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Abstract— In optimal input design problems, the designer
seeks to solve for maximally informative inputs to be used as
perturbation signals in system identification experiments. Plant-
friendly identification experiments are those that satisfy plant
or operator constraints on experiment time, input and output
amplitudes or input move sizes. These have been reported to
be in direct conflict with requirements for good identification.
Hence plant-friendly input design is inherently multi-objective
in nature. In this contribution, we present the use of two well
known techniques of multi-objective optimization to solve for a
plant friendly input design where the plant friendly objective
is to keep input move sizes low. We relax the constraint on the
input move sizes by constraining the variance of the move size
instead. Both techniques result in convex optimization problems
which can be solved efficiently using powerful algorithms.

I. INTRODUCTION

System identification is the process of generating a dy-

namic model of a system using data and process knowledge.

It is common practice to perturb the system of interest and

use the resulting data to build the model. The problem of

input design is to synthesize an input signal that is maximally

informative for generating good quality models.

Identification is carried out on operating plants and hence

it is important to ensure that the experiment is least hostile to

operating conditions or equivalently, the input signal should

be plant friendly. Plant friendliness requirements can be

imposed in the form of input rate constraints, input and

output magnitudes and experiment time [1]. We focus on

input rate requirements in this contribution, i.e., the input

move size has to be smaller than a pre-specified tolerance.

It has been reported that plant friendliness demands are

often in conflict with requirements for good identification [1],

[2]. Hence, plant friendly input design is inherently a multi-

objective problem and this was demonstrated in [3]. In this

contribution, we solve a relaxed version of the optimal

plant friendly input design problem using two well-known

techniques for multi-objective optimization.

II. PROBLEM DEFINITION

A. Definition of plant friendliness

• Given an input sequence uk, k = 1, . . . , N , plant friend-

liness was defined as follows [2]: Define a transition as

an event when uk 6= uk−1 and nt as the number of

S. Narasimhan was with the Dept. of Chemical Engineering, Clarkson
University, Potsdam, NY, US 13699. He is now with the Dept. of Chemical
Engineering, Norwegian University of Science and Technology, Trondhiem,
Norway, 7491. narasimh@nt.ntnu.no

R. Rengaswamy is with the Dept. of Chemical Engineering, Clarkson
University, Potsdam, NY, US 13699. raghu@clarkson.edu

transitions. The plant friendliness f is defined as:

f = 100

(
1 −

nt

N − 1

)
(1)

Note that for a constant sequence f = 100, while f of a

sequence that changes at every instant is 0. While this is

intuitively pleasing, this definition does not allow for a

closed form expression nor is it clear how to incorporate

this formally in a design formulation.

• In a previous contribution [3], the plant friendliness φf

was defined as

φf = 1 −

∑N
k=2

(uk − uk−1)
2

(N − 1)max(uk − uk−1)2
. (2)

In the same spirit, we define plant friendliness as:

Pf =

∑N
k=2

(uk − uk−1)
2

N − 1
. (3)

Remark 2.1: Note that compared to the previous defi-

nitions of plant friendliness, the above would actually

correspond to “unfriendliness”, i.e., a low value of Pf

would imply that the input is plant friendly. However,

since the term “Plant unfriendliness” is unwieldy, we

continue to call Pf “Plant-friendliness”.

Remark 2.2: Note that |u(t) − u(t − 1)| ≤ b implies

Pf ≤ b2. Hence, a constraint of the form: Pf ≤ c is a

relaxation of the following constraint |u(t)−u(t−1)| ≤
b, where c = b2. Hence, Pf is used as a metric to judge

the plant friendliness of the input signal.

B. Problem formulation

Following [4], we consider a SISO system with input uk,

output yk parameterized as:

yk = G1(q
−1, β)uk + G2(q

−1, γ)ek, (4)

where q−1 is the backward shift operator, G1(q
−1, β) and

G2(q
−1, γ) are rational transfer functions in q−1 param-

eterized by β and γ respectively, ek is a discrete time

Gaussian White Noise with mean zero and variance σ2. θ =
[β′, γ′, σ]′ is the overall vector of parameters to be estimated.

Supposing an identification experiment is performed with

input u1, . . . , uN resulting in the output y1, . . . , yN . θ̂ which

is an estimate of the true parameters is a statistical quantify.

