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Abstract— This paper presents a model-reference adaptive
controller (MRAC) for steering a farm tractor with varying
hitch forces. Hitch forces play an important role in the yaw
dynamics of the tractor, and these forces change with respect
to different implements and soil conditions. It is desired that the
tractor has the same dynamic response no matter what the hitch
forces may be. A good dynamic yaw model has been developed
for a tractor with hitch forces, and one parameter in this model
changes with hitch loading. A MRAC algorithm is consequently
proposed to directly adapt one controller parameter to changing
hitch loading. A set of cascaded controllers will be used to
regulate the tractor’s lateral position, although only the con-
troller that directly regulates the yaw rate will be adapted. The
adaptation algorithm is then augmented to account for inner-
loop steering actuator dynamics and saturations. Simulated and
experimental results are presented.

I. INTRODUCTION
Research on control systems that regulate the position of

ground vehicles has been done for the past couple of decades.
Farm tractors are good candidates for being automatically
steered since many maneuvers are continually repeated. Poor
visibility, driver inexperience, driver fatigue, and overlap are
all issues that can be addressed by automatically steered farm
tractors. A John Deere 8420 production model with Starfire
DGPS and AutoTrac technology is shown in Fig. 1. This
tractor can track straight paths across fields with no driver
input at the steering wheel.

Farm tractors can be outfitted with a myriad of different
implements that encounter various soil conditions. These
variations cause the tractor yaw dynamics to change over
time. It is vital that the position controller keep the tractor on
the desired path; crop destruction and/or uneven application
of agricultural agents can result from a poorly designed
position controller. The position controller on the tractor
must be able to have a good dynamic response no matter
what the configuration of the tractor may be. Therefore,
an adaptive controller will be designed and implemented to
adjust to varying dynamics.

Previously, there have been indirect self-tuning and esti-
mation methods proposed to control tractors with parame-
ter variations [1], [2]. These methods estimate yaw model

Fig. 1. John Deere 8420 Equipped with Starfire DGPS and AutoTrac
Technology

parameters and adjust the controller parameters on-line to
match a desired closed-loop system. An on-line method for
directly adjusting the controller to changing hitch forces is
desired and will be the focus of this paper. A good model
of the yaw dynamics with hitch forces is known, and hitch
forces account for the change in one model parameter [3].
This paper consequently utilizes a model-reference adaptive
controller (MRAC) to directly update the controller parame-
ters accounting for yaw plant parameter variations. A MRAC
system was chosen so that the steering actuator saturations
could be accounted for in the adaptation mechanism. In gen-
eral, direct adaptation techniques adjust controller parameters
so that the actual closed-loop performance converges to a
desired closed-loop configuration [4]. Previous research has
been done on MRAC of yaw dynamics dealing with active
steering [5]. Also, vehicle guidance has been adapted using
a form of MRAC [6]. A gain schedule approach to active
steering of a ground vehicle has also been developed using
a form of the bicycle model [7].

The tractor position controller is a set of cascaded con-
trollers designed to regulate the steering angle, yaw rate, and
lateral position. Since the yaw rate dynamics are a direct
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function of hitch loading, the adaptation law will adjust
the yaw rate controller to match the desired response. One
inherit problem with this approach is the system’s inner-loop
steering actuator dynamics and non-linearities; they must
be neglected or a higher-order adaptation algorithm must
be used. A higher-order adaptation algorithm is undesirable
since higher-order derivatives of the output are not measur-
able and differentiation tends to be noisy. If the actuator
dynamics and non-linearities are neglected, this may result
in the adaptation algorithm becoming unstable and/or giving
poor performance. This paper will show that a lower-order
adaptation law can be derived by augmenting the MRAC
algorithm to account for these neglected properties.

II. MODEL AND CONTROL STRUCTURE

A. Tractor Dynamic Yaw Model

Previous research has been done on modeling the yaw
dynamics of a tractor with hitch forces. O’Conner proposed
a model where the hitch forces were modeled as an extra
tire behind the rear axle [8]. Pearson studied the effects of
hitch forces, and has shown the validity of O’Conner’s model
for implements attached to the tractor using the three-point
hitch [3]. The yaw rate model of the tractor will provide
some incite about how the yaw properties vary with hitch
loading. This will then give a basis for why adaptive control
is needed.

