
An SOS-based Stable Control of Polynomial Discrete Fuzzy Systems

Kazuo Tanaka, Hiroshi Ohtake and Hua O. Wang

Abstract— This paper presents stability and stabilization
conditions of polynomial discrete fuzzy systems. First, based on
polynomial Lyapunov functions, we derive a stability condition
of polynomial discrete fuzzy systems without inputs. Secondly,
we derive a stabilization condition to design a stable polynomial
fuzzy controller. Both of them are represented in terms of
SOS and are numerically (partially symbolically) solved via the
recent developed SOSTOOLS. In addition, polynomial discrete
fuzzy systems and controllers contain discrete Takagi-Sugeno
(T-S) fuzzy systems and controllers as a special case. Hence,
the approach discussed in this paper is more general than that
based on the existing LMI approaches to discrete T-S fuzzy
control system designs. To illustrate the validity of the design
approach, a design example is provided. The example shows
the utility of our approach.

I. INTRODUCTION

The Takagi-Sugeno (T-S) fuzzy model-based control
methodology [1] provides a natural, simple and effective
design approach to complement other nonlinear control tech-
niques (e.g., [2]) that require special and rather involved
knowledge. Moreover, there is no loss of generality in adopt-
ing the T-S fuzzy model based control design framework as
it has been established that any smooth nonlinear control
systems can be approximated by the T-S fuzzy models (with
liner model consequence) [3]. Within the general framework
of T-S fuzzy model-based control systems, there has been,
in particular, a flurry of research activities in the analysis
and design of fuzzy control systems based on linear matrix
inequalities (LMIs) (e.g., [1]). Hence, this approach have
received a great deal of attention over the last decade.

Recently, we presented a sum of squares (SOS) approach
to stability analysis [4] and stable controller design [5]
for polynomial continuous fuzzy systems. In [6], we dealt
with guaranteed cost control of polynomial continuous fuzzy
systems. These are completely different approaches from the
existing LMI approaches. To the best of our knowledge,
the paper [4] presented the first attempt at applying an
SOS to fuzzy systems. Our SOS approaches provide more
extensive results for the existing LMI approaches to T-S
fuzzy systems. However, SOS-based design approaches of
polynomial discrete fuzzy systems have not been reported in
the literature.

This paper presents stability and stabilization conditions
of polynomial discrete fuzzy systems. First, based on poly-
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nomial Lyapunov functions, we derive a stability condition
of polynomial discrete fuzzy systems without inputs. Sec-
ondly, we derive a stabilization condition to design a stable
polynomial fuzzy controller. Both of them are represented in
terms of SOS and are numerically (partially symbolically)
solved via the recent developed SOSTOOLS [7]. In addition,
polynomial discrete fuzzy systems and controllers contain
discrete Takagi-Sugeno (T-S) fuzzy systems and controllers
as a special case. Hence, the approach discussed in this
paper is more general than that based on the existing LMI
approaches to discrete T-S fuzzy control system designs.
To illustrate the validity of the design approach, a design
example is provided. The example shows the utility of our
approach.

II. DISCRETE TAKAGI-SUGENO FUZZY CONTROL

SYSTEM AND STABILITY CONDITION BASED ON

QUADRATIC LYAPUNOV FUNCTIONS

Section II summarizes discrete Takagi-Sugeno fuzzy con-
trol system and stability condition based on quadratic Lya-
punov functions. The discrete Takagi-Sugeno fuzzy model
[8] is described by fuzzy IF-THEN rules which represent
local linear input-output relations of a nonlinear system. The
main feature of this model is to express the local dynamics
of each fuzzy implication (rule) by a linear system model.
The overall fuzzy model of the system is achieved by fuzzy
blending of the linear system models.

Consider the following nonlinear system:

x(t + 1) = f(x(t),u(t)), (1)

where f is a nonlinear function. x(t) =
[x1(t) x2(t) · · · xn(t)]T is the state vector and
u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector.
Based on the sector nonlinearity concept [1], we can exactly
represent (1) with the discrete Takagi-Sugeno fuzzy model
(2) (globally or at least semi-globally).

