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Abstract— This paper proposes a nonlinear filter for esti-
mating monotonic underlying trend from noisy observations.
The filter computes Maximum A posteriori Probability (MAP)
estimate using a monotonic walk model instead of the random
walk model in standard linear filtering. The batch estimate is a
solution of Quadratic Programming (QP) problem. This paper
shows that the QP has a form of isotonic regression (IR) and
has a linear computational complexity.

The filter is implemented in a Moving Horizon Estimation
(MHE) setting. The data beyond the estimation horizon are
replaced by the initial condition parameters (arrival cost). The
MHE for IR is nonsmooth, so the existing nonlinear MHE
theory is not applicable. By exploiting properties of the IR
solution, we develop an update of the MHE arrival cost,
which is provably close to the full information MAP solution
and stable. The analysis is complemented by a Monte Carlo
simulation study of the proposed nonlinear filtering algorithm.
The simulation results confirm improved performance of the
proposed filter compared with a linear filter and the earlier
version of the MHE update.

I. INTRODUCTION

The filtering approach most broadly used in practice is

Exponentially Weighted Moving Average (EWMA) update.

The EWMA update could be derived as a steady state

Kalman filter for estimating an underlying random walk trend

from a noisy time series.

The problem of interest is filtering for a monotonic walk

model, where the increments of the underlying trend have

zero probability of being negative. The monotonic walk

model could reflect physical damage accumulation with time.

The model is of interest to systems health management, fault

diagnostics, and prognostics system development. By anal-

ogy with the EWMA filter, a filter based on the monotonic

walk model should be broadly useful.

Estimation with the monotonic walk model was considered

in our earlier papers [5], [16], [15]. The MAP batch estima-

tion problem was formulated as a Quadratic Programming

(QP) with linear monotonicity constraints. The filtering could

be implemented by repeatedly solving the QP as the new data

points are available. The above cited papers used standard

sparse QP solvers.

The best commercially available interior point QP solvers

take more than a hundred milliseconds for a horizon of a few

hundred time steps on a current PC computer. This works

for some, but not for all application. This paper shows that

the optimal estimation based on monotonic walk model is

reduced to an isotonic regression (IR) problem, which can be

solved two orders of magnitude faster. This removes most of
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the limitations on the use of the proposed monotonic filtering

scheme and is the first contribution of this paper.

IR problems are QP problems of special type studied in

statistics literature. They are discussed in the books [1],

[13] as well as in many papers. A univariate IR problem

can be solved with linear complexity algorithms, see [2].

The complexity is the same as for a batch linear-quadratic

estimation. A Monte Carlo simulation study in this paper

characterizes performance of the fast IR-based monotonic

filtering algorithm compared to EWMA filtering. The ob-

served improvement is 7 to 2 dB in root mean square error;

the improvement is bigger for larger signal to noise ratio.

The simulation study is the second contribution of the paper.

Most of the published IR applications are in statistics, such

as estimation of cumulative distribution functions; so far,

there has been little work in signal processing and control.

IR has been applied to detection of fault conditions in the

earlier application papers [3], [6], [7]. A related, but different,

signal processing problem is discussed in [17]. The third

contribution of the paper is analytical characterization of the

filtering properties of the IR solution. The filtering properties

were not characterized earlier.

In on-line signal processing applications, the data batch

size would eventually overwhelm available computational

capacity. A Moving Horizon Estimation (MHE) version of

the batch estimation can then be used by disregarding the

old data beyond certain time horizon.

Optimization-based estimation in the MHE framework,

has been studied earlier, see [4], [11], [18]. These papers do

not specifically consider monotonicity constraints. The MHE

stability analysis in [4], [11] is based on system linearization,

The analysis considers arrival cost, the penalty for the initial

condition on the moving horizon. In [11] the arrival cost

is approximated by a quadratic functions assuming that the

estimator constraints are inactive asymptotically in the delay

time. The monotonicity constraints may be active and such

assumption is invalid.