The quality of the estimated parameters can be described by

the bias and covariance of θ̂. Given an unbiased estimator, a

lower bound on the covariance of θ̂ is given by the following

Cramer-Rao inequality:

cov(θ̂) ≥ (Mθ)
−1, (5)
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where Mθ is the Fisher information matrix. A typical prob-

lem in experiment design is to choose an input sequence

u1, . . . , uN that minimizes a scalar function of Mθ subject

to certain constraints. The following is the well-known D-

optimal experiment design problem:

Problem 1:

min
u1,...,uN

− log det(Mθ), s.t. ui ∈ U.

The constraints ui ∈ U could be of the form: |ui| ≤ α (input

amplitude) or
∑

u2
i ≤ α (input power). The plant friendly

input design that constraints input move sizes is posed as:

Problem 2:

min
u1,...,uN

− log det(Mθ), s.t. ui ∈ U, |u(t) − u(t − 1)| ≤ b.

The plant friendliness of the input signal is measured in terms

of Pf . Hence, we seek to solve the following multi-objective

plant-friendly input design:

Problem 3:

min
u1,...,uN

− log det(Mθ), Pf , s.t ui ∈ U.

The above described optimization problems were formu-

lated in the time domain and the size of the optimization

problem is N , the number of time points. There are several

well-known advantages in reformulating the problem in the

frequency domain.

Following [4], we make the following assumptions:

• The experiment time N is large.

• The input is stationary with power spectrum (two-sided)

Φu(ω) defined on [−π, π]. ru(τ) = E(ukuk+τ ) is

the covariance at lag τ and forms a Fourier transform

pair with Φu(ω). Corresponding to the two-sided power

spectrum, we define an equivalent one-sided power

spectrum Φu(ω) on [0, π]. The relationship between

the two is described in [5]–[7]. In what follows, we

shall refer almost exclusively to the one-sided power

spectrum and simply denote it as Φu(ω) and abusing

notation, we refer to it as a design measure on [0, π].
• The class of inputs is further constrained to those having

unit input power:
∫ π

0

Φu(ω)dω = 1. (6)

Since N , the experiment time is large, the average informa-

tion matrix is defined as:

M = lim
N→∞

1

N
Mθ. (7)

It is shown in [4] that M can be expressed as:

M =

∫ π

0

M̃(ω)Φu(ω)dω + M c, (8)

where

M̃(ω) = Re

{
1

σ

∂G1(e
jω)

∂θ

′ ∣∣G2(e
jω)

∣∣−2 ∂G1(e
−jω)

∂θ

}
,

M c =
1

2π

∫ π

−π

∂G2(e
jω)

∂θ

′ ∣∣G2(e
jω)

∣∣−2 ∂G2(e
−jω)

∂θ
dω

+
1

2σ2

(
∂σ

∂θ

)
′
(

∂σ

∂θ

)
. (9)

It can be shown that Pf can be expressed in the frequency

domain as follows [7]:

Pf =

∫ π

0

2(1 − cos(ω))Φu(ω)dω. (10)

Thus, the frequency domain D-optimal design problem is as

follows:

Problem 4:

min− log det(M), s.t

∫ π

0

Φu(ω)dω = 1,

and the frequency domain version of the multi-objective

problem is:

Problem 5:

min− log det(M), Pf , s.t

∫ π

0

Φu(ω)dω = 1.

III. MULTI-OBJECTIVE OPTIMIZATION

In single objective optimization problems, the aim is to

determine the global optimal solution, if it exists. Unlike sin-

gle objective optimization, in optimization with conflicting

objectives, there is no single optimal solution. We consider

two methods of solving the Problem 5. The first is the ǫ
constraint method:

Problem 6:

min− log det(M), s.t

{ ∫ π

0
Φu(ω)dω = 1
Pf ≤ c,

where M and Pf are given in (8) and (10) respectively.

The second is the method of lexicographic optimization:

Problem 7:

min
Φu

Pf , s.t
{

Φu(ω) solves Problem 4,
∫

Φu(ω)dω = 1.

IV. ǫ CONSTRAINT METHOD

Theorem 1: [7] Problem 6 can be cast as a convex

optimization problem.

It can be shown that it is possible to realize the optimal

input spectrum Φ∗

u(ω) (that solves the above convex opti-

mization problem) with a finite number of frequencies [7].

Efficient parameterizations of the model and input spectrum

and techniques for solving the optimization problem are

available [5], [8]. Varying the value of c (which plays the role

of ǫ in this formulation) gives rise to different input signals

and the trade-off between the model quality as judged by

det(Mθ) and plant friendliness as judged by Pf .