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then x(t + 1) = Aix(t) + Biu(t) i = 1, 2, · · · , r, (2)

where zj(t) (j = 1, 2, · · · , p) is the premise variable. The
membership function associated with the ith Model Rule
and jth premise variable component is denoted by Mij . r
denotes the number of Model Rules. Each zj(t) is a mea-
surable time-varying quantity that may be states, measurable
external variables and/or time. The defuzzification process
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of the model (2) can be represented as

x(t + 1) =

r∑
i=1

wi(z(t)){Aix(t) + Biu(t)}
r∑

i=1

wi(z(t))

=
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}, (3)

where z(t) = [z1(t) · · · zp(t)] and wi(z(t)) =∏p
j=1 Mij(zj(t)). It should be noted from the properties of

membership functions that the following relations hold.

r∑
i=1

wi(z(t)) > 0, wi(z(t)) ≥ 0 i = 1, 2, · · · , r

Hence,

hi(z(t)) =
wi(z(t))

r∑
i=1

wi(z(t))

≥ 0,

and
r∑

i=1

hi(z(t)) = 1.

The parallel distributed compensation (PDC) offers a
procedure to design a fuzzy controller from the given Takagi-
Sugeno fuzzy model (2):

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F ix(t) i = 1, 2, · · · , r (4)

The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F ix(t). (5)

By employing the quadratic Lyapunov function
xT (t)X−1x(t), the well-known LMI condition [1] for
the stability of the feedback system consisting of (3) and
(5) is given as follows;

X > 0 (6)

[
X XAT

i − MT
i BT

i

AiX − BiM i X

]
> 0, (7)

⎡
⎣ X ∗{

AiX + AjX − BiM j − BjM i

2

}
X

⎤
⎦ ≥ 0,

i < j (8)

where M i = F iX. The conditions (6)-(8) are represented
in terms of LMIs. Thus, the stability conditions can be solved
numerically and efficiently by interior point algorithms.

III. POLYNOMIAL DISCRETE FUZZY MODEL AND

POLYNOMIAL LYAPUNOV FUNCTION

Section II summarized discrete Takagi-Sugeno fuzzy
model and stability analysis based on quadratic Lyapunov
functions. In this section, we propose a new type of discrete
fuzzy model with polynomial model consequence, i.e., fuzzy
model whose consequent parts are represented by polynomi-
als.

As shown in Section II, the stability conditions (6) -
(8) for the T-S fuzzy system and the quadratic Lyapunov
function reduce to LMIs. Hence, the stability conditions
can be solved numerically and efficiently by interior point
algorithms such as the LMI toolbox of MATLAB1. On
the other hand, stability conditions for polynomial fuzzy
systems and polynomial Lyapunov functions reduce to an
SOS problem. Clearly, the problem is never solved by the
LMI toolbox and can be solved via SOSTOOLS [7].

SOSTOOLS [7] is a free, third party MATLAB toolbox
for solving sum of squares problems. The techniques behind
it are based on the sum of squares decomposition for
multivariate polynomials, which can be efficiently computed
using semidefinite programming. SOSTOOLS is developed
as a consequence of the recent interest in sum of squares
polynomials, partly due to the fact that these techniques
provide convex relaxations for many hard problems such
as global, constrained, and boolean optimization. For more
details, see the manual of SOSTOOLS [7].

A. Polynomial discrete fuzzy model

A polynomial continuous fuzzy model has been proposed
in [4]. In this section, we propose a polynomial discrete fuzzy
model. Using the sector nonlinearity concept, we exactly
represent (1) with the following polynomial fuzzy model (9).
The main difference between (2) and (9) is consequent part
representation. The fuzzy models of (2) and (9) have linear
model consequence and polynomial model consequence,
respectively.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then x(t + 1) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t), (9)

where i = 1, 2, · · · , r. Ai(x(t)) and Bi(x(t)) are polyno-
mial matrices in x(t). x̂(x(t)) is a column vector whose
entries are all monomials in x(t). That is, x̂(x(t)) ∈ RN is
an N × 1 vector of monomials in x(t). A monomial in x(t)
is a function of the form xα1

1 xα2
2 · · ·xαn

n , where α1, α2, · · · ,
αn are nonnegative integers. Therefore, Ai(x(t))x̂(x(t)) +
Bi(x(t))u(t) is a polynomial vector. Thus, the polynomial
fuzzy model (9) has a polynomial in each consequent part. In
Sections IV and V, we will consider T (x̃(t)) ∈ RN×m that
is a polynomial matrix defined by x̂(x(t)) = T (x̃(t))x(t).
The details of x̂(x(t)) will be given in Proposition 1. The
definition of x̃(t) will be also presented later.