A bicycle model of a four-wheeled vehicle lumps the
inner and outer tires together and neglects weight transfer.
The bicycle model schematic with augmented hitch forces is
shown in Fig. 2. One category of tire models assumes that
the lateral forces at the tires (Ff , Fr, and Fh) are a function
of the tire slip angles αf , αr, and αh [9]. The linearized
version of the bicycle model assumes that the lateral force at
the tires are proportional to the slip angles by the coefficients
Cαf , Cαr, and Cαh. Lengths a, b, and c are the distances
from the front axle to the center of gravity, the rear axle to
the center of gravity, and the rear axle to the center of force
on the implement, respectively. Vy and Vx are the lateral
and longitudinal velocities, and δ is the steering angle of the
front axle. By summing forces and moments and linearizing
assuming small angles, the transfer function from steering
angle to yaw rate (r) of the bicycle model with lateral hitch
forces is shown in (1).

Fig. 2. Bicycle Model with Augmented Lateral Hitch Force
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C1 = ((b+ c) · Cαh + b · Cαr − a · Cαf )
C2 = (Cαh + Cαr + Cαf )
C3 = ((b+ c)2Cαh + b2Cαr + a2Cαf )

(1)

A kinematic relationship between yaw rate and lateral
position is used. Lateral position (y) can be described by (2)
where β is the side slip angle at the center of gravity and ν
is the angle of the tractor’s velocity vector with respect to
the desired longitudinal direction.

ẏ = V sin(ν)
ν̇ = r + β̇

(2)

The lateral position transfer function is given by (3).

GPy =
y(s)
r(s)

=
V

s2
(3)

B. Control Structure

A set of cascaded controllers is utilized for controlling
the lateral position of the tractor. The cascaded control
block diagram is shown in Fig. 3. Three feedback loops are
implemented using the measurements from the steering angle
sensor (δ), gyroscope (r), and GPS receiver (y). The lateral
position, yaw rate, and steering angle controllers are noted
by GCy , GCr, and GCδ , respectively. The steering servo,
yaw rate, and lateral position plants are noted by GPδ , GPr,
and GPy, respectively.

A cascaded controller was chosen to make the controller
design less complicated. The steering controller was chosen
to have a proportional control law with the coefficient of kpδ
shown in (4).

GCδ =
δinput(s)
δerr(s)

= kpδ (4)

The yaw rate controller was also chosen to have a propor-
tional control law with the coefficient of kpr multiplied by
the adaptation gain K shown in (5).

GCr =
δdes(s)
rerr(s)

= kprK (5)

Fig. 3. Cascaded Control Block Diagram
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The lateral position controller was chosen to have a
proportional-integral-derivative (PID) control law shown in
(6) with coefficients kpy , kiy , and kdy .

GCy =
rdes(s)
yerr(s)

= kpy +
kiy
s

+ kdy · s (6)

For the sake of this paper, velocity will be held constant.
Therefore, the inner-loop steering controller and the outer-
loop lateral position controller will be fixed-gain configura-
tions. The yaw rate controller will be adapted to compensate
for variations in hitch loading.

III. MRAC ALGORITHM

It has been shown empirically by Gartley that the DC gain
of the steering angle to yaw rate transfer function is the
parameter that changes the most with hitch loading [2]. In
(1), it can be seen that the varying parameter Cαh changes
more than just the DC gain; the poles and zero vary also.
An assumption is now made that the parameter Cαh affects
the DC gain only and the effect on pole-zero location is
negligible. Under these assumptions, it can be observed that
scaling the loop gain of the yaw rate controller by K will
provide an approximate model match to the bicycle model
with a varying Cαh parameter.

The MIT rule was used to derive a controller update law
that will adapt the yaw rate control gain. The MIT rule was
the original approach to MRAC [4]. The drawback of this
method is that stability for a time varying system cannot be
proven. Stability of linear time invariant systems using the
MIT rule adaptation technique has been proven under certain
circumstances [10], but the methods cannot be used since the
tractor dynamics are time varying. A block diagram of the
adaptive scheme is shown in Fig. 4.

