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Abstract— In this paper, we present a modeling scheme of
a cantilever-based L-shape manipulator. The L-shape manip-
ulator is made of (1 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-
PT) single-crystal relaxor ferroelectric material. We first report
the design of a novel cantilever capable of motion in multiple
degrees of freedom. The top and bottom surfaces of the L-shape
cantilever structure are printed with interdigitated electrode
(IDE), which allow the structure to produce both axial and
flexural independently. The dynamic modeling of such a ma-
nipulation structure are discussed and presented. The analytical
modeling results match well with the finite element analysis and
experimental results. The controlled planar manipulator has
potential applications in micro- and nano-applications, such as
nano-indentation.

I. INTRODUCTION

During the last decade, micro-/nano-manipulation have
been extensively studied in robotics and control commu-
nities. For example, the atomic force microscope (AFM)
has been considered one of the platforms to carry out
manipulation and assembly at micro- or nano-scale [1]–[4].
A good review of robotic micro- and nano-manipulation can
be found in [5] and [6].

For manipulation platforms, for example, AFMs, piezo-
electric cantilever beams are the most widely used actuation
mechanisms. Piezoelectric film actuators such as bimorphs
and unimorphs are one of the most widely employed forms
of smart material actuators because of their simple design
and large bending deflection. In the case of a bimorph, one
piezo-film elongates while the other contracts, and produces
a flexural motion. In general, stack-type actuators are used
to obtain a linear (axial) motion. The actuator consists of
a stack of piezoelectric disks and exhibits a high stiffness
motion. The displacement generated by this type of actuator
has the same direction as the direction of polarization electric
field.

A single-crystal relaxor ferroelectric material, such as
PMN-PT (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3, is a potential
candidate for new generation actuator and sensor applications
due to their high piezoelectric coefficients [7]. New PMN-PT
piezo-devices have been developed in recent years. For exam-
ple, Hong et al. [8] develop a PMN-PT-based smart cantilever
structure that is capable of both sensing and actuation. In [9],
interdigitated electrodes (IDE) have been employed to utilize
the high piezoelectric coupling along d33 direction. It is
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demonstrated that a PMN-PT unimorph with IDE design can
generate both a longitudinal and flexural motion without any
additional passive or active layers [10]. Both the axial and
flexural motions are produced by differentially controlling
the contraction/elongation of the top and bottom IDEs of the
cantilever.

In [11], a PMN-PT unimorph L-shape structure is designed
and fabricated as a multi-degree-of-freedom (MDOF) manip-
ulator. The L-shaped manipulator combines two PMN-PT-
based cantilevers to form one monolithic structure (Fig. 1(c)).
The manipulator has a set of four independent IDEs on
the top and bottom surfaces of each cantilever. Therefore,
the manipulator is capable of motion in four degrees of
freedom. The manipulator design has several advantages
over the conventional cantilever design for micro-/nano-
manipulation. The L-shape manipulator provides motion in
multiple degrees of freedom at the end effector and therefore
enables more complicated manipulation, such as twisting.
Most cantilever-based manipulators, such as those used in
AFM, can only provide flexural motion. Additionally, the
proposed MDOF manipulator is very compact and portable.

The goal of this paper is to develop a mathematical model
for the L-shape manipulator. Several reasons motivate us
to develop such an analytical model. First, we need to
understand the dynamic properties and characteristics of the
manipulation device. Second, we need a mathematical model
of the manipulator to design advanced control systems.
Since the manipulator provides motion in multiple degrees
of freedom, a model-based control system is necessary to
guide the manipulation and assembly actions. In [12], [13],
dynamic analysis of an L-shape frame is studied. Although
the frame motion in [14] is in three-dimensional space, the
results in [14] cannot be applied to our manipulator because
we need to consider both the axial and flexural motions
produced by the L-shape structure.

The remainder of the paper is organized as follows.
In Section II, we describe the PMN-PT-based manipulator
design. The dynamic models of the L-shape manipulator are
presented in Section III. Then we demonstrate the validity
of the models through a comparison with numerical and
experimental results in Section IV. We conclude the paper
in Section V.

II. PMN-PT MANIPULATOR DESIGN

In this section, we first describe the basic principles for
the PMN-PT cantilever beam actuators and then discuss the
L-shape manipulator design.