We assume that

1A registered trademark of MathWorks, Inc.
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x̂(x(t)) = 0 iff x(t) = 0
throughout this paper.

The defuzzification process of the model (9) can be
represented as

x(t + 1) =
r∑

i=1

hi(z(t)){Ai(x(t))x̂(x(t))

+Bi(x(t))u(t)}. (10)

Thus, the overall fuzzy model is achieved by fuzzy blending
of the polynomial system models.

If x̂(x(t)) = x(t) and Ai(x(t)) and Bi(x(t)) are con-
stant matrices for all i, then Ai(x(t))x̂(x(t))+Bi(x(t))u(t)
reduces to Aix(t)+Biu(t), that is, then (10) reduces to (3).
Therefore, (10) is a more general representation.

Remark 1: As we can see in Section III-C, the number of
rules in polynomial fuzzy model generally becomes fewer
than that in T-S fuzzy model, and our SOS approach to
polynomial fuzzy models provides much more relaxed sta-
bility results than the existing LMI approaches to T-S fuzzy
models.

B. Polynomial Lyapunov function

To obtain more relaxed stability results, we employ a
polynomial Lyapunov function [4] represented by

x̂T (x(t))P (x(t))x̂(x(t)), (11)

where P (x(t)) is a polynomial matrix in x(t). If x̂(t) =
x(t) and P (x(t)) is a constant matrix, then (11) reduces
to the quadratic Lyapunov function xT (t)Px(t). Therefore,
(11) is a more general representation.

C. Fuzzy Modeling Example

Consider the following nonlinear system:

{
x1(t + 1) = x1(t) + x2

2(t) + u(t),
x2(t + 1) = − tanx1(t) + 2x2(t),

(12)

where we assume that −π/4 ≤ x1(t) ≤ π/4.
To obtain a T-S fuzzy model, we also assume that −d ≤

x2(t) ≤ d. Using the concept of sector nonlinearity, we
have the T-S fuzzy model (13) that can exactly represent the
dynamics under −π/4 ≤ x1(t) ≤ π/4 and −d ≤ x2(t) ≤ d.

x(t + 1) =
4∑

i=1

hi(z(t)){Aix(t) + Biu(t)} (13)

where x(t) =
[
x1(t) x2(t)

]T
, z(t) =

[
x1(t) x2(t)

]T
,

and

A1 =
[

1 d
− 4

π 2

]
,

A2 =
[

1 d
−1 2

]
,

A3 =
[

1 −d
− 4

π 2

]
,

A4 =
[

1 −d
−1 2

]
,

B1 =
[
1
0

]
,

B2 =
[
1
0

]
.

The membership functions are obtained as

h1(z(t)) =
x2(t) + d

2d

tanx1(t) − x1(t)
( 4

π − 1)x1(t)
,

h2(z(t)) =
x2(t) + d

2d

4
πx1(t) − tanx1(t)

( 4
π
− 1)x1(t)

,

h3(z(t)) =
d − x2(t)

2d

tanx1(t) − x1(t)
( 4

π − 1)x1(t)
,

h4(z(t)) =
d − x2(t)

2d

4
π
x1(t) − tanx1(t)
( 4

π − 1)x1(t)
.

We can see that four rules are needed to represent the
dynamics.

On the other hand, we have the following polynomial
fuzzy model that can exactly represent the dynamics under
−π/4 ≤ x1(t) ≤ π/4.

x(t + 1) =
2∑

i=1

hi(z(t)){Ai(x(t))x(t) + Bi(x(t))u(t)}
(14)

where x̂(t) = x(t) =
[
x1(t) x2(t)

]T
, z(t) = x1(t) and

A1(x(t)) =
[

1 x2(t)
− 4

π 2

]
,

A2(x(t)) =
[

1 x2(t)
−1 2

]
,

B1(x(t)) = B1 =
[
1
0

]
,

B2(x(t)) = B2 =
[
1
0

]
.

The membership functions are obtained as

h1(z(t)) =
tanx1(t) − x1(t)

( 4
π − 1)x1(t)

,

h2(z(t)) =
4
πx1(t) − tanx1(t)

( 4
π − 1)x1(t)

.