The box labeled ”Yaw Model” is the open-loop transfer
function show in (1) with a specified Cαh. The value of Cαh
for the yaw model is chosen such that it is in the middle
of the range that Cαh can vary. This will be described in
more detail in a later section. The box labeled ”Yaw Plant”
is the actual tractor plant. The section labeled ”Yaw Rate
Controller” is the controller that will be put in place of GCr
in Fig. 3.

Fig. 4. MRAC for Yaw Rate Controller

By closing the loop with the proportional controller kpr
and adaptation gain K, the closed-loop yaw rate differential
equation is shown to be (7).

r =
1

d0 + kprKn0
(kprK(n1(ṙdes−ṙ)+n0rdes)−d1ṙ−d2r̈)

(7)
The ni and di coefficients are represented by the bicycle
model coefficients in (1).

The adaptation algorithm is derived by minimizing the cost
function of the error between the output of the model and the
closed-loop system [4]. The cost function and error definition
are shown in (8).

e = rmod − r
J = 1

2e
2 (8)

The MIT rule changes the controller parameter in the direc-
tion of the negative gradient of J with respect to K. The
time rate of change of the adaptive controller parameter is
represented by (9) that minimizes (8) with respect to the
adaptation parameter K.

dK

dt
= −γ ∂J

∂K
= −γe ∂e

∂K
= γe

∂r

∂K
(9)

Applying the previous equations to (7), the adaptation
algorithm of K is represented by (10).

dK
dt = γβ(n1d0( ˙rdes − ṙ) + n0(d0rdes + d1ṙ + d2r̈)) · e
β = kpr

(d0+kprKn0)2

(10)
Though some of the parameters in this equation are a

function of the unknown parameter Cαh, they can either be
absorbed into the adaptation gain γ or approximated by using
the same values as the reference model. All that has to be
known exactly is the sign of Cαh.

IV. MRAC MODIFICATIONS

A. Actuator Dynamics

Through simulation experiments, it was discovered that the
adaptation will become unstable and/or perform poorly due
to neglected steering actuator dynamics and non-linearities.
The problem is solved in this case by including the actuator
properties in the reference yaw model. The steering servo
can be modeled as second order system with an integrator
as seen in (11).

GPδ =
δ(s)

δinput(s)
=

ω2
n

s(s2 + 2ζωn · s+ ω2
n)

(11)

Table I list the parameters identified using system identifica-
tion experiments during previous research [2]. A block dia-
gram of the new closed-loop reference model with steering
actuator dynamics is shown in Fig. 5. This will replace the
section in Fig. 4 that is labeled ”Closed-Loop Yaw Model”.

This modification is convenient in that the adaptive control
update law does not change. This allows for a lower-order
update law as compared with including the actuator dynamics
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TABLE I
STEERING ACTUATOR PARAMETERS

Parameter Value
ωn 28.425rad/s
ζ 0.633

Fig. 5. MRAC Desired Closed-Loop Model with Steering Actuator
Dynamics

into the adaptation algorithm. If the steering actuator dynam-
ics are neglected, the model yaw rate will lead the tractor
yaw rate and the two outputs will not converge to the same
value.

B. Actuator Saturations

Steering actuator saturations will cause the adaptation
algorithm to yield poor performance and to exhibit instability.
There are two different saturations that have to be accounted
for: δmax and δ̇max as seen in Table II. Both of these
saturations will be accounted for by dictating the same
restrictions on the model steering actuator. Therefore, δmod
will be held to (12).

δmodmax = δmax (12)

The hydraulic steering actuator can only turn the wheels
at a maximum slew rate δ̇max, and there after the actuator
is saturated. If this saturation is ignored, the steering angle
in the model goes to the desired set point more quickly
than the steering angle of the tractor. This will destabilize
the adaptation algorithm similarly to the wheel hitting the
steering angle restraint. Therefore, δ̇mod will be held to the
same slew rate restrictions as δ̇ as seen in (13).