Fig. 1(b) shows a schematic diagram of a PMN-PT can-
tilever beam. The IDE electrodes are identical on the top and
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the bottom of a PMN-PT cantilever. A pair of electrode fin-
gers with positive and negative electrode potentials induces
an electric field with a dominant axial component that is
parallel to the poling direction (along the x-axis direction,
that is, high piezoelectric constant d33 along the 33 direction
shown in Fig. 1(b)). The PMN-PT cantilever in combination
with the IDE design can generate two motions, one in the
axial direction and the other in the flexural direction.

The distribution of electric field is built up strongly
between two IDE fingers on both the top and bottom of the
actuator surfaces. The dominant axial (longitudinal) piezo-
electric component (e.g. high d33 values) of the PMN-PT ma-
terial causes a primarily axial piezoelectric deformation. The
active fields are responsible for the overall axial deformation.
Fig. 2(a) shows that a 9 V (peak-to-peak) sinusoidal input
voltage (1 Hz) at both IDE electrodes yields about a 0.25-
μm (peak-to-peak) axial displacement [11]. The dimension
of the PMN-PT cantilever actuator is roughly about 10 mm
× 1.5 mm × 110 μm. The prototype of the cantilever is
shown in Fig. 1(a) and is designed and fabricated using the
SDSU and UCI micro-fabrication facilities.
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Fig. 1. (a) A PMN-PT/PDMS cantilever prototype. (b) A schematic of a
single PMN-PT cantilever beam. (c) L-shape manipulator prototype made
of two cantilevers.

Moreover, the PMN-PT film actuator can also provide
a flexural displacement by activating both sides of the
cantilever in opposite directions. The working principle is
similar to that of a piezoelectric bimorph with two imaginary
active layers. The top and bottom IDEs are operated in
opposite modes (contraction/expansion). The resulting effect
will cause the film to bend and thus produce a flexural
motion. Fig. 2(b) shows that a 2 V (peak-to-peak) 1 Hz input
voltage signal at both IDE electrodes yields about a 2-μm

flexural displacement with a small-amplitude hysteresis [11].
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Fig. 2. (a) Axial deflection under a sinusoidal input voltage. (b) Flexural
deflection under a sinusoidal input voltage.

The L-shape composite structure shown in Fig. 1(c) con-
sists of two cantilever beams. Due to the simple fabrication
of a PMN-PT cantilever beam, we use two PMN-PT can-
tilever beams to form the L-shape structure. The connection
between these two cantilevers can be considered as rigid.

Since the L-shape structure is made of two separate
cantilever beams, we control each cantilever beam using their
respective top and bottom IDEs and therefore manipulate the
motion of the structure. In the following, we first discuss the
dynamics of the single cantilever beam and then extend to
the L-shape structure.

III. DYNAMIC MODELING

A. Single cantilever structure

For the single cantilever PMN-PT structure, we consider
the both axial and flexural vibrational motion. We denote
the size of the PMN-PT cantilever beam as l (length) × b
(width) × h (height). We set up the coordinate system such
that the x-axis is along the axial direction and the deflection
is within xz-plane. For the fixed inertial frame Fa, the unit
vector along x, y, and z-axes are a1, a2, and a3, respectively;
see Fig. 4. We denote the axial displacement and flexural
deflection as u(x, t) and w(x, t), respectively. We obtain the
position vector r(x, t) as

r(x, t) =
(

u(x, t) − z
∂w

∂x

)
a1 + w(x, t)a3

≈ u(x, t)a1 + w(x, t)a3. (1)

Because deflections are small, we can drop the term z ∂w
∂x in

the above equation. Then the velocity is obtained as

v(x, t) = u̇(x, t)a1 + ẇ(x, t)a3. (2)

We consider the kinetic energy of the system

T =
1
2

∫ l

0

mv · vdx, (3)

where m is the mass density per unit length. For potential
energy U , we obtain

U =
1
2

∫ l

0

[
EI

(
∂2w

∂x2

)2

+ EA

(
∂u

∂x

)2
]

dx, (4)

where E is the Young’s modulus, I and A are the second
moment of area of the cross-section of the beam, respectively.
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We consider the forces and moments generated by the
input voltage through IDEs. Let VT and VB be the voltages
applied on the top and bottom IDEs, respectively. Fig. 3(a)
shows the IDE-generated electric fields inside PMN-PT and
Fig. 3(b) shows the schematic of the distribution of axial
strains due to the electric field in the xz plane across
the center of the cantilever beam. We denote the distance
between IDE fingers as hF . The strains generated by VT and
VB at the top and bottom surfaces of PMN-PT cantilever are