Our earlier paper [14] considered optimal estimation using

monotonic walk model in the MHE framework. In [14],

an arrival cost model was chosen by selecting the initial

condition for the current horizon to be on a hard constraint

defined by the solution for the previous horizon. This was

proven to work if a moving average of the (noisy) data is

monotonic – a restrictive condition. The simulation study

in this paper shows that the update proposed in [14] might

accumulate a large and increasing bias of the noisy data

estimate if this condition does not hold. In practice, the noisy

data might have non-monotonic moving average, though the

underlying trend is monotonic. This makes the update of [14]

unsuitable for many applications. This paper introduces an
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MHE formulation, which approximates the full information

solution closely and usually matches it exactly. The proposed

update of the arrival cost is based on analytical characteriza-

tion of the monotonic estimation solution. It performs very

well in simulations with large noise where the update of [14]

fails. This is the third contribution of this paper.

The fourth contribution is analysis of the IR-based filter

stability. We show that an ‘impulse response’ of this non-

linear filter error can be guaranteed to decay with time. The

worst-case convergence to zero is as 1/t.

II. LEAST SQUARES ESTIMATION

This section establishes a departure point of the study by

briefly reviewing basic linear-quadratic trending and filtering.

Consider a set of scalar data points y(t) representing an

underlying trend x(t) perturbed by a noise

YT = col{y(1), ..., y(T )}, (1)

XT = col{x(1), ..., x(T )} (2)

Estimating the underlying trend XT from the observed

data YT requires formulating assumptions about trend XT

and the relationship between XT and YT . Perhaps the sim-

plest model, one that is broadly used in many applications,

is the random walk model

x(t + 1) = x(t) + ξ(t), (3)

y(t) = x(t) + e(t), (4)

where ξ(t) is the process noise and e(t) is the observation

noise.

Consider Maximum A posteriori Probability (MAP) esti-

mation for of XT (3)–(4). Assume that ξ(t), e(t) and x(1)
in (3)–(4) are independent normally distributed

pe(x) ∼ N(0, q), p0(x) ∼ N(x0, Ξ0), (5)

pξ(x) ∼ N(0, Ξ) (6)

The MAP estimation problem can be formulated as L =
− log P (XT |YT ) → min. The model (1)–(6) yields (see [5])

L =
1

2

T
∑

t=1

[y(t) − x(t)]
2

+
1

2
r

T
∑

t=2

[x(t) − x(t − 1)]
2

+
1

2
r0 [x(1) − x0]

2 → min, (7)

where r = q/Ξ, r0 = q/Ξ0. The regularization parameter

r in (7) defines the solution smoothness (larger r means

smoother trend estimate). The second parameter r0 defines

the initial condition influence (which decays quickly as t
increases). The estimate (7) is linear in y(t) and for r0 = 0
can be presented in the form

x(t) =
T

∑

τ=1

K(t, τ)y(τ), (8)

The kernels K(t, τ) describe the contributions of the data

points y(τ) towards the trended value x(t) and represent

noncausal smoothing action of the operator (8). Sufficiently

far inside the data interval [1, T ], the kernels have the same

shape, are shift-invariant K(t, τ) ∼ e−c|t−τ |.

Denote by x(t|T ) the estimate at time t obtained based on

T data points available. As the time series increases from T
points to T + 1, the filtering update relates x(T + 1|T + 1)
and x(T |T ). For the problem in hand, the update can be

presented in the form of a Kalman Filter. It is well known that

for a first-order random walk model (3)–(4), the stationary

Kalman Filter has a form of EWMA filter

x(T + 1|T + 1) = αx(T |T ) + (1 − α)y(T + 1) (9)

The filter (9) corresponds to the kernel K(T, T − n) =
(1 − α) · αn, where α = 1

2

(√
r2 + 4r − r

)

.

III. ESTIMATION BASED ON MONOTONIC WALK MODEL

For random walk model (3), the monotonicity assumption

can be expressed as ξ(t) ≥ 0.