δ̇modmax = δ̇max (13)

Through simulation experiments, it was found that holding
the adaptation gain constant while the actuator is saturated
will allow for a better gain response. Therefore, the adapta-
tion gain update law will follow (14).

dK
dt =

{
dK
dt for |δ̇meas| < δ̇max |δmeas| < δmax
0 for |δ̇meas| ≥ δ̇max |δmeas| ≥ δmax

(14)

TABLE II
STEERING ACTUATOR SATURATION PARAMETERS

Parameter Value
δmax 32deg
δ̇max 20.6deg/s

Fig. 6. DC Gain verses Cαh for the Bicycle Model with Augmented Hitch
Force with Vx = 2m/s

V. SIMULATED AND EXPERIMENTAL RESULTS

A. Simulated Results

It has been shown in previous research that Cαh can range
between 0N/deg and 4000N/deg [3]. It is desired that the
adaptation gain K have the value of 1 in the middle of the
DC gain range; therefore, Cαh will be set to 600N/deg for
the reference model as seen in Fig. 6.

A simulation assuming noise and bias free sensors was
performed in MATLAB to prove that all of the assumptions
and approximations mentioned in previous sections are valid.
Table III lists the parameters used in the simulation. The trac-
tor yaw rate plant was simulated with the same parameters
as the reference model but with a different Cαh parameter.
The simulation was conducted using a cosine function as
the desired yaw rate. The cosine function was chosen so that
the steering actuator will be initially saturated. Since one
parameter is being adapted, one frequency of excitation will
allow the controller parameter to reach its true value.

The adaptation gain K and yaw rate response is shown
in Fig. 7. The desired gain is calculated by dividing the
DC gain of the reference model by the DC gain of the
simulated tractor. As can be seen, the adaptation gain K
reaches the desired value, and the tractor and model yaw rates
converge to the same value. This shows that just adapting
the proportional control gain of the yaw rate controller will
provide a good match to a model with a different Cαh
parameter.

The steering actuator response is shown in Fig. 8. By
observing the slew rate response, it can be seen that the

TABLE III
TRACTOR MODEL PARAMETERS

Parameter Value
a 1.00m
b 2.00m
c 2.19m
Izz 18500kg · m2

m 11340kg
Cαf 2400N/deg
Cαr 5000N/deg

Cαh,mod 600N/deg
Cαh,trac 4000N/deg

Vx 2m/s
kpr 0.40
kpδ 3.84
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Fig. 7. Simulated Adaptation Gain & Yaw Rate Response

Fig. 8. Simulated Steering Actuator Response

slew rate was initially saturated. By looking at Fig. 7, it can
be seen that the adaptation gain was held constant at K = 1
for the duration of the saturated period. This proves that the
adaptation law works when the steering actuator is allowed
to saturate. Since the tractor in the simulation has a greater
Cαh parameter, more steering angle is required to achieve the
same yaw rate as the model. This can be seen by looking at
the steering angle plot in Fig. 8. The tractor and the model
both have the same steering angle initially, but the tractor
has more steering angle when the adaptation gain increases.

B. Experimental Results

The algorithm was next implemented on the John Deere
8420. For this experiment, the tractor will track a straight
line. The tractor is guided by commanding a flow rate to
the hydraulic steering valve at 50 Hz. The GPS receiver and
lateral position loop was executed at 5 Hz, and the other
measurement and control loops were executed at 50 Hz. To
combat gyroscopic sensor noise, a second-order Butterworth
filter at 5 Hz was implemented on the measured yaw rate.

Fig. 9. Experimental Lateral Error Response (Left Column: 4 Shank
Ripper; Right Column: No Implement)

Fig. 10. Experimental Adaptation Gain & Yaw Rate Response (Left
Column: 4 Shank Ripper; Right Column: No Implement)

Fig. 11. Experimental Steering Actuator Response (Left Column: 4 Shank
Ripper; Right Column: No Implement)

Two different experiments are presented. The first exper-
iment was performed with a four-shank ripper attached to
the three-point hitch, and the second was performed with
no implement. In both experiments, the tractor was initially
driving at a constant Vx ≈ 2.0m/s with an initial value of
yerr ≈ 2.0m. Fig. 9 shows the lateral error response of the
tractor with (Left Column) and without (Right Column) an
implement.

The adaptation gain K and yaw rate response is shown
in Fig. 10. It can be seen in the adaptation gain plot that
the actual gain reaches close to the desired value. The
desired value for the adaptation was determined in pervious
experiments. The actual gain doesn’t reach the true value
because the yaw rate was not persistently excited for a long
enough period of time. The yaw rate is noisy due to the
rough farm land that the experiment was performed on. A
higher loop-gain of the yaw rate controller makes the system
more sensitive to sensor noise and ground disturbances.
This increased sensitivity can be seen in the steering angle
response in Fig. 11. The higher adaptation gain increases
the loop-gain of the yaw rate controller and makes the
steering angle oscillate slightly. Because the DC gain of the
tractor decreases with increasing Cαh, more steering angle
is required to reject disturbances.
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The steering actuator response is shown in Fig. 11. As in
the simulation, the slew rate of the steering angle becomes
initially saturated during the maneuver. The adaptation gain
K was therefore held constant during this period. It can be
seen that the gain is allowed to adapt once the slew rate
becomes unsaturated. Therefore, the algorithm is shown to
work with steering actuator saturations.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

A model-reference adaptive steering controller has been
presented that adjusts to changing hitch loading on a farm
tractor. The cascaded control structure was presented that
regulates the lateral position of the farm tractor. A parametric
model was shown that predicts how hitch loading effects
yaw dynamics, and this model is used as the reference-
model in the adaptation scheme. The MIT rule gradient
approach was used to derive an update law for the adaptation
parameter, and the reference model was augmented with
steering actuator dynamics and saturations. It has been shown
through simulation and experimentation that the MRAC
algorithm is sufficient in adjusting the yaw rate controller
to compensate for changing hitch loading conditions.

B. Future Works

This paper has demonstrated the preliminary results of this
research. Noise and biases degrade the performance of the
algorithm; therefore, future work should include a method
of reducing the sensor imperfections. A Kalman filter should
be developed to reduce the noise and estimate the yaw rate
gyroscope bias using the course measurement from the GPS
receiver. A method should be developed to decrease the
steering oscillation due to the increasing loop gain required
to control the tractor with large implements. It would also be
desirable to have a MRAC that will adapt while the steering
actuator is saturated instead of holding the adaptation gain
constant.
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TABLE IV
NOMENCLATURE TABLE OF VARIABLES USED IN PAPER

Variable Definition
a Distance From CG to Front Axle
b Distance From CG to Rear Axle
c Distance From Rear Axle to Hitch
Izz Mass Moment of Inertia About the CG
m Mass
Cαf Cornering Stiffness of Front Axle
Cαr Cornering Stiffness of Rear Axle
Cαh Cornering Stiffness of the Hitch
αf Slip Angle at Front Axle
αr Slip Angle at Rear Axle
αh Slip Angle at Hitch
Ff Lateral Force at Front Axle
Fr Lateral Force at Rear Axle
Fh Lateral Force at Hitch
V Total Velocity
Vx Longitudinal Velocity
Vy Lateral Velocity
δ Tractor Steering Angle
δerr Tractor Steering Angle Error
δmod Model Steering Angle
δ̇ Tractor Steering Angle Rate

δinput Steering Input Command
δdes Desired Steering Angle
δmax Maximum Steering Angle
δ̇max Maximum Steering Angle Rate
r Tractor Yaw Rate

rerr Tractor Yaw Rate Error
rmod Model Yaw Rate
rdes Desired Yaw Rate
y Lateral Position
yerr Lateral Position Error
GPδ Steering Actuator Plant
GPr Yaw Rate Plant
GPy Lateral Position Plant
GCδ Steering Actuator Controller
GCr Yaw Rate Controller
GCy Lateral Position Controller

ni, di, Ci Yaw Rate Model Coefficients
kpy , kdy , kiy Lateral Position Controller Coefficients

kpr Yaw Rate Controller Coefficient
kpδ Steering Actuator Controller Coefficient
K Adaptation Gain
e Adaptation Error
J Adaptation Cost Function
γ Adaptation Algorithm Gain
ωn Steering Actuator Natural Frequency
ζ Steering Actuator Damping Ratio
β Slip Angle at Center of Gravity
ν Angle Between Velocity and Desired Path
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