εT (x, t) =
VT (x, t)d33

hF
, εB(x, t) =

VB(x, t)d33

hF
, (5)

where d33 is the piezoelectric constant along the 33 direction.
Since the IDEs are assumed to be perfect on the PMN-PT
surfaces, we assume that the strain distribution is continuous
along the xz cross-section (see Fig. 3(b)). We denote the
vertical distance between the bottom surface and the neutral
axis as D. Then we have

D

D + h
=

εB

εT
=

VB

VT
, (6)

thus for VT �= VB , D = VB

VT −VB
h, where we drop the variable

dependencies on x and t for brevity. We can calculate the
resultant axial force Fn and moment Mn around the beam
central line NN ′ (Fig. 3(b)) due to the strain distribution
generated by the input voltages on both IDEs.
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Fig. 3. (a) Electric field distribution inside PMN-PT around IDEs and (b)
axial strain distributions due to applied voltages.

Considering the strain distribution in Fig. 3(b) and using
Eqs. (5) and (6), we obtain the strain at location z as

ε(z) =
z

D + h
εT =

z(VT − VB)d33

hhF
.

Thus, we obtain the resultant axial force Fn(x, t)

Fn(x, t) =
∫ D+h

D

σ(z)bdz =
Ebd33h

2hF
(VT + VB), (7)

where σ(z) = Eε(z) is the axial stress at location z.
Similarly, the resultant moment Mn around the center line
NN ′ is

Mn(x, t) = −Ebd33h
2

12hF
(VT − VB). (8)

The virtual work done by the axial force and moment is

δWnc =
∫ l

0

(F ′
n(x, t)δu + M ′′

n (x, t)δw) dx. (9)

Using the extended Hamilton’s principles [15] and
Eqs. (3), (4) and (9), we obtain the equations of the motion
as

m
∂2u

∂t2
− EA

∂2u

∂x2
= F ′

n(x, t), (10a)

m
∂2w

∂t2
+ EI

∂4w

∂x4
= M ′′

n (x, t), (10b)

and boundary conditions

u(0, t) = 0, w(0, t) = 0, w′(0, t) = 0, u′(l, t) = 0, (11a)

EIw(2)(l, t) = 0, EIw(3)(l, t) = 0, (11b)

where we use the notation ḟ(x, t) = ∂f
∂t and f (n)(x, t) =

∂nf
∂xn for a function f(x, t).

Note that dynamics of the axial and flexural directions are
decoupled from each other. Therefore, we can calculate the
natural frequencies for axial and flexural motion separately.
For axial and flexural motions with the above boundary
conditions, we obtain their respective natural frequencies
as [15]

ωa
k =

(2k − 1)π
2

√
EA

mL2
, ωf

k = ck

√
EI

mL4
, k = 1, 2, · · · ,

where c1 = 1.875, c2 = 4.694, c3 = 7.855, etc.
Comparing ωa

k and ωf
k for the rectangular cross-section

cantilever beam with the thickness much less than the width
and length, we find that ωf

k � ωa
k . Therefore, the natural

frequencies of the beam follows closely with the flexural
motion for the first few modes.

B. L-shape cantilever structure

Fig. 4 shows the motion schematic of the L-shape manip-
ulator. Here we assume that the motion of the manipulator
is small compared with its size. We consider an L-shape
structure that consists of two cantilever with length l1 and l2,
respectively. We assume that the orientation angle between
the two beams is 90 degrees, namely, they are perpendicular
to each other. Each beam can move independently along
the axial and flexural directions. We set up the coordinate
systems as shown in Fig. 4. For the body-fixed moving frame
Fb along beam #2, the unit vectors along x2, y2, and z2-axes
are b1, b2, and b3, respectively. For simplicity, we assume
that beam #1 only vibrates or moves in the x1z1 plane and
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Fig. 4. A kinematics schematic of the L-shape manipulator.

beam #2 only in the x2-z2 plane. We also consider a point
mass mt that is attached at the tip of beam #2.