Note that the assumption that −d ≤ x2(t) ≤ d is not
needed in the construction of the polynomial fuzzy models.
In addition, the number of rules in the polynomial fuzzy
model is fewer than that in the T-S fuzzy model.
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IV. SOS STABILITY CONDITION

A. Sum of Squares

The computational method used in this paper relies on
the sum of squares decomposition of multivariate polyno-
mials. A multivariate polynomial f(x(t)) (where x(t) ∈
Rn) is a sum of squares (SOS, for brevity) if there exist
polynomials f1(x(t)), · · · , fm(x(t)) such that f(x(t)) =∑m

i=1 f2
i (x(t)). It is clear that f(x(t)) being an SOS nat-

urally implies f(x(t)) > 0 for all x(t) ∈ Rn. This can be
shown equivalent to the existence of a special quadric form
stated in the following proposition [10].

Proposition 1: [11] Let f(x(t)) be a polynomial in
x(t) ∈ Rn of degree 2d. In addition, let x̂(x(t)) be a column
vector whose entries are all monomials in x(t) with degree
no greater than d. Then f(x(t)) is a sum of squares iff there
exists a positive semidefinite matrix P such that

f(x(t)) = x̂T (x(t))Px̂(x(t)). (15)

Expressing an SOS polynomial using a quadratic form as in
(15) has also been referred to as the Gram matrix method.

As mentioned before, a monomial in x(t) is a function
of the form xα1

1 xα2
2 · · · xαn

n , where α1, α2, · · · , αn are
nonnegative integers. In this case, the degree of the monomial
is given by α1 + α2 + · · · + αn.

A sum of squares decomposition for f(x(t)) can be
computed using semidefinite programming, since it amounts
to searching for an element P in the intersection of the cone
of positive semidefinite matrices and a set defined by some
affine constraints that arise from (15). Note in particular that
the polynomial f(x(t)) is globally nonnegative if it can be
decomposed as a sum of squares. Hence the sum of squares
decomposition in conjunction with semidefinite program-
ming provides a polynomial-time computational relaxation
for proving global nonnegativity of multivariate polynomials
[11], [12], which belongs to the class of NP-hard problems.
Even though the sum of squares condition is not necessary
for nonnegativity, numerical experiments seem to indicate
that the gap between sum of squares and nonnegativity is
small [10].

B. SOS Stability Condition

To lighten the notation, only this subsection will drop the
notation with respect to time t. For instance, we will employ
x, x̂ instead of x(t), x̂(t), respectively. Thus, we drop the
notation with respect to time t, but it should be kept in mind
that x means x(t). However, to distinguish between x(t)
and x(t + 1), we will remain the notation with respect to
time t + 1. Hence, we will employ x(t + 1), x̃(t + 1), etc.

K = {k1, k2, · · · , km} denote the row indices of Bi(x)
whose corresponding row is equal to zero and the row
indices of Ai(x) whose corresponding row does not contain
non-polynomial nonlinear terms (e.g. trigonometric func-
tions). Using k1, k2, · · · , km−1 and km, we define x̃ =

(xk1 , xk2 , · · ·xkm). From the definition, a partial system of
(10) can be represented as

x̃(t + 1) = Ã(x)x, (16)

where Ã(x) is a polynomial matrix. The equation (16) will
play an important role in Theorems 1 and 2.

Theorem 1: The zero equilibrium of the system (10) with
u(t) = 0 is stable if there exists a symmetric polynomial
matrix P (x̃) ∈ RN×N such that (17) and (18) are satisfied,
where ε1(x) and ε2i(x) are non negative polynomials such
that ε1(x) > 0 (x �= 0) and ε2i(x) ≥ 0 for all x.

x̂T (x)(P (x̃) − ε1(x)I)x̂(x) is SOS (17)

−x̂T (x)
(
AT

i (x)T T (Ã(x)x)P (x̃)T (Ã(x)x)Ai(x)

−P (x̃) + ε2i(x)I
)

x̂(x)is SOS ∀i, (18)

where T (Ã(x)x) ∈ RN×n is a polynomial matrix given by

T (Ã(x)x) = T (x̃(t + 1)). (19)

In addition, if (18) holds with ε2i(x) > 0 for x �= 0, then
the zero equilibrium is asymptotically stable. If P (x̃) is a
constant matrix, then the stability holds globally.

