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Abstract—
The Interacting Multiple Model (IMM) algorithm is a

well-known state estimation algorithm for hybrid systems.
We derive a lower bound and an upper bound for the error
covariance of the IMM algorithm for controllable and observ-
able hybrid systems. We then derive sufficient conditions for
the exponential stability of the IMM algorithm for a special
class of hybrid systems by the Lyapunov approach.

I. INTRODUCTION

The Interacting Multiple Model (IMM) algorithm [1] has
been used in many applications, such as target tracking and
fault diagnosis. Several authors have considered performance
analysis of the IMM algorithm under specific operating
scenarios [2], [3], or for specific applications [4]. However,
to the best of our knowledge, no conditions that guarantee
the stability of the IMM algorithm in any application have
been given in the control literature.

In this paper, we present a lower bound and an upper
bound for the error covariance of the IMM algorithm for
controllable and observable hybrid systems. We also derive
sufficient conditions for the exponential stability of the IMM
algorithm for a special class of hybrid systems. Our work
is motivated by the work in [5], which derived sufficient
conditions for the stability of the discrete-time Kalman filter.
However, the IMM algorithm consists of a set of interacting
Kalman filters whose means and covariance updates are
coupled or mixed at each time step. Hence, it is a challenge
to overcome the complexity due to this mixing to prove the
the stability of the IMM algorithm.

The paper is organized as follows: In Section II, we
present the filter equations of the IMM algorithm, and review
the conditions for stability of the Kalman filter. A set of
sufficient conditions for stability of the IMM algorithm are
then derived in Sections III. Conclusions are given in Section
IV.

II. BACKGROUND AND MOTIVATION

A. Review of the IMM Algorithm

The Interactive Multiple Model Estimation (IMM) algo-
rithm uses a bank of Kalman filters, each matched to a mode
of the following stochastic hybrid system:

x(k) = A(k)x(k − 1) + B(k)w(k) (1)

z(k) = C(k)x(k) + v(k) (2)
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where A(k) = Am(k), B(k) = Bm(k), C(k) = Cm(k)

are the system matrices correspond to a mode m(k) ∈
{1, 2, . . . , r} at time k; w(k) and v(k) are white zero-mean
Gaussian noise vectors with covariance Qm(k) and Rm(k)

respectively. The evolution of the mode m(k) is given by

πij = p[m(k) = j|m(k−1) = i] for i, j = 1, . . . , r

where πij is a constant; p[·|·] denotes a conditional probabil-
ity. We assume that, for all i, j = 1, . . . , r, Aj is non-singular
and

0 < ξ1I ≤ Qj ≤ ξ2I 0 < ξ3I ≤ Rj ≤ ξ4I (3)

Let Zk denote the set of measurements up to time k. The
IMM algorithm computes the posterior mean x̂j(k|k) and
covariance Pj(k|k) for each Kalman filter j, and the mode
probability αj(k) := p[m(k) = j|Zk] recursively as follows:

1. Mixing: Compute the mixing probability

γji(k − 1) := p[m(k − 1) = i|m(k) = j, Zk−1]

=
1∑r

l=1 πljαl(k − 1)
πijαi(k − 1)

(4)

The initial conditions to Kalman filter j are given by

x̂j0(k − 1) =
r∑

i=1

γji(k − 1)x̂i(k − 1|k − 1) (5)

Pj0(k − 1) =
r∑

i=1

{
Pi(k − 1|k − 1) + [x̂i(k − 1|k − 1)−

x̂j0(k − 1)][x̂i(k − 1|k − 1)− x̂j0(k − 1)]T
}
γji(k − 1)

(6)
2. Filtering: Each Kalman filter j computes

x̂j(k|k) = Aj x̂j0(k − 1) + Kj(k)rj(k) (7)

rj(k) = z(k)− CjAj x̂j0(k − 1) (8)

Kj(k) = Pj(k|k − 1)CT
j S−1

j (k) (9)

Pj(k|k − 1) = AjPj0(k − 1)AT
j + BjQjB

T
j (10)

Sj(k) = CjPj(k|k − 1)CT
j + Rj (11)

Pj(k|k) = [P−1
j (k|k − 1) + CT

j R−1
j Cj ]−1 (12)

