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Abstract— This study is concerned with the contouring 
control of a parallel mechanism, which is a constrained 
multi-axis motion system. The method of equivalent errors, 
previously proposed for unconstrained systems, is applied to 
design a contouring controller for such systems. It is found 
that the definition of equivalent errors is not affected by 
constraints. Hence, the design procedure of contouring 
controller is exactly the same as that for the unconstrained 
system. Due to the constraints, however, the state variables in 
the control law are not fully independent. Some of the states, 
which are not available from measurement, are actually 
function of the other available states. In general, it is 
impossible to directly solve the constraint equation that may 
contain transcendental functions. Therefore, a linear 
approximation is used to estimate the unavailable states. 
Numerical simulations are carried out for the contouring of 
several paths, including circular and elliptic paths. The results 
indeed confirm the validity of the proposed method.   

I. INTRODUCTION 

INCE the development of the well known Stewart 
platform [1], there have been considerable 

developments of parallel mechanisms as they can be found 
in industrial roots, simulators, micromanipulators and 
parallel machine tools, see, e.g., [2-7]. Parallel manipulators 
have many advantages over serial manipulators, such as 
less error accumulation and supporting higher load/weight 
[2]. The main disadvantage of parallel mechanisms is its 
complicated kinematics and system dynamics. As a result, 
the contouring control of such system is a nontrivial task. 
There have been several methods proposed for this purpose 
[8-13]. Among them, the method of equivalent errors [13] is 
especially suitable for parallel motion systems. For a 
motion system with n axes, the equivalent errors include 
n-1 equivalent errors and 1 tangential error, which are 
defined utilizing the algebraic equations determining the 
desired path. Under proper assumptions, reducing the 
equivalent errors is equivalent to reducing the actual 
contour error. By transforming the system dynamics into 
the coordinates of equivalent errors, the contouring control 
problem will become the stabilization problem. Then 
stabilization control methods can be employed to yield the 
contouring controller. 

The method of equivalent errors possesses several 

advantages over conventional contouring control methods. 
For details, please refer to [13]. In particular, it is suitable 
for complicated nonlinear systems following complicated 
paths with high speed. Under such extreme situation, large 
contour errors are in general inevitable for conventional 
methods. The objective of this paper is to design a 
contouring controller for a complicated parallel mechanism 
by the method of equivalent errors. 

II. SYSTEM DESCRIPTION 

  Fig. 1 shows the machine tool consisting of the parallel 
mechanism considered in this study. The detailed schematic 
of the parallel mechanism is shown in Fig. 2. It has been 
analyzed in several studies [4-7]. It consists of one fixed 
base platform and one moving platform connected by 3 
links. The base platform is a triangle with vertices denoted 
by . The moving platform is also a triangle 

with vertices denoted by . There are 3 vertical 

beams attached to base platform at . Three 

sliders denoted by  can slide on the vertical 
beams. Servomotors with ball-screws are used to actuate 
the sliding motion. Three links of constant length L connect 
the sliders to the moving platform. As a result, the sliding 
motion on the vertical beams will cause the motion of the 
moving platform. The motion system has three types of 
joints. The first type is the prismatic joint connecting the 
base platform and the slider. The second type is the revolute 
joint connecting the slider and the link. The third type is the 
spherical joint connecting the moving platform and the link. 
Therefore, the system is referred to as three-PRS 
(Prismatic-Revolute-Spherical) parallel manipulator. Please 
refer to [4-7] for detailed description of the system. 
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III. DYNAMIC EQUATIONS 

