured with a conventional PID 
controller; dotted-line curves: feedback bandwidths measured with the 
dynamic PID controller. These curves are aligned from top to bottom 
according to the ratio 2A0/h0 = 5, 2, 1, and 0.5. 

Fig. 7. Circuit diagram for APITF. G(s) represents a given transfer 
function for a real resonant system. M(s) represents a transfer function of 
a mock resonator for G(s). (a) Single-loop circuit type. K(s) 
approximately gives 1/M(s). (b) Nested circuits for improving the 
approximation. 

z-scanner under development. In this z-scanner, a single 
piezoelectric actuator is used, and is only held at the rims and 
corners of a plane perpendicular to the displacement direction. 
The piezoelectric actuator used is similar to that used for the 
scanner mentioned above. The z-scanner exhibited large 
resonant peaks at 370 kHz and 540 kHz, as indicated with a 
black-line curve in Fig. 8(a). The resonant frequency of 370 
kHz is similar to that of the free oscillation of the 
piezoelectric actuator (410 kHz). Judging from the phase 
spectrum [the black-line curve in Fig. 8(b)], the two 
resonators are connected in parallel. Thus, we applied 
feedforward active damping using a double-loop APITF 
circuit containing a mock scanner composed of two LRC 
circuits connected in parallel. The resulting gain and phase 
spectra are shown with gray-line curves in Fig. 8(a) and 8(b), 
respectively. The peak at 370 kHz was completely removed 
and the frequency that gave a 90° phase delay was increased 
from 370 kHz to 500 kHz. 

V. DYNAMIC PID CONTROL 
To observe biological processes containing delicate 

protein-protein interactions, the tip-sample interaction force 
has to be minimized. The tapping force exerted on the sample 
by the oscillating cantilever tip can be reduced by using an 
amplitude set point r close to 1. However, this set point 
condition induces “parachuting”, during which the error 

signal (difference between the cantilever’s peak-to-peak 
oscillation amplitude Ap-p and the set point As) saturates at 
(2A0 – As) = 2A0(1 – r). The saturated error signal becomes 
smaller as r increases, and hence, the parachuting time (τp) is 
prolonged. The feedback gain cannot be increased to shorten 
τp, since a large gain induces overshoot at uphill regions of 
the sample, resulting in the instability of the feedback 
operation. To solve this problem, we devised a new PID 
controller named “dynamic PID controller” in which the gain 
parameters are automatically altered depending on the 
oscillation amplitude [7]. A threshold level Aupper is set 
between As and 2Ao (or is set to As). We usually set a value of 
Aupper that is much closer to As than 2A0.  When Ap-p exceeds 
Aupper, the gain parameters are increased. This method 
significantly enhances the feedback bandwidth, particularly 
when the set point r is close to 1 (see dotted-line curves in Fig. 
9).  The feedback bandwidth is independent of r, provided r is 
less than ~0.9, indicating that parachuting does not occur. 
The superiority of the dynamic PID control is also clear from 
captured images [Fig. 10(b) and 10(c)] of a mock sample with 
steep slopes [Fig. 10(a)].   

 

VI. PRESENT CAPACITY AND LIMITATIONS 
Our most recent high-speed AFM can capture an image in 

30-50 ms/frame, without significantly disturbing weak 
protein-protein interactions. Some biological processes were 
successfully captured on video. For example, the dynamic 
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Fig. 11. Force signal (b) calculated from the oscillation signal (a) of a 
cantilever interacting with a mica surface in water. 

interaction process of chaperonin GroEL-GroES, which is 
regulated by the ATPase reaction, was clearly visualized. The 
alternate association and dissociation of GroES at the two 
rings of GroEL were evident. Surprisingly, before the 
alternate switching took place, a GroES-GroEL-GroES 
complex often appeared whose existence had been a 
controversial issue for a long time. As demonstrated by this 
observation, high-speed AFM imaging can quickly answer to 
biological questions.  

To expand the scope of biological samples that can be 
studied by high-speed AFM, the imaging rate must be 
enhanced further and the tip-sample interaction force must be 
reduced significantly. Presently, the cantilever is the factor 
that prevents the achievement of both of these improvements. 
Generally, to improve the resonant frequency, one must 
compromise the stiffness and vice versa. The most advanced 
small cantilevers developed by Olympus appear to have 
almost achieved the ultimate goal of balancing these two 
mechanical quantities. Considering their practical use, 
doubling the resonant frequency to ~2.4 MHz in water seems 
to be the upper resonant frequency limit, provided the 
cantilever compliance is not sacrificed. 

 
VII. FURTHER REDUCTION OF TAPPING FORCE 

 
Reduction of the tapping force must be achieved by 

increasing the detection sensitivity of the tip-sample 
interaction. The nonlinear impulsive tip-sample interaction 
induces higher-harmonic vibrations of the cantilever. In the 
amplitude detection, these vibrations are neglected. Since the 
impulsive force is exerted transiently in a short time, its peak 
force is relatively large. This means that the peak force must 
be a highly sensitive quantity. The force F(t) cannot be 
detected directly because the cantilever oscillation gain is 
lower at higher harmonic frequencies. F(t) can be calculated 
from the cantilever’s oscillation wave z(t) by substituting z(t) 
into the equation of cantilever motion and then subtracting 
the excitation signal (i.e., inverse determination problem) 
[26]-[27]. Figure 11(b) shows force signals F(t) that were 
obtained by off-line calculation using an oscillation signal of 
a small cantilever weakly interacting with a mica surface in 
water. Since the time width of the impulsive force is narrow, 
it appears to be difficult to capture the peak force using a 
sample/hold circuit. Instead of capturing the peak force, we 
can calculate it from the time when the cantilever oscillation 
reaches the end of the bottom swing.  

Our ultimate goal is the realization of noncontact 
high-speed AFM in which we can use a much stiffer 
cantilever with a significantly high resonant frequency. 
Therefore, an ultra-fast scan speed must be achieved without 
damaging the sample. The discussion on this issue is 
presented in [28]-[29]. 
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