3. Mode Update: Compute the Likelihood function

Λj(k) := Nq(rj(k); 0, Sj(k)) (13)

where q is the dimension of rj(k); Nq(·; 0, Σ) denotes a q-
dimensional multivariate Gaussian pdf with mean zero and
covariance Σ. The mode probability is given by

αj(k) =
1∑r

l=1 Λl(k)α−l (k)
Λj(k)α−j (k) (14)
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where α−j (k) =
r∑

i=1

πijαi(k − 1) (15)

4. Output: The combined mean and covariance are

x̂(k) =
r∑

j=1

αj(k)x̂j(k)

P (k) =
r∑

j=1

{
Pj(k) + [x̂j(k)− x̂(k)][x̂j(k)− x̂(k)]T

}
αj(k)

B. State Estimation Errors of the IMM Algorithm

We define the estimation error for Kalman filter j as

ej(k) := x(k)− x̂j(k) (16)

Using (5), (7) and (16), we can show that [3]

ej(k) = [I −Kj(k)Cj ]Aj

r∑

i=1

γji(k − 1)ei(k − 1) + φ(k)

(17)
where

φ(k) =[AT (k)−Aj −Kj(k)(CT (k)AT (k)− CjAj)]x(k)
+ [I −Kj(k)CT (k)]BT (k)wT (k)−Kj(k)vT (k)]

and AT (k), BT (k), CT (k) are the system matrices corre-
sponding to the true mode (or true system dynamics). We
consider the following coupled systems

ej(k) = [I −Kj(k)Cj ]Aj

r∑

i=1

γji(k − 1)ei(k − 1)

j = 1, 2, . . . , r

(18)

which represents the homogeneous part of (17). Using (9)-
(12), we can show that

Pj(k|k) = [I −Kj(k)Cj ]Pj(k|k − 1) (19)

Hence, (18) can also be written as

ej(k) = Pj(k|k)P−1
j (k|k − 1)Aj

r∑

i=1

γji(k − 1)ei(k − 1)

(20)
Let ẽ(k) = [eT

1 (k) eT
1 (k) . . . eT

r (k)]T . The system of
equations in (18) can be written as

ẽ(k) = Ψ̃(k, k − 1)Γ(k − 1)ẽ(k − 1) (21)

where Ψ̃(k, k − 1) = diag
{
[I −Ki(k)Ci]Ai

}
r

Γ(k − 1) =
[
γji(k − 1)

]
r×r

We use diag{Ei}r to denote a block diagonal matrix con-
sisting of matrices E1, E2, . . . , Er, and [aij ]r×r to denote a
r × r matrix with entries aij . Note that

r∑

i=1

γji(k) = 1 ∀k ≥ 0 (22)

We say that the IMM algorithm is globally exponentially
stable if the origin of system (21) is globally exponentially
stable as defined below.

Definition 1: Exponential stability. The origin of system
(21) is exponentially stable if there exist scalars 0 ≤ λ < 1,
ζ > 0, ρ0 > 0, and an integer k0 ≥ 0 such that

‖ẽ(k)‖ ≤ ζ‖ẽ(k0)‖λk−k0 ∀k ≥ k0, ‖ẽ(k0)‖ < ρ0

It is globally exponentially stable if ρ0 is arbitrarily large.
Note that ‖e‖ :=

√
eT e denotes the 2-norm of vector e.

From Lyapunov’s stability theorem, the system (21) is ex-
ponentially stable if there exists a finite positive integer N ,
positive scalars µ1, µ2, µ3, and a scalar function V (ẽ(k), k)
such that

µ1‖ẽ(k)‖2 ≤ V (ẽ(k), k) ≤ µ2‖ẽ(k)‖2 (23)

V (ẽ(k), k)− V (ẽ(k −N), k −N) ≤ −µ3‖ẽ(k)‖2 (24)

for all ‖ẽ(k)‖ < ρ, k ≥ k0, ρ > 0 [6]. If ρ is arbitrarily large,
then the system (21) is globally exponentially stable.