The three-PRS system possesses 3 degrees of freedom 
with complicated forward and backward kinematics. For 
brevity, only necessary results are presented here. Detailed 
derivation of the dynamic equations of the three-PRS 
parallel mechanism can be found in [7].  
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It is assumed that no friction exits on the joints and the 
components of the mechanism are rigid. Although the 
system is 3-DOF, it is more convenient to represent its 
dynamics by 6 generalized coordinates, i.e.,  
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where are the stretch lengths of the 

ball screw (i.e., 

[ T
a SSSx 321=

iiiS
[ ]T321 θθθ

BA oflength = ), and 

 are the angles between the links bx = iiTB  
and the horizontal plane, as shown in Fig. 2. The 6 
generalized coordinates are not independent. They must 
satisfy 3 geometric constraints represented by 
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The constraints are obtained by the fact that the side lengths 
of the triangle of the moving platform are constant. The 
functions )(xiφ are complicated and their expressions are 
omitted for simplicity. For the constraint, it is assumed that 

bx∂
∂φ  is nonsingular. By implicit function theorem [14], this 

assumption implies that there exists a unique solution at 
least locally of the form 
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for equation (1). If equation (2) can be obtained, the system 
dynamics can be well represented by  only. 
Unfortunately, equation (2) is in general unavailable since 
equation (1) in general involves transcendental algebraic 
equations. The dynamic equations can be derived by the 
Lagrangian approach and are given by 
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whereλ  is the Lagrange’s multiplier due to the constraint; 
r  and ρ  are the radius and the lead angle of the ball 
screw;  is a nonsingular inertial matrix,  
represents the gyroscopic and damping matrix,  
contains the gravitational forces; 

)x(M ),( xxC &

)(xK
xx ∂∂= /φφ ; 

, [ T0003τ= ]aτ 21τ τ iτ  are the output torques of 
the three actuating motors; 

( )',' J= ,' JJdiagJ D σπ /2*)2J( 1JJ +=′ , where  and 
 are the rotational inertias of the ball screws and that of 

actuating motor respectively, and 

1J

2J

σ  is the pitch of the ball 
screws. Again, the expressions of , , and 

 are complicated and are omitted. 
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rewritten as  
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It can be shown that the inertial matrix  is positive 
definite. Hence, from (4), one can get 
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where the arguments x and  in , , x& φ  are omitted 
for simplicity. On the other hand, from the constraint (1), 
one can get 
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Inserting (5) into (6) gives 
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of full rank, and . Hence, 
equation (7) yields 
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Thus, the Lagrange’s multiplier λ  can be eliminated by 
plugging (8) into (5), resulting in 
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Let  be the )(xG 33×  matrix formed by the first 3 
columns of . Equation (9) can be written as )(1 xG

τ)(),( xGxxfx += &&&   (12) 

where [ ]T321 ττττ = . 

Next, it is to show that is nonsingular. To this aim, 
the following lemma is needed. Let  denote the null 
space of a matrix A, and Col(A) denotes its column space. 
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Lemma:  )()( 1
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Equation (14) implies that . Hence )( T
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Equations (13) and (15) imply that  
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which completes the proof of the lemma. 

Now, consider a vector  defined by 6ℜ∈β

[ ]T000321 ββββ =  

where iβ  are not all zero, Since 
bx∂

∂φ  is nonsingular, it is 

clear that , and hence )( T
xCol φβ ∉ )( 1GN∉β . In other 

words, 

 01 ≠βG   (16) 

implying that any linear combination of the first 3 columns 
of  is not zero. Hence, the first 3 columns of  are 
linearly independent and thus  is of full rank. 
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IV. CONTROLLER DESIGN 

In this section, we will use the method of equivalent 
errors to design a contouring controller for the three-PRS 
parallel manipulator. Since the system is 3-DOF, the desired 
path can be described by two algebraic equations in the 
generalized coordinates, i.e., 0)( and 0)( 21 == dd xpxp
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are omitted. With the error dynamics, one can no gn  
stabilizing controller that will be a contouring controller for 
the motion system. Since ),,( txx &Γ  is nonsingular, the 
controller can be designed by feed  linearizing the error 
dynamics first, and then followed by a robust controller, 
such as sliding mode controller [15].  