V. LEXICOGRAPHIC OPTIMIZATION

The optimal input spectrum that solves Problem 1 can

have several realizations in the time domain with possibly

differing Pf . Lexicographic optimization is one technique

of determining the most plant friendly input signals among

these D-optimal input designs. Essentially, this implies that

the multiple objectives (D-optimality and plant friendliness)

are ranked in a decreasing order of importance. In this

section, we characterize the lexicographic solutions for a

certain class of systems using the theory of Tchebysheff

systems which has been used to solve input design problems

previously [5], [6].
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A. Tchebysheff systems

Following [6], the transfer functions G1 and G2 in (4) are

further parameterized according to:

yk =
B(q−1)

A(q−1)
uk−d +

D(q−1)

C(q−1)
ek, (11)

where:

A(q) = 1 +

n∑

j=1

ajq
j , B(q) =

m∑

j=0

bjq
j ,

C(q) = 1 +

s∑

j=1

cjq
j , D(q) =

r∑

j=0

djq
j , (12)

where we assume that there are no pole-zero cancellations

and A(z) and D(z) have no zeroes on the closed unit disk.

In addition, we assume that A(z) and C(z) have no common

roots. For the above dynamic system, it has been shown that

Mθ can be partitioned as:

Mθ =

[
Mβ(u) 0

0 Mγ

]
, (13)

where Mβ ∈ R
p×p is related to the p = m+n+1 parameters

in G1 and dependent on the input. Mγ is related to the

noise parameters and importantly, is independent of the input.

Hence, it is pertinent to consider Mβ . As before, we define

an average information matrix related to β and it can be

expressed as a function of the input spectrum in the following

form: form [4], [6]:

Mβ(Φu) = lim
N→∞

1

N
Mβ

=

p∑

i=1

Lixi, (14)

where L1 is a constant p × p matrix and xi is given by:

xi =

∫ π

0

∣∣∣∣
C(ejω)

D(ejω)A2(ejω)

∣∣∣∣
2

cosi−1(ω)Φudω. (15)

Thus, for this choice of parametrization of the system and

information matrix, the entries in Mβ are linear in xi

which can be thought of as the decision variables. Thus,

the frequency domain D-optimal input design Problem 4 can

be solved by optimizing over xi subject to the input power

constraint. It has been shown [6] that under certain conditions

that only involve the model orders, the input power constraint∫
Φudω = 1 is equivalent to the xi lying on a hyperplane in

R
p and is summarized in the following theorem:

Theorem 2: [6] The following are equivalent:

1. s = 0, m ≥ n + r.

2. If
∫

Φudω = 1, xi lie in a hyperplane in R
p.

3. Given Φ′

u and Φ′′

u such that Mβ(Φ′

u) = Mβ(Φ′′

u) and∫
Φ′

udω = 1, =⇒
∫

Φ′′

udω = 1.
Hence, the original infinite dimensional D-optimal input

design problem (Problem 4) can be converted to the follow-

ing finite dimensional problem where the decision variables

are xi.

Problem 8:

min
xi

− log det(Mβ), s.t.

{
xi as in (15),∑i=p

i=1
αixi = 1,

where the αi depend on the transfer function polynomials D
and A.

Definition 1: [6], [9] Let u1, . . . , up denote continuous

real-valued functions defined on a closed interval [a, b].
These functions constitute a Tchebysheff system (T-system)

if the following determinant
∣∣∣∣∣∣∣

u1(t1) u1(t2) . . . u1(tp)
...

...
...

up(t1) up(t2) . . . up(tp)

∣∣∣∣∣∣∣

is strictly positive whenever a ≤ t1 < t2 < . . . < tp ≤ b.

Define

f(ω)−1 =

∣∣∣∣
C(ejω)

D(ejω)A2(ejω)

∣∣∣∣
2

(16)

vi(ω) =
1

f(ω)
cosi−1(ω) (17)

Theorem 3: [6] v1, v2, . . . , vp as defined above is

a T-system on [0, π] if p(p − 1)/2 is even. Else,

{v1, v2, . . . , vp−1,−vp} is a T-system on [0, π].
Denote {vi}

p
1 to denote either v1, v2, . . . , vp or

v1, v2, . . . ,−vp that constitute the appropriate T-

system. In view of the above theorem, we can clearly

extend the T-system so generated with vp+1, where

vp+1 = ±f(ω)−1 cosp(ω) (as the case may be) and the

resulting system {vi}
p+1

1 is also a T-system and will be

referred to as the augmented T-system.