We denote the displacements of beam #i along the xi and
zi axes as ui and wi, i = 1, 2, respectively. We also denote
the deflection angle of the tip of beam #1 as α (Fig. 1(c)),
namely, α = ∂w1

∂x1

∣∣∣
x1=l1

. Then the coordinate transformation

matrix Cba from frames Fb to the fixed frame Fa can be
obtained as

Cba =

⎡
⎣ 0 1 0

cos α 0 sinα
sinα 0 − cos α

⎤
⎦ . (12)

Assuming small deflections for both beams, we write the
position vectors r1 and r2 of the differential elements on
beams #1 and #2, respectively, as

r1 ≈ u1(x1, t)a1 + w1(x1, t)a3 (13)

and

r2 ≈ u1(l1, t)a1 + w1(l1, t)a3

+u2(x2, t)b1 + w2(x2, t)b3. (14)

We drop the terms zi
∂wi

∂xi
in the above equations due to

α � 1. Using the transformation matrix Cba, we can write
Eq. (14) into frame Fa as

r2 = [r1(l1, t) + w2(x2, t) sin α]a1 + u2(x2, t)a2 +
[w1(l1, t) − w2(x2, t) cos α]a3. (15)

For velocities, we obtain

v1(x1, t) = u̇1(x1, t)a1 + ẇ1(x1, t)a3, (16)

v2(x2, t) = ṙ2 ≈ u̇1(l1, t)a1 + u̇2(x2, t)a2 +
[ẇ1(l1, t) − ẇ(x2, t)]a3. (17)

In Eq. (17), we drop the nonlinear terms (e.g. αẇ2) again
due to a small α.

We consider the kinetic energy of the system

T = T1 + T2 + Tt, (18)

where Ti = 1
2

∫ li
0

mivi · vidxi, i = 1, 2, and Tt =
1
2mtv2(l2, t) · v2(l2, t). In the above equations, mi is the
mass per unit length for beam #i. For potential energy V ,
we obtain

V =
1
2

2∑
i=1

∫ li

0

[
EiIi

(
∂2wi

∂x2
i

)2

+ EiAi

(
∂ui

∂xi

)2
]

dxi,

where Ei is the Young’s modulus, Ii and Ai are the second
area moment of inertia and area for the cross-section of
beam #i, respectively. For the non-conservative work done by
the forces and moments due to the input controlled voltage
through the IDEs, we follow a similar calculation to that of
the single cantilever beam case and obtain

δWnc =
2∑

i=1

∫ li

0

(F ′
ni(xi, t)δui + M ′′

ni(xi, t)δwi) dxi,

where Fni(xi, t) and Mni(xi, t) are the resultants force
and moments for the ith beam at location xi and time t,
respectively.

Using the extended Hamilton’s principles, we can derive
the dynamic equations for the manipulator as follows.

m1
∂2u1

∂t2
− E1A1

∂2u1

∂x2
1

= F ′
n1, (19a)

m1
∂2w1

∂t2
+ E1I1

∂4w1

∂x4
1

= M ′′
n1, (19b)

m2
∂2u2

∂t2
− E2A2

∂2u2

∂x2
2

= F ′
n2, (19c)

m2

[
ẅ1(l1, t) − ∂2w2

∂t2

]
− E2I2

∂4w2

∂x4
2

= M ′′
n2 (19d)

and boundary conditions

u1(0, t) = 0, w1(0, t) = 0, u′
1(0, t) = 0,

w′
1(0, t) = 0, u2(0, t) = 0, w2(0, t) = 0, (20a)

u′
2(0, t) = 0, w′

2(0, t) = 0, w′′
1 (l1, t) = 0,

w′′
2 (l2, t) = 0, (20b)∫ l2

0

m2ü1(l1, t)dx2 + mtü1(l1, t) + E1A1u
′
1(l1, t) = 0,

(20c)∫ l2

0

m2 [ẅ1(l1, t) − ẅ2] dx2 + mt [ẅ1(l1, t) − ẅ2(l2, t)]

− E1I1w
(3)
1 (l1, t) = 0, (20d)

mtü2(l2, t) + E2A2u
′
2(l2, t) = 0, (20e)

mt [ẅ1(l1, t) − ẅ2(l2, t)] + E2I2w
(3)
2 (l2, t) = 0. (20f)

To compute the natural frequencies of the L-shape struc-
ture, we first define the following non-dimensional vari-
ables [14].