Proof: The proof is omitted due to lack of space.

Remark 2: Selection of the non-negative polynomials
ε1(x) and ε2i(x) such that ε1(x) > 0 (x �= 0) and ε2i(x) ≥
0 for all x influence the feasibility of the SOS problem.
Hence, the polynomial structure of ε1(x) and ε2i(x) is
needed to select carefully.

Remark 3: When Ai(x) and P (x̃) are constant matrices
and x̂(x) = x, the system representation is the same as the
Takagi-Sugeno fuzzy model and stability analysis based on
quadratic Lyapunov function used in many of the references,
e.g., [1]. Thus, our SOS approach to polynomial fuzzy
models contains the existing LMI approaches to Takagi-
Sugeno fuzzy models as a special case. Therefore, our SOS
approach to polynomial fuzzy models provides much more
relaxed stability results than the existing LMI approaches to
Takagi-Sugeno fuzzy models.

V. STABLE CONTROLLER DESIGN VIA SOS

A. Polynomial Fuzzy Controller

Since the PDC mirrors the structure of the fuzzy model
of a system, a fuzzy controller with polynomial rule conse-
quence can be constructed from the given fuzzy model (9).

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F i(x(t))x̂(x(t)) i = 1, 2, · · · , r (20)
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The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F i(x(t))x̂(x(t)). (21)

From (10) and (21), the closed-loop system can be repre-
sented as

x(t + 1) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

×{Ai(x(t)) − Bi(x(t))Fj(x(t))}x̂(x(t)). (22)

If x̂(x(t)) = x(t) and Ai(x(t)), Bi(x(t)) and Fj(x(t)) are
constant matrices for all i, then (10) and (21) reduce to (3)
and (5), respectively. Therefore, (10) and (21) are a more
general representation.

We provide another important proposition with respect to
the relaxation.

Proposition 2: [10] Let L(x(t)) be an N ×N symmetric
polynomial matrix of degree 2d in x(t) ∈ Rn. Furthermore,
let x̂(x(t)) be a column vector whose entries are all mono-
mials in x(t) with degree no greater than d, and consider
the following conditions.

(1) L(x(t)) ≥ 0 for all x(t) ∈ Rn.
(2) vT (t)L(x(t))v(t) is a sum of squares, where v(t) ∈

RN .
(3) There exists a positive semidefinite matrix Q such

that vT (t)L(x(t))v(t) = (v(t) ⊗ x̂(x(t)))T Q(v ⊗
x̂(x(t))), where ⊗ denotes the Kronecker product.

Then (1) ⇐ (2) and (2) ⇐⇒ (3).

B. SOS Stabilization Condition

This subsection gives a stable control design condition rep-
resented in terms of SOS. Hence the stable fuzzy controller
design with polynomial rule consequence is numerically a
feasibility problem via SOSTOOLS.

To lighten the notation, this subsection will also drop the
notation with respect to time t. For instance, we will employ
x, x̂(x) instead of x(t), x̂(x(t)), respectively. Thus, we drop
the notation with respect to time t, but it should be kept in
mind that x means x(t).

Theorem 2: The control system consisting of (10) and
(21) is stable if there exist a symmetric polynomial matrix
X(x̃) ∈ RN×N and a polynomial matrix Mi(x) ∈ Rm×N

such that (23), (24) and (25) are satisfied, where ε1(x) and
ε2ij(x) are non negative polynomials such that ε1(x) > 0
(x �= 0) and ε2ij(x) ≥ 0 for all x.

vT
1 (X(x̃) − ε1(x)I)v1 is SOS (23)

vT
2

[
X(x̃) − ε2ii(x)I ∗
T (Ã(x)x)Ωii(x) X(Ã(x)x)

]
v2

is SOS, (24)

vT
3

[
X(x̃) − ε2ij(x)I

1
2T (Ã(x)x) (Ωij(x) + Ωji(x))

∗
X(Ã(x)x)

]
v3 is SOS, i < j, (25)

where Ωij(x) = Ai(x)X(x̃) − Bi(x)Mj(x). * denotes
the transposed elements (matrices) for symmetric positions.
v1 ∈ RN , v2, v3 ∈ R2N are vectors that are independent of
x. In addition, if (24) and (25) hold with ε2ij(x) > 0 for
x �= 0, then the zero equilibrium is asymptotically stable. If
X(x̃) is a constant matrix, then the stability holds globally.
A stabilizing feedback gain Fi(x) can be obtained from
X(x̃) and Mi(x) as

Fi(x) = Mi(x)X−1(x̃). (26)

Proof: The proof is omitted due to lack of space.