Definition 2: [9] Let x = [x1, . . . , xp]
′ ∈ R

p, with xi

defined as in (15). Then, Mp ∈ R
p = λx, with λ ≥ 0 is

defined as a moment space with respect to {vi}
p
i .

Definition 3: [5], [6], [9] Let x ∈ Mp and Φu(ω)
induce x. The set of all measures that induce x is denoted

by V (x). The number of points in the support of Φu(ω),
with 0 and π counted as half is the index of Φu(ω).
Measures Φu(ω) of index p/2 which induce x are called

principal representations. If p is even, the lower principal

representation Φu(ω) that induces x contains p/2 frequencies

in (0, π) and the upper principal representation contains

p/2 + 1 frequencies including 0 and π. If p is odd, the

lower principal representation Φu(ω) that induces x contains

(p + 1)/2 frequencies including 0 and the upper principal

representation contains (p + 1)/2 frequencies including π.

Theorem 4: [9] Let {vi}
p
1 and {vi}

p+1

1 be a T-system

and augmented T-system respectively. Given x ∈ int(Mp),
the maximum and minimum of

∫
vp+1Φudω such that

Φu ∈ V (x) are attained at the upper and lower principal

representations that induce x.

Theorem 5: Let x∗ be the optimal solution to Problem 8.

If s = 0, m = n + r, the maximum and minimum values

of Pf occur at the principal representations of x∗. If s =
0, m ≥ n + r + 1, all representations of x∗ have the same

value of Pf .

1306



Proof: Recall

Pf =

∫ π

0

2(1 − cos(ω))Φudω = 2 − 2

∫ π

0

cos(ω)Φudω.

(18)

When s = 0, f(ω) as defined in (16) is a polynomial of

degree 2n+r in cos(ω) and denote it by
∑2n+r

i=0
αi cosi(ω).

∫ π

0

cos(ω)Φudω =

∫ π

0

f(ω)

f(ω)
cos(ω)Φudω

=

2n+r∑

i=0

αi cosi+1(ω)

f(ω)
Φudω. (19)

Consider the case when m = n + r. Since, p = m + n + 1,

2n + r = p − 1. Pf simplifies to:

Pf = 2 − 2

p∑

i=2

αi−2xi − 2

∫
αp−1

f(ω)
cosp(ω)Φudω

= 2 − 2

p∑

i=2

αi−2xi − 2αp−1

∫ π

0

vp+1Φudω. (20)

Since x∗ solves the modified D-optimal problem 8, the

maximum and minimum values of Pf amongst the D-optimal

solutions depends on the last term in (20). Since {vp}
p+1

1

constitute an augmented T-system, from Theorem 4, the

maximum and minimum values of Pf amongst D-optimal

solutions are found at the principal representations of x∗.

Consider the case when m ≥ n + r + 1. We have p =
m + n + 1 ≥ 2n + r + 2. Hence, Pf simplifies to:

Pf = 2 − 2

2n+r+2∑

i=2

αi−2xi. (21)

Hence, if x∗ is a D-optimal solution, then Pf is:

Pf = 2 − 2

2n+r+2∑

i=2

αi−2x
∗

i , (22)

and all D-optimal solutions have the same Pf .

Thus, for a certain class of systems characterized by the

model orders s = 0,m = n+r, the maximum and minimum

values of Pf corresponding to the D-optimal solutions are ex-

plicitly characterized: they occur at the principal realizations

of the D-optimal solution. Not only does this characterize

the lexicographic solutions, it also gives an upper limit to

Pf for all D-optimal solutions. When s = 0,m ≥ n+ r +1,

all D-optimal solutions have the same Pf and hence, all D-

optimal solutions are lexicographically equivalent. Given a

point x∗, techniques to determine the corresponding principal

representations are discussed in [5].