The main challenge in showing the exponential stability
of this system comes from the coupling among the set of
equations in (18) (also represented by the matrix Γ(k−1) in
(21)), and the coupling among the mixed initial conditions
(6). Before we consider the stability of this system, we
can gain much motivation by considering the exponential
stability of a single Kalman filter.

C. Stability of the Kalman filter

Consider a discrete time stochastic system

x(k) = A(k)x(k − 1) + B(k)w(k) (25)

z(k) = C(k)x(k) + v(k) (26)

where A(k) is nonsingular; w(k) and v(k) are white zero-
mean Gaussian noise vectors with covariance Q(k) and R(k)
respectively. The covariance P (k|k) of the Kalman filter for
the system (25)-(26) is given by

P (k|k) =
{
[A(k)P (k − 1|k − 1)AT (k)+

B(k)Q(k)BT (k)]−1 + CT (k)R−1(k)C(k)
}−1 (27)

We define the function Υk(P ) as

Υk(P ) :=
{
[A(k)PAT (k) + B(k)Q(k)BT (k)]−1+

CT (k)R−1(k)C(k)
}−1 (28)

Then the covariance P (k|k) is given by

P (k|k) = Υk(Υk−1(. . . Υ1(P (0|0)) . . .) (29)

Next, we present the following concepts of uniform con-
trollability and uniform observability [7]:

Definition 2: Uniform Controllability. We define a transi-
tion matrix Φ(k, i) as follows:

Φ(k, k) := I, Φ(k, k − 1) := A(k)
Φ(k, i) := Φ(k, k − 1)Φ(k − 1, i) for k > i

Φ(k, i) := Φ−1(i, k) for k < i
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The system (25)-(26) is uniformly controllable if there exist
a positive integer N and scalars κ1 > 0, κ2 < ∞ such that

κ1I ≤
k∑

i=k−N+1

Φ(k, i)B(i)Q(i)BT (i)ΦT (k, i) ≤ κ2I

Definition 3: Uniform Observability. The system (25)-
(26) is uniformly observable if there exist a positive integer
N and scalars κ3 > 0, κ4 < ∞ such that

κ3I ≤
k∑

i=k−N

ΦT (i, k)CT (i + 1)R−1(i + 1)C(i + 1)Φ(i, k)

≤ κ4I

Deyst and Price [5] have then shown the following results:
Lemma 1: If the system (25)-(26) is uniformly control-

lable and uniformly observable, and if P (0|0) > 0, then the
Kalman filter covariance given by (29) is uniformly bounded
from below and from above for all k ≥ N , that is

κ1

1 + κ1κ4
I ≤ P (k|k) ≤

(
1
κ3

+ κ2

)
I k ≥ N

For stability (or convergence of state estimation error e(k))
of the Kalman filter, we consider the system (c.f. (20)) [5]

e(k) = P (k|k)P−1(k|k − 1)A(k)e(k − 1)
= [I −K(k)C(k)]A(k)e(k − 1)

(30)

where K(k) is the Kalman filter gain given by

K(k) = P (k|k−1)CT (k)[C(k)P (k|k−1)CT (k)+R(k)]−1

(31)
We define a Lyapunov function

V (e(k), k) = eT (k)P−1(k|k)e(k)

From Lemma 1, we see that (c.f. (23)) [5]

µ1‖e(k)‖2 ≤ V (e(k), k) ≤ µ2‖e(k)‖2

Furthermore, Deyst and Price [5] has shown that

V (e(k), k)− V (e(k −N), k −N) ≤ −µ3‖e(k)‖2 < 0

Deyst and Price [5] then proved the following theorem:
Theorem 1: If the system (25)-(26) is uniformly control-

lable and uniformly observable, then the system (30) is
globally exponentially stable.

III. STABILITY OF THE IMM ALGORITHM

A. A lower bound for Pj(k|k)
We would like to use a similar approach as above to

show stability of the IMM algorithm. First, we would like
to use Lemma 1 to derive a lower bound for Pj(k|k) of the
IMM algorithm. However, although the system (1)-(2) can
be considered as a special case of the time-varying system
(25)-(26), we cannot directly use the result of Lemma 1.
This is because the covariance update of the IMM algorithm
is more complicated than that of the (single) Kalman filter
due to the ‘mixing’ in step 1 of the IMM algorithm.