A. Optimal Estimation Problem

For the monotonic walk model, instead of (6), we assume

that process noise ξ(t) has one-sided exponential distribution

pξ(x) ∼ 1

Ξ
e−

x

Ξ , for x ≥ 0 (10)

pξ(x) ∼ 0, for x < 0 (11)

The single parameter Ξ of the distribution pξ(x) has a

meaning of the average damage accumulation rate.

The MAP problem based on (3)–(4), (5) and (10)–(11) is

similar to (7). The difference is in one term corresponding

to (6) (see [5] for detail)

L =
1

2

T
∑

t=1

[y(t) − x(t)]
2

+ r
T

∑

t=2

[x(t) − x(t − 1)]

+
1

2
r0 [x(1) − x0]

2 → min, (12)

subject to: x(t) ≥ x(t − 1), (t = 2, . . . , T ), (13)

where with an abuse of notation r = q/Ξ, r0 = q/Ξ0. The

second sum in (12) could be collapsed into r · [x(T )−x(1)].
The QP problem (12)–(13) could be solved for x(t)

using an off-the-shelf sparse QP solver. The meaning of the

regularization (smoothing) parameter r in (12) is similar to

r in (7). A specialized interior-point method that solves such

QP problems in linear time is discussed in [8]. This special

type of QP can be solved even more efficiently.

B. Isotonic Regression

The problem (12)–(13) can be re-written in the form

T
∑

t=1

w(t) · [a(t) − x(t)]
2 → min (14)

subject to: x(t) ≥ x(t − 1), (t = 2, . . . , T ), (15)

where the expressions for the coefficients w(t) and a(t) can

be obtained by expanding (14)-(15) and matching the linear

and quadratic terms with (12)-(13)

w(1) =
1 + r0

2
, a(1) =

y(1) + r + r0x0

1 + r0

, (16)

w(t) = 1/2, a(t) = y(t), for 2 ≤ t ≤ T − 1, (17)

w(T ) = 1/2, a(T ) = y(T ) − r. (18)
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The problem (14)–(15) is known as Isotonic Regression

(IR) problem and was extensively studied in the statistics and

operations research literature, see [1], [13]. The problem has

an explicit solution (max-min formula in [1]).

x(t) = max
1≤s≤t

min
T≥n≥t

∑n

j=s w(j)a(j)
∑n

j=s w(j)
(19)

The expressions (16)–(19) allow computing the solution of

the problem (12)-(13) two orders of magnitude faster than

with a standard sparse QP solver. For example solving the

QP problem of the size T = 800 takes about 80 ms on a

PC using the state of the art Mosek sparse QP solver called

from Matlab and about 1.5 ms using a variant of formula (19)

coded in Matlab. (Matlab Optimization Toolbox QP solver

takes several seconds). Computing (19) directly is not the

fastest algorithm for solving (12)–(13). Several algorithms

for solving the IR problem are reviewed in [2]; two of

them have linear complexity, including the well-known Pool

Adjacent Violators Algorithm (PAVA).

C. Solution Characterization
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Fig. 1. Batch MAP estimation using monotonic walk model.

Figure 1 shows examples of the monotonic solution (16)—

(19) to (12)–(13). The data, shown as dots, are obtained by

adding a gaussian noise to a piece wise constant underlying

trend (dashed line). The trend estimates for r = {1, 10, 100}
are shown as solid lines. They recover the underlying trend

well. The estimates for larger r are flatter. The trends consists

of several constant value segments with jumps between them.

These segments are active set intervals; the monotonicity

constraint (13) is active on each segment.

Theorem 1: Consider a solution to (12)–(13) on an active

set interval [t0, t0 + n] such that

x(t0 − 1) < x(t0) = . . . = x(t0 + n) < x(t0 + n + 1), (20)

For 1 < t0 and t0 + n < T the solution x(t) satisfies

x(t0) = . . . = x(t0 + n) =
1

n + 1

t=t0+n
∑

t=t0

y(t) (21)

and for any m such that 0 ≤ m < n

1

n + 1

t=t0+n
∑

t=t0

y(t) <
1

m + 1

t=t0+m
∑

t=t0

y(t) (22)

If t0 = 1, then (21), (22) hold with y(1) replaced by

y(1) + r0x0 + r. If t0 + n = T , then (21), (22) hold with

y(T ) replaced by y(T ) − r.