ζi =
xi

li
, M =

m2

m1
, Mt =

mt

m1l1
, L =

l2
l1

,

λ2
ui =

mil
2
i ω

2

EiAi
, λ4

wi =
mil

4
i ω

2

EiIi
, i = 1, 2. (21)
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Assuming a separable solution ui(xi, t) = liUi(ζi)ejωt,
wi(xi, t) = liWi(ζi)ejωt, i = 1, 2, then Eqs. (19) become

U ′′
i + λ2

uiUi = 0, (22a)

W
(4)
1 − λ4

w1W1 = 0, (22b)

W
(4)
2 − λ4

w2

(
W2 − 1

L
W1(1)

)
= 0. (22c)

And boundary conditions (20) become

U1(0) = 0, W1(0) = 0, W ′
1(0) = 0,

W ′
2(0) = 0, U2(0) = 0, (23a)

W2(0) = 0, U ′
1(0) = 0, U ′

2(0) = 0,
W ′′

1 (1) = 0, W ′′
2 (1) = 0, (23b)

U ′
1 − λ2

u1(ML + Mt)U1(1) = 0, (23c)∫ 1

0

MLλ4
w1 [W1(1) − LW2(ζ2)] dζ2+

λ4
w1Mt [W1(1) − LW2(1)] + W

(3)
1 (1) = 0, (23d)

U ′
2(1) − Mt

ML
U2(1) = 0, (23e)

λ4
w2

Mt

ML2
[W1(1) − LW2(1)] − W

(3)
2 (1) = 0. (23f)

Since the motion equations in the axial and flexural
directions are decoupled, we consider one direction at a time
and then compare the calculated natural frequencies etc. like
in the single cantilever beam case. The general solutions
for (22b) and (22c) are, respectively,

W1(ζ1) = B1 sin(λw1ζ1) + B2 cos(λw1ζ1) +
B3 sinh(λw1ζ1) + B4 cosh(λw1ζ1),

W2(ζ2) = C1 sin(λw2ζ2) + C2 cos(λw2ζ2) +

C3 sinh(λw2ζ2) + C4 cosh(λw2ζ2) +
1
L

W1(1),

where Bi and Ci, i = 1, 2, 3, 4, are coefficients to be deter-
mined by the boundary conditions. We define the coefficient
vector q = [B1 B2 C1 C2 C4]T ∈ R

5. Using boundary
conditions (23b), (23c), (23d), and (23f), we obtain the
following matrix equations for q.

Aq = 0, (24)

where A ∈ R
5×5 is given as

A =

⎡
⎢⎢⎢⎢⎣

A11 A12 0 0 0
A21 A22 0 L L
0 0 sλw2 + shλw2 cλw2 −chλw2

A41 A42 A43 A44 A45

0 0 A53 A54 A55

⎤
⎥⎥⎥⎥⎦ , (25)

where we denote sλwi
= sin(λwi), cλwi

= cos(λwi),

shλwi
= sinh(λwi), chλwi

= cosh(λwi), i = 1, 2, and

A11 = sλw1 + shλw1 , A12 = cλw1 + chλw1 ,

A21 = sλw1 − shλw1 , A22 = cλw1 − chλw1 ,

A41 = cλw1 + chλw1 , A42 = − (sλw1 − shλw1) ,

A43 =
ML2λw1

λw2
(2 − cλw2 − chλw2) + λw1Mt

(
sλw2−

shλw2

)
, A44 = ML2 λw1

λw2
sλw2 + λw1Mtcλw2 ,

A45 = ML2 λw1

λw2
shλw2 + λw1Mtchλw2 ,

A53 =
[
−(cλw2 + chλw2) +

λw2Mt

ML
(sλw2 − shλw2)

]
,

A54 = sλw2 +
λw2Mt

ML
cλw2 , A55 = shλw2 +

λw2Mt

ML
chλw2 .