Remark 4: Note that v1, v2 and v3 are vectors that are
independent of x, because L(x) is not always a positive
semi-definite matrix for all x even if x̂T (x)L(x)x̂(x) is
an SOS, where L(x) is a symmetric polynomial matrix in
x(t). However, it is guaranteed from Proposition 2 that if
vT L(x)v is an SOS, then L(x) ≥ 0 for all x.

Remark 5: Selection of the non-negative polynomials
ε1(x) and ε2ij(x) such that ε1(x) > 0 (x �= 0) and
ε2ij(x) ≥ 0 for all x influence the feasibility of the SOS
problem. Hence, the polynomial structure of ε1(x) and
ε2ij(x) is needed to select carefully.

Remark 6: To avoid introducing non-convex condition,
we assume that X(x̃) only depends on states x̃ whose cor-
responding row in Ai(x) does not contain non-polynomial
nonlinear terms, and states whose dynamics is not directly
affected by the control input, namely states whose corre-
sponding rows in Bi(x) are zero.

Remark 7: When Ai(x), Bi(x), Fi(x) and X(x̃) are
constant matrices and x̂(x) = x, the system representation
is basically the same as the Takagi-Sugeno fuzzy model and
control used in many of the references, e.g., [1]. Thus, our
SOS approach to fuzzy model and control with polynomial
rule consequence contains the existing LMI approaches to
Takagi-Sugeno fuzzy model and control as a special case.
Therefore, our SOS approach provides much more relaxed
results than the existing approaches to Takagi-Sugeno fuzzy
model and control.

VI. DESIGN EXAMPLE

To illustrate the validity of the design approach, this
section provides a design example.
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Recall the following nonlinear system as shown in Section
III-C: {

x1(t + 1) = x1(t) + x2
2(t) + u(t)

x2(t + 1) = − tanx1(t) + 2x2(t),
(27)

where we assume that −π/4 ≤ x1(t) ≤ π/4.
As mentioned in Sectiob III-C, we have the following

polynomial fuzzy model that can exactly represent the dy-
namics under −π/4 ≤ x1(t) ≤ π/4.

x(t + 1) =
2∑

i=1

hi(z(t)){Ai(x(t))x(t) + Bi(x(t))u(t)}.

The SOS conditions are infeasible if X(x̃) and Mi(x) are
constant marices in Theorem 2. However, the SOS conditions
are feasible if we select Mi(x) as a polynomial matrix. Thus,
the polynomial fuzzy controller (21) with the polynomial
feedback vectors Fi(x) is more useful than the T-S fuzzy
controller (5) with the constant feedback vectors Fi. This
shows the utility of our SOS-based design approach.

Fig. 1 shows the control result of the polynomial fuzzy
controller (21) for the initial states [0.5 0]T . Fig. 2 shows
time transient of Lyapunov function during the control. The
designed polynomial fuzzy controller stabilizes the system.

0 10 20 30 40
−1

−0.5

0

0.5

t

x 1

0 10 20 30 40
−1

−0.5

0

t

x 2

Fig. 1. Control result.

VII. CONCLUSIONS

This paper has presented stability and stabilization condi-
tions of polynomial discrete fuzzy systems. First, based on
polynomial Lyapunov functions, we have derived a stability
condition of polynomial discrete fuzzy systems without in-
puts. Secondly, we have derived a stabilization condition to
design a stable polynomial fuzzy controller. Both of them are
represented in terms of SOS and are numerically (partially
symbolically) solved via the recent developed SOSTOOLS.
The approach discussed in this paper is more general than
that based on the existing LMI approaches to discrete T-S
fuzzy control system designs. To illustrate the validity of the
design approach, a design example has been provided. The
example has shown the utility of our approach.
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Fig. 2. Time Transient of Lyapunov function.

Guaranteed cost control for polynomial discrete fuzzy
systems will be presented in [13].
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