Theorem 1 is proven in Appendix A. It provides a justifi-

cation to the IR solution (16)–(19).

Consider now the solution sensitivity to the observed data

y(t). Consider small variations in y(t) in (21), such that

the active sets do not change. The corresponding change

of the solution x(t) has the form reminiscent of (8) with

a rectangular window kernel

∆x(t) =
1

n

t0+n
∑

k=t0

∆y(k), for t = t0, . . . , t0 + n, (23)

where ∆x(t) is a variation of the solution corresponding to

the variation ∆y(k) of the data point k. The kernel window

size n is the length of the largest active constraint interval

such that t ∈ [t0, t0 + n]. The rectangular window (23) for

the monotonic walk model can be compared to the two-sided

exponential kernel (8) for the random walk model.

D. Filtering

Consider filtering based on the monotonic walk estimation.

As the time horizon T increases (1)–(2), the IR solution

(16)—(19) to (12)–(13) can be re-computed. The filter output

is given by the last point of the IR solution and can be

computed without finding the entire solution. For t = T
the minimization set in (19) is reduced to a single point

n = T . Computing max in (19) then requires just 2T
divisions/multiplications and 2T additions.

Recall the notation x(t|T ) for the estimate of the trend

variable x(t) at time t obtained based on the data set of

T data points. The linear estimation problem of Section II

relates x(T + 1|T + 1) and x(T |T ) through the EWMA

filtering update (9). The update based on monotonic walk

model is more complicated. To understand the filtering

update consider a special case of (21) for t0 + n = T in

Theorem 1. Suppose that [T − n + 1, T ], where n < T , is

an active set interval and x(T −n|T ) < x(T −n+1|T ). On

this interval the solution x(t|T ) is constant and

x(T |T ) =
1

n

T
∑

t=T−n+1

y(t) − r

n
(24)

Some closed-form expressions describing the filtering be-

havior of the monotonic regression are as follows.

(i) Let x(T + 1|T + 1) be on active constraint interval of

length n1 ≥ 1 and x(T |T ) be on active constraint interval

of length n ≥ 1. Applying (24) for T , n0 and for T + 1, n
yields

x(T + 1|T + 1) =
n

n1

x(T |T ) +
1

n1

y(T + 1)

+
1

n1

T−n
∑

t=T−n1+1

y(t), for n1 ≥ n + 1 (25)

x(T + 1|T + 1) =
n

n1

x(T |T ) +
1

n1

y(T + 1)

− 1

n1

T−n1+1
∑

t=T−n+1

y(t), for n1 ≤ n (26)
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(ii) If y(T + 1) is large enough, then the constraint is

inactive for x(T +1|T +1). In that case, n = 1 in (24) and,

irrespective to what x(T |T ) is, we get

x(T + 1|T + 1) = y(T + 1) − r (27)

E. Simulation study of filtering

The proposed monotonic regression filter was compared

with EWMA filter in an extensive Monte Carlo simulation

study. The test data sets of N=250 points were generated.

A piece-wise constant underlying trend x(t) was generated

containing a given number of jumps. The jump locations

were uniformly distributed on [1, N ] and the jump ampli-

tudes were exponentially distributed with a unit mean. A

Gaussian noise was added to x(t) to produce the data y(t).
The filter outputs were compared with the underlying trend

x(t) to yield a mean square value of the filtering error.

The EWMA filter (9) has a single tuning parameter α.

The monotonic regression filter formulation (12)–(13) has

a single tuning parameter r (we assumed that r0 = 0).

These parameters were chosen to minimize respective root

mean square (RMS) errors of recovering the underlying trend

for the two filters. To do this, we considered a grids of

values for α and a grid for r. For each value on the grid,

1000 simulation runs were completed with differrent random

realizations of the additive noise and different realization of

the underlying trend (woth a fixed number of jumps). For

each run, a RMS error was computed. The chosen parameter

value minimizes the average RMS error over the 1000 runs.