Due to space limitations the proofs for some of the
lemmas presented below are not given. The omitted proofs
may be obtained from any of the authors. We first rewrite

the covariance update equations of the IMM algorithm as
follows:

Let

Qe
j(k) := Aj

{ r∑

i=1

γji(k − 1)
[
x̂i(k − 1|k − 1)−

x̂j0(k − 1)
][

x̂i(k − 1|k − 1)− x̂j0(k − 1)
]T

}
AT

j

(32)

Note that Qe
j(k) is a positive semi-definite matrix. Using

(32), we replace (6) and (10) of the IMM algorithm by the
following two equations:

P 0
j (k − 1) =

r∑

i=1

γji(k − 1)Pi(k − 1|k − 1) (33)

Pj(k|k − 1) = AjP
0
j (k − 1)AT

j + Qe
j(k) + BjQjB

T
j

(34)

Next, we use the following lemma to overcome the com-
plexity in the covariance update due to the γji(k− 1) terms.

Lemma 2: Given any positive definite matrices Pi, i =
1, 2, . . . , r; nonnegative scalars γi with

∑r
i=1 γi = 1; and

positive semi-definite matrices Q, R, we have
{[ r∑

i=1

γiPi +Q
]−1

+R
}−1

≥
r∑

i=1

γi

{[
Pi +Q

]−1 +R
}−1

We now presents the following result for the lower bound
of the covariance Pj(k|k) of the IMM algorithm.

Lemma 3: Suppose the system (1)-(2) is uniformly con-
trollable and uniformly observable, then

Pj(k|k) ≥ β1I > 0 k ≥ N

Proof: Substituting (33) and (34) into (12), we have
with a change in notations of the subscripts,

Pjk
(k|k) =

{[ r∑

jk−1=1

γjkjk−1(k − 1)Ajk
Pjk−1(k − 1|k − 1)AT

jk

+ Qe
jk

(k) + Bjk
Qjk

BT
jk

]−1

+ CT
jk

R−1
jk

Cjk

}−1

Note that we use jk, jk−1, . . . to denote a sequence of modes
m(k) = jk,m(k − 1) = jk−1, . . .. Using Lemma 2 and the
fact that Qe

jk
(k) ≥ 0, we have

Pjk
(k|k) ≥

r∑

jk−1=1

γjkjk−1(k − 1)
{[

Ajk
Pjk−1(k − 1|k − 1)AT

jk

+ Bjk
Qjk

BT
jk

]−1

+ CT
jk

R−1
jk

Cjk

}−1

(35)

We define the function Υk,j(P ) as

Υk,j(P ) :=
{
[AjPAT

j + BjQjB
T
j ]−1 + CT

j R−1
j Cj

}−1

(36)
Comparing (28) and (36), Υk,j(P ) can be considered as a
special case of Υk(P ) (which gives the covariance update for
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the Kalman filter of the system (25)-(26)) with A(k) = Aj ,
B(k) = Bj , etc. Using (35) and (36),

Pjk
(k|k) ≥

r∑

jk−1=1

γjkjk−1(k− 1)Υk,jk
(Pjk−1(k− 1|k− 1))

We can derive by iteration (using Lemma 2 repeatedly) that

Pjk
(k|k) ≥

r∑

jk−1=1

. . .

r∑

j0=1

γjkjk−1(k − 1) . . . γj1j0(0)P ∗(k|k)

where

P ∗(k|k) = Υk,jk

(
Υk−1,jk−1

(
. . . Υ1,j1(Pj0(0|0))

)
. . .

)

(37)
Comparing (29) and (37), we see that P ∗(k|k) can be

considered as the Kalman filter covariance of the system
(25)-(26), with A(k) = Ajk

, A(k − 1) = Ajk−1 , and so
on. Thus, using Lemma 1, there exists a positive scalar β1

such that

Υk,jk

(
Υk−1,jk−1

(
. . . Υ1,j1(Pj0(0|0))

)
. . .