VI. EXAMPLES

Example 1: Consider the following example [4]:

yk = b1uk−1 + b2uk−2 + b3uk−3 + ek,

where ek is white noise with variance σ2. It is shown that [4]

M =
1

σ




1 x1 x2 0
x1 1 x1 0
x2 x1 1 0
0 0 0 1

2σ


 , (23)

where

x1 =

∫ π

0

cos(ω)Φu(ω)dω (24)

x2 =

∫ π

0

cos(2ω)Φu(ω)dω, (25)

and so M is the convex hull of

M =
1

σ




1 cos(ω) cos(2ω) 0
cos(ω) 1 cos(ω) 0
cos(2ω) cos(ω) 1 0

0 0 0 1

2σ


 . (26)

We shall consider three related problems: the single

objective classical D-optimal design problem (Problem 1),

the ǫ constraint method (Problem 6) and the lexicographic

method (Problem 7).

D-optimal design: The problem is to minimize

− log(det(M)) or equivalently, maximize det(M), where

det(M) =
1

2σ4
(1 + 2x2

1(x2 − 1) − x2
2),

subject to the constraint (24 and 25) on x1 and x2. The

D-optimal solution is x∗

1 = x∗

2 = 0 [4], with the optimal

cost function, det(M) being 1. There are an infinite number

of solutions, one solution being to place equal weights at

frequencies π/4, 3π/4 [4].

Lexicographic optimization: In this example, Pf can be

conveniently expressed as 2(1 − x1). All D-optimal input

designs, i.e., x∗

1 = x∗

2 = 0 have the same Pf since Pf =
2(1 − x1) = 2. This is also easily seen as a consequence of

Theorem 5, as s = n = r = 0,m = 2,m ≥ n + r + 1.

ǫ constraint method: Now, the plant friendliness constraint is

imposed:
∫ π

0

2(1 − cos(ω))Φu(ω)dω ≤ c

which in turn simplifies to:

x1 ≥ 1 − c/2, (27)

which is simply a half-plane in R
2. As long as c ≥ 2, the

solution is the same as the D-optimal input, i.e., x∗

1 = x∗

2 =
0.

However, when c < 2, the constraint x1 = 1 − c/2
becomes active. It can be seen that the optimal solution is

(1 − c/2, (1 − c/2)2). For example, let c = 1, i.e., Pf = 1.

It is seen that the optimal solution is: x∗

1 = .5, x∗

2 = .25
and det(M) = .5625. Thus, the quality of the parameter

estimates as judged by det(M) decreases, while the input is

definitely more friendly. One solution for the optimal input

is .05 + 1.0505 cos(π/4t + φ1) + .6296 cos(3π/4t + φ2).
When c = 0, we have a constant input and det(M) = 0,

i.e., the parameters are not identifiable and the input is
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−1 −0.8 −0.6 −0.4 −0.2 0
−0.5

0

0.5

1

1.5

2

2.5

−det(M)

P
f

Fig. 1. Trade-off between input friendliness and parameter variance in
Example 1 [7]

not persistently exciting. When c < 0, which is physically

meaningless, clearly, there are no feasible solutions. Thus,

the trade-off between plant friendliness and identifiability is

directly quantified. Figure 1 shows the trade-off between Pf

and −det(M).
Example 2: Consider the following example [10]:

yk = (b0 + b1q
−1)uk + (d0 + d1q

−1)ek

The information matrix M is partitioned into:

M =

[
Mβ 0
0 Mγ

]
, (28)

where Mβ is related to the parameters in G1. Mγ is related

to the parameters in G2 and is independent of the input.

Hence, while minimizing the parameter covariance, it is

sufficient to consider the block Mβ . Further, it is shown

that [10]

Mβ =

[
x1 x2

x2 x1

]
, (29)

where

x1 =

∫ π

0

1

d2
0 + d2

1 + 2d0d1 cos(ω)
Φu(ω)dω,

x2 =

∫ π

0

cos(ω)

d2
0 + d2

1 + 2d1d2 cos(ω)
Φu(ω)dω. (30)

From the input energy constraint we have:
∫ π

0

Φu(ω)dω = 1

∫ π

0

d2
0 + d2

1 + 2d1d2 cos(ω)

d2
0 + d2

1 + 2d0d1 cos(ω)
Φu(ω)dω = 1

(d2
0 + d2

1)x1 + 2d0d1x2 = 1, (31)

which is a straight line in R
2. Since, any feasible point

(x1, x2) is a convex combination of single frequency designs,

the feasible set is the segment connecting (1, 1)/(d0 + d1)
2

and (1,−1)/(d0 + d1)
2 (part of the line (d2

0 + d2
1)x1 +

2d0d1x2 = 1). Thus, in this example, the feasible set of

information matrices is well characterized and parameterized.