The average RMS error for the optimal filter parameters

depends on the signal to noise ratio. In the simulations,

the signal magnitude (the mean jump magnitude) was unity

while the noise covariance varied. The results for the two

filters are illustrated in the two upper plots in Figure 2. The

improvement of the average RMS errors for the monotonic

filter over the EWMA is shown in the lower plots in Figure 2.

The monotonic filter has a smaller RMS error for all signal

to noise ratios. The left plots in Figure 2 show results for

2 jumps in the underlying trend; the right plots show the

results for 10 jumps. There are more transients for 10 jumps

and the tracking improvement is smaller. The improvement

is larger for smaller noise and reaches 7 dB.

IV. MOVING HORIZON ESTIMATION

As the data set size T increases, a practical approach

is to keep the most recent data over a fixed horizon N
only. The old data is discarded and the computations are

performed for the data from time T − N + 1 to T . This

section introduces and analyzes such Moving Horizon Esti-

mation (MHE) formulation. We will further refer to the full

information monotonic walk estimation problem as the MAP

problem. We will denote the solutions of these problems as

xMHE(t|T ) and xMAP (t|T ).

The MAP and MHE designations are introduced for

notation convenience. In fact, the MHE problem can also

be formulated as optimal Bayesian estimation problem. The

problem of optimal estimation on the interval [T−N+1, T ]
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Fig. 2. The upper plot shows RMS error in dB for the monotonic filter
(curves marked by *) and EWMA (curves marked by o). The lower plots
show improvement in dB.

is a QP problem of the form (12)–(13)

1

2

T
∑

t=T−N+1

[y(t) − x(t)]
2

+ r[x(T ) − x(T − N + 1)]

+
r0(T )

2
[x(T − N + 1) − x0(T )]

2 → min (28)

subject to: x(t) ≥ x(t − 1), (t = T − N + 2, . . . , T ), (29)

The MHE solution xMHE(t|T ) is defined by (28)–(29) for

t ∈ [T −N +1, T ]. As T increases and more data becomes

available, the lower end of the interval [T − N + 1, T ]
increases as well and the old data is left out. The solution

xMHE(t|T ) for t < T − N + 1 can be taken as the

solution at the last moving horizon interval still including

t, i.e., xMHE(t|T ) ≡ xMHE(t|t + N − 1). The initial

condition penalty parameters r0(T ) and x0(T ) define the

MHE arrival cost. The cost depends on the MHE horizon,

which is indexed by T . in (28)–(29) depend on T . The update

for r0(T ), and x0(T ) is a key part of the MHE algorithm.

A. Proposed MHE update

The last term in the MHE problem (28)–(29) describes

arrival cost, which characterizes the solution for the dis-

carded points with t ≤ TN . In [11], the update based

on a linear-quadratic approximation of the arrival cost is

proposed for a general nonlinear MHE setup. The update is

derived by linearizing the estimator around the steady state

and computing a Kalman Filter update for the linearized

system. The approach of [11] is referenced and used in other

publications on the subject, e.g. [4]. Yet, it is not applicable to

the problem in question. The monotonicity constraints might

be active at the steady state; in that case the approach of [11]

does not work and the Kalman Filter update is not valid.

Let us compare the solutions to the QP problem (12)–

(13) formulated for the entire data set t ∈ [1, T ] and the

solution to the QP problem (28)–(29) formulated for t ∈
[T − N + 1, T ]. (We assume that T > N .)
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Theorem 2: Let [t0, t1] be the largest active set interval

for xMAP (t|T ) containing T −N + 1, the beginning of the

MHE horizon. Denote n0 = T − N + 1 − t0. The solution

xMHE(t|T ) (28)–(29) on the interval t ∈ [T − N + 1, T ]
coincides with the solution xMAP (t|T ) to (12)–(13) on that

interval, iff in (28)–(29)

r0(T ) = n0, x0(T ) =
1

n0

T−N
∑

t0

y(t) − r1

n0

(30)

where r1 = 0 if t0 = 1 and r1 = r if t0 > 1.