)
≥ β1I (38)

for any jk−1, . . . , j0 ∈ {1, 2, . . . , r}. From (22),
r∑

jk−1=1

. . .

r∑

j0=1

γjkjk−1(k − 1) . . . γj1j0(0) = 1 (39)

Thus Pjk
(k|k) ≥ β1I

B. An upper bound for Pj(k|k)

In this section, we derive an upper bound for the covari-
ance Pj(k|k). From (9) and (11), the set of gains Kj(k) of
the IMM algorithm are given by

Kj(k) = Pj(k|k − 1)CT
j [CjPj(k|k − 1)CT

j + Rj ]−1 (40)

Furthermore, from (40), we have

Kj(k)RjK
T
j (k) = [I −Kj(k)Cj ]Pj(k|k − 1)CT

j KT
j (k)

(41)
From (33), we have

P 0
j (k) =

r∑

i=1

γji(k)Pi(k|k)[I −Ki(k)Ci]T +

r∑

i=1

γji(k)Pi(k|k)CT
i KT

i (k)

(42)

Substituting (19) and (34) into (42), and then using (41), we
have

P 0
j (k) =

r∑

i=1

γji(k)
{

[I −Ki(k)Ci]
[
AiP

0
i (k − 1)AT

i +

Qe
i (k) + BiQiB

T
i

]
[I −Ki(k)Ci]T + Ki(k)RiK

T
i (k)

}

We define a function

χi,k(P, K) :=[I −KCi]
[
AiPAT

i + Qe
i (k)+

BiQiB
T
i

]
[I −KCi]T + KRiK

T
(43)

Hence

P 0
j (k) =

r∑

i=1

γji(k)χi,k(P 0
i (k − 1),Ki(k)) (44)

The following lemma establishes that the set of gains
Kj(k) in (40) “minimizes” the covariance P 0

j (k) [8].
Lemma 4: Suppose γji(k) and Qe

j(k), for k > 0, i, j =
1, . . . , r, are given. Let Ka

j (k) be an arbitrary sequence of
gains. Define a sequence T 0

j (k) with T 0
j (0) given and

T 0
j (k) :=

r∑

i=1

γji(k)χi,k(T 0
i (k − 1),Ka

i (k)) (45)

for k > 0, j = 1, 2, . . . , r. Let P 0
j (k) be the sequence given

by (44). Note that the gains Ka
i (k) in (45) are arbitrary while

those in (44) are the gains of the IMM algorithm given by
(40). Then, if P 0

j (0) ≤ T 0
j (0), it follows that P 0

j (k) ≤ T 0
j (k)

for all k ≥ 0.
Proof: In [8] (or see also [4]), it has been shown that,

for any Ka
i (k),

χi,k(P 0
i (k − 1),Ki(k)) ≤ χi,k(P 0

i (k − 1), Ka
i (k))

Now, suppose P 0
i (k − 1) ≤ T 0

i (k − 1), then

P 0
j (k) =

r∑

i=1

γji(k)χi,k(P 0
i (k − 1), Ki(k))

≤
r∑

i=1

γji(k)χi,k(P 0
i (k − 1), Ka

i (k))

≤
r∑

i=1

γji(k)χi,k(T 0
i (k − 1),Ka

i (k)) = T 0
j (k)

Since P 0
i (0) ≤ T 0

i (0), by induction, P 0
i (k) ≤ T 0

i (k) for all
k ≥ 0.

We present the following corollary based on Theorem 1.
Corollary 1: Let F (k) = [I −K(k)C(k)]A(k). Suppose

the system (25)-(26) is uniformly controllable and uniformly
observable, then there exist gains K(k) such that ∀k ≥ k0,

‖F (k)F (k − 1) . . . F (k0)‖ ≤ c0λ
k−k0
0 c0 > 0, 0 ≤ λ0 < 1

We then have the following lemma that establishes an
upper bound for Pj(k|k).

Lemma 5: Suppose the system (1)-(2) is uniformly con-
trollable and uniformly observable, then

Pj(k|k) ≤ β2I, β2 < ∞, k ≥ N

Proof: Substituting Fi = [I − Ka
i Ci]Ai, Gi(k) =

FiA
−1
i [Qe

i (k) + BiQiB
T
i ]A−T

i FT
i + Ka

i RiK
aT

i into (45)
yields

T 0
j (k) =

r∑

i=1

γji(k)
{