The contouring controller obtaine

w desi

b

 a

back

d above will e a 
function of the generalized displacements x  and velocities 
x& . However, only ax  is available from measurement. The 

her, i.e., bx , can b obtained from the constraint equation. 
To this aim he constraint equation is expanded in Taylor 
series with respect to the desired command 
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V. N L RESULTS AND DISCUSSIONS 

The above e verified through numerical 
simulations in th n. It is hoped that the cutter end 
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are chosen as point will follow a given desired path. The cutter is a 
vertical link connected to the center of the moving plate, as 
shown in Fig. Let ),,( CCC ZYX  be the position of the 
cutter end point, which is a function of the generalized 
coordinates x . Again, this complicated function is omitted 
for brevity. 

Two desired paths will be followed: 

(i) a circ h with radius mmr  and angular 

5.0,5,8,400,40 21 ===== kcb μμ  and 1.0=δ  

For both the circular and elliptic paths, three cases of 
parameter variations are considered: (i) n rtainty (ii) 
25% of variation in system parameters; (iii) 50% of 

o unce ; 

variation in system parameters. Fig. 3 shows the simulation 
results for the actual contour errors. Without uncertainty, 
the contour error reaches the steady state in about 0.5sec, 
with steady state contour error less than mμ1.0 . With 
uncertainty, the steady state contour error will be oscillating. 
The magnitude is about mμ1  for case (ii) and mμ2  for 
case (iii). The average contour error (ACE) defined by 

ular pat d 50=

velocity sradd 6=ω , i.e., Cd )cos(05 td.0X ω= , 
1745.0)sin(05.0 += tY dCd ω , and 4.1− . =CdZ

(ii) an ellipti ath with the length es being 
mm , and

c p s of two ax
 and mma 50= b 30= sradd 6=ω , i.e., 

)tdcos(05.0X Cd ω= , 1745.0)sin(03.0 += tdYCd ω , 

For the circula valent contour err

and 4.1−=CdZ . 

r path, the equi ors 21  , εε  
and the tan ential error 
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where cε  is the actual contour error s , i mμ773.0  for case 
(i), mμ532.5g are given by e   for case (ii), and mμ429.9  for 

se large
case (iii). 

nable ra onclude

The method of equivalent errors has been applied to 
design a co otion system. 
The equivalent rm the contouring 
pr

 Proceedings 
of IME, Vol. 180, No. 5, pp. 371-386, 1965. 

[2] Xin-Jun L  Li-Ping Wang, “On the 

s and Automation, Vol. 

, Aug. 2003. 

, 2003, pp. 71-83. 

analysis of the 3-PRS parallel kinematic platform of a serial-parallel 

Although the larger uncertainty will cau r contour 
errors, the ISMC controller can still keep them in a 
reaso nge. Thus, one can c  that the ISMC 
contouring controller works for this complicated multi-axis 
parallel motion system even with large uncertainty. Similar 
conclusions also apply to the contouring control of the 
elliptic path, whose simulation results are presented in Fig. 
4.  

VI. CONCLUSIONS 
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For the elliptic path, the equivalent contour errors 21  , εε  

and the tangential error are given by e  
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With the equivalent errors, we can now follow the 

procedure outlined in the previous section to design
contouring controller. This will be done by feedb
lin

 a 
ack 

earization followed by an integral sliding mode control 
[6]. In other words, the control law for the input torques is  
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are the integral sliding manifolds.  

For the following simulations, the control parameters 

ntouring controller for a parallel m
 errors allow one to transfo

oblem into the error stabilization problem. Then, either 
feedback stabilization with integral sliding mode control 
can be used to design the controller. Because of the 
constraints, the states in the control law are not completely 
independent. The unavailable states can be estimated using 
linear approximation from the constraint equation. 
Simulation results verify the proposed method.  
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Fig. 1 The 3-PRS mechanism in a machine tool 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 The schematics of the 3-PRS parallel mechanism
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Fig. 3 Contour errors of circular path 

Fig. 4 Contour errors of elliptic path 
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