Proof. See Appendix B.

The proposed algorithm for updating the MHE arrival cost

is a recursive form of (30). We consider T ≥ N only. For

t < N the MHE problem is the same as the MAP problem.

Consider the MHE interval [T − N + 1, T ] and the MHE

solution xMHE(t|T ) obtained on this interval. The update

logic depends on whether t = T −N +1 is the last point of

an active set interval and is conditional on

∆xT = xMHE(T − N + 2|T ) − xMHE(T − N + 1|T ) (31)

Algorithm 1: MHE Parameter Update

Initialize.

T = N, x0(T ) = 0, r0(T ) = 0 (32)

Update.

x0(T + 1) =
r0(T ) · x0(T )

1 + r0(T )
+

y(T − N + 1)

1 + r0(T )
,

r0(T + 1) = 1 + r0(T ), if ∆xT = 0 (33)

x0(T + 1) = y(T − N + 1),

r0(T + 1) = 0, if ∆xT > 0 (34)

If ∆xT > 0 in (31), then T + N − 1 is a jump point

for xMHE(t|T ). At next increments of time T this jump

point is left outside of the current MHE horizon. We will

call the jump points at t ≤ T − N historical jump points.

The MAP and MHE solutions coincide as long as each MHE

jump point is also a MAP jump point. This last assumption

is valid most of the time for sufficiently large horizon N .

B. Simulation of the MHE update

The earlier work [14] proposed a different MHE update

for the same problem. The update imposed a hard constraint

on the initial estimate x(T − N + 2|T + 1) = x(T − N +
2|T ). The constraint could be encoded through initial penalty

parameters of the form r0(T ) = +∞, and a x0(T + 1) =
x(T − N + 2|T ) In [14] this MHE update was shown to

produce accurate results if a moving average of the data is

monotonic. This condition is restrictive. If it does not hold,

the update might yield inaccurate results.

The performances of the proposed update and of the

update of [14] for noisy data are compared in Figure 3. The

upper plot shows the data generated by adding a Gaussian

noise with a covariance of 0.75 and a harmonic variation with

amplitude 0.1 and period of 272 to the underlying trend. The

bottom plot shows the ground truth data (underlying trend)

as a dashed line. The dash-dotted line, labeled MHE-HARD,
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Fig. 3. Comparison of the MHE updates and full-information IR filtering

shows the MHE filtering results with the hard-constraint

update of [14]. The moving window width was N = 50 and

r = 10 The update suffers from irreversible accumulation of

large bias. The solid line, labeled MHE-OPTIMIZED shows

the results for the proposed update (Algorithm 1). For all

practical purposes this MHE filter output coincides with the

output of the full information monotonic regression filter,

which is labeled as MAP FILTER and plotted by a dotted

line (mostly overlaping the solid line).

The MAP filter and proposed MHE filter were compared

in the Monte Carlo simulation study mentioned earlier (see

Figure 2). The performance loss of the MHE flter was less

than 0.016 dB in all cases and less than 0.001 dB in most

cases. This is too small to discern in Figure 2.

C. Filter stability

Consider Lyapunov stability of the update, similar to how

it is done in [11] for a general nonlinear MHE update.

Recall that the results of [11] presume that the system can

be linearized around the equilibrium y(t) = 0, which is not

the case when the monotonicity constraint is present. Both

the MAP and MHE solutions converge to a steady state

if the initial condition x0 is off (nonzero). If x0 < 0, the

convergence is deadbeat in one step: x(t) = 0 for t > 1 is

the solution. If x0 > 0 and the active set interval is [1, T ],
then the MAP solution can be obtained as

x(T |T ) =
x0r0

T + r0

(35)

The MAP filter is stable since the solution (35) asymptoti-

cally converges to zero as the time T advances. The solution

decays as 1/T , rather than exponentially. In this case the

MHE solution coincides with the MAP solution.