To have non-trivial solutions, we have detA = 0 and the
natural frequencies need to satisfy

− 2ML2λw2Fcf1Fcf2 + 2MtLλ2
w2Fcf1Fcs1+

2Mtλw1λ
2
w2(M − Mt)(sw2 − shw2)cw2chw2Fcs1+

2M2L3λw1Fcs1Fcr2 + MLλw1λw2(M + Mt)

(cw2 + chw2)Fcs1 + 2MMtL
2λw1λw2

[
2cw2chw2−

(cw2 + chw2)
]
Fcs1 + MLλw1λw2(M − Mt)

[
(cw2−

chw2)sw2shw2 − (cw2 + chw2)cw2chw2

]
Fcs1 = 0, (26)

where

Fcf i = 1 + cwichwi, Fcsi = swichwi − cwishwi,

Fcri = swichwi + cwishwi. (27)

In the single beam natural frequencies equations given
in (27), the subscripts “c”, “f”, “s”, and “r” represent
clamped, free, supported, and roller ends [13], respectively.

IV. EXPERIMENTAL RESULTS

We fabricated and tested a PMN-PT based single can-
tilever (Fig. 1(a)) and an L-shape manipulator with IDEs
(Fig. 1(c)) using the SDSU and UCI micro-fabrication fa-
cilities. Experimental results for the single cantilever and L-
shape manipulator are shown in Fig. 5.

Fig. 5(a) shows the tip displacement response of a single
cantilever beam with a tip proof mass under a step exci-
tation (magnitude of 24μm) at the base. Fig. 5(b) shows
the frequency response of the L-shape structure. We carry
out numerical computations for the natural frequencies and
mode shapes for the L-shape structure using a finite element
analysis (FEA) method. We list the comparison results in
Table I for the first three natural frequencies.

For the L-shape manipulator, we use the same geometry
cantilever beams. No proof mass has been mounted on the
tip. Therefore, we have

Mt = 0, L = 1, M = 1, λw1 = λw2 =: λ

and the natural frequency by (26) becomes

−3 − 8 cos(λ) cosh λ − cos(2λ) − cosh(2λ) −
3 cosh(2λ) cos(2λ) = 0. (28)
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Fig. 5. (a) The tip displacement of a cantilever beam/mass system under
a step input at the base. (b) Frequency response (magnitude) plot for the
L-shape manipulator prototype.

TABLE I

COMPARISONS OF FIRST THREE NATURAL FREQUENCIES (IN HZ)

Modes 1st 2nd 3rd

Analytical 191 665 2155

FEA 195 636 2136

Experiments 210 560 2290

Solving the above equation numerically gives

λ1 = 1.2165, λ2 = 2.2686, λ3 = 4.0832, · · · .

The natural frequencies (in Hz) given by the flexural motion
are then

ωi =
1
2π

(
λi

l

)2
√

EI

m
, i = 1, 2, · · · ,

where l := l1 = l2, E := E1 = E2, and m := m1 = m2.
For the prototype shown in Fig. 2(b), l = 12 mm, b = 1.5
mm, h = 120 μm, E = 105 GPa, ρ = 7900 kg/m3. The first
three natural frequencies are then

ω1 = 191 Hz, ω2 = 665 Hz, ω3 = 2155 Hz.

For the L-shape structure, the analysis matches very well
with the FEA results. We find that the natural frequencies
of the first three modes (in Table I) match our analysis

and FEA results. As shown in Fig. 5(b), we also observe
a 60 Hz disturbance, which partially obscures the first mode
in the experiments. We are currently investigating these
experimental issues.

V. CONCLUSION

A modeling analysis of an L-shape manipulator using
PMN-PT ferroelectric material and IDE electrodes is pre-
sented. The end effector of the L-shape design is capable
of motion in multiple degrees of freedom (MDOF). The
capability for MDOF motion is due to the IDE layout
on the top and bottom surfaces of the structure as well
as the properties of the PMN-PT material itself. We built
a mathematical model to capture the dynamics between
the input voltages and the deflections of the manipulator.
We calculated and compared the natural frequencies of the
manipulator prototype with FEA and experimental results,
and found that they are consistent. The modeling scheme
provides a mathematical foundation for manipulator control.
Development and implementation of model-based manipula-
tor control systems are currently ongoing research.
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