D-optimal input design: As before, consider the classical D-

optimal problem. When d0 = 1, d1 = 0.3, the optimal

solution is x∗

1 = 1.3163, x∗

2 = −0.7246, with det(Mβ) =
1.2076 [10]. There are an infinite number of solutions

to realize this in the time domain, the simplest being a

single frequency design: δ(ω − 2.1537) or in time domain:

uk = 1.414 cos(2.1537k+φ1). Another solution concentrates

power at ω = 0 and ω = π: uk =
√

1/2 +
√

1/2 cos(πk).
Lexicographic optimization: There are an infinite number of

D-optimal input designs that satisfy x∗

1 = 1.3163, x∗

2 =
−0.7246, with different Pf . Also the model orders satisfy

m = n + r and so from Theorem 5 the maximum and

minimum values of Pf occur at the principal realizations of

(1.3163,−.7246). In this case, the lower principal realization

involves ω = 2.1537 and the upper principal realization

involves 0, π. The upper principal realization corresponds to

minimum Pf i.e., the input design that concentrates power

at 0 and π, i.e., Φu(ω) = .5δ(ω) + .5δ(ω − π), gives

minimum Pf with Pf = 2. The lower principal realization

corresponds to maximum Pf , i.e., For the single frequency

design δ(ω − 2.1537), Pf = 3.1.

ǫ constraint method: Now, consider the plant friendly input

design problem: Pf ≤ c. As before, when c is sufficiently

high, the constraint is inactive and the solution is the same

as the D-optimal design. From the above discussion, it is

possible to find a solution where the constraint Pf ≤ c
is not active when c > 2. When c ≤ 2, the constraint

becomes active. The optimal input is of the form: Φu(ω) =
ζδ(ω) + (1 − ζ)δ(ω − π), 0 ≤ ζ ≤ 1, or in time domain:

uk =
√

ζ +
√

(1 − ζ) cos(πk),

where ζ is determined by solving the equation Pf = c, which

in turn implies:

2(ζ(1 − cos(0)) + (1 − ζ)(1 − cos(π))) = c (32)

For example, let c = 1. Solving the above results in ζ = .75,

det(M) = .9057. The plant friendly input is:

uk = .866 + .5 cos(πk).

Figure 2 shows the trade-off between plant friendliness and

quality of parameter estimates [7].

Example 3: Consider the following system [6]:

yk =
b0 + b1q

−1

1 + a1q−1
uk + ek. (33)

D-optimal solution: [6] has determined the D-optimal solu-

tions to the above problem when b0 = 1, b1 = .3, a1 = .5 and

σ2 = .01. The same can be determined by solving Problem 8

and using an LMI characterization of the feasible space [5].

The resulting convex program is solved numerically using

YALMIP [11].

Lexicographic solution: The corresponding values of Pf are

also tabulated. Since the model orders satisfy m = n + r,

the maximum and minimum values of Pf for a given input

design are attained at the principal realizations. In this case,

they happen to occur at the upper and lower principal

realizations respectively. The principal representations of the
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Fig. 2. Trade-off between input friendliness and parameter variance in
Example 2 [7].

D-optimal input and the corresponding values of Pf are

shown in Table I [6]. It must be noted that the power

distribution corresponds to the one-sided power spectrum.

ǫ constraint method: Figure 3 shows the trade-off between

TABLE I

REPRESENTATIONS OF D-OPTIMAL INPUT DESIGNS FOR EXAMPLE 3

Property Frequencies Power det(M)−1
Pf Index

Lower 0 1/3 4.45e-6 2.57 1.5
Principal 2.76 2/3

Upper 2.09 2/3 4.45e-6 3.33 1.5
Principal π 1/3

Canonical 0 0.15 4.45e-6 3.03 2
2.30 0.55
π 0.30

plant friendliness and quality of parameter estimates for the

ǫ constraint method. The constraint Pf ≤ c can be expressed

as a linear constraint and the resulting optimization problem

is solved using YALMIP.

VII. CONCLUSIONS

We presented 2 multi-objective optimization formulations

for plant friendly input design in the frequency domain: the

ǫ constraint method and lexicographic optimization. The ǫ
constraint formulation can be shown to be a convex opti-

mization problem and can be solved efficiently. For a certain

class of systems, the Tchebysheff system ideas were used to

geometrically characterize the lexicographic solutions.
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