Consider now BIBO (bounded input/bounded output) sta-

bility of the filter. This condition is more interesting since

it concerns more realistic noisy data input to the filter. We

will assume that the input sequence y(t) is bounded in the

l∞ norm such that

|y(t)| ≤ By (36)
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Let t0 ≤ T be the last jump point of the MAP solution

and n = T − t0 + 1. Then (24) holds. By using (36) in (24)

we get that x(T |T ) is bounded as

|x(T |T )| ≤ 1

n

T
∑

t=T−n+1

|y(t)| + r

n
≤ By + r (37)

Finally, we will consider an ‘impulse response’ of the

proposed nonlinear filter. Stability of linear filters is often

defined as convergence of an impulse response to zero.

Consider the following bound on the output signal

|x(T |T )| ≤
T

∑

t=1

h(t)|y(t)| + C, (38)

where h(t) ≥ 0 are the impulse response coefficient bounds

for the nonlinear filter and C is a constant. By using (24),

a bound of the form (38) can be obtained with h(t|T ) =
1/(T − t + 1). The response convergence to zero is slower

than exponential.

V. CONCLUSIONS

This paper discussed estimation of an underlying trend

from noisy data based on monotonic walk model of the trend.

The solution is a filter using a moving horizon implementa-

tion of an isotonic regression. This nonlinear filter has the

the same low computational complexity as a linear filter.

Similar to an exponentially weighted moving average filter,

the proposed filter has a single tuning parameter. The solution

is close to the full-information optimal nonlinear filtering

estimate and has well understood properties. The proposed

filter provides several dB improvement over a linear filter in

recovering monotonic trends from noisy data.
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APPENDIX

A. Proof of Theorem 1

The KKT (Karush–Kuhn–Tacker) optimality conditions

for the problem (12)–(13) can be expressed in the form

x(t) − y(t) + [λ(t) − λ(t − 1)] = 0, (39)

where λ(t) ≥ 0 are the Lagrange multipliers corresponding

to the monotonicity constraints and 1 < t < T . The KKT

condition for t = 1 has the form (39), where λ(T ) = r. The

condition for t = T has the form (39), where λ(0) = 0 and

y(1) is replaced with y(1) + r0x0 + r.

On each of the active set intervals, the constraint (13) is

active. The Lagrange multipliers in the active set interval are

positive, λ(t) > 0. For each of the internal points that do not

belong to an active set (jump points), λ(t) = 0. Summing

up (39) from t0 to t0 + m yields

x(t0) =
1

m + 1

t=t0+m
∑

t=t0

y(t) +
λ(t0 + m)

m + 1
− λ(t0 − 1)

m + 1
(40)

The two strict inequalities in (20) mean that λ(t0−1) = 0
and λ(t0 + n) = 0. For m = n, we have λ(t0) = 0 and

λ(t0 + n + 1) = 0 in (40), which yields (21). For m < n,

we have λ(t0 − 1) = 0 and λ(t0 + m) > 0; the inequality

(22) follows from (21) and (40). Q.E.D.

B. Proof of Theorem 2

The QP problem (28)–(29) is a convex problem with

positive definite Hessian and has a unique solution. We will

show that xMAP (t|T ) satisfies the KKT equations and, thus,

is the solution for (28)–(29).

Consider the solution xMAP (t|T ) = const on the interval

[T −N +1, t1]. We assume that 1 < t0 ≤ t1 < T . Then the

solution can be obtained from (21). The case where t0 = 1
and/or t1 = T is similar. By summing up the KKT equations

for the MAP solution over the [t0, T − N + 1] interval we

obtain the first KKT equation (for t = T − N + 1) for the

MHE solution, which is satisfied by xMHE(T −N +1|T ) =
xMAP (T − N + 1|T ).

On the interval [T − N + 2, T ] the KKT equations for

both MAP and MHE cases are identical, and are satisfied

by the identical solutions. Q.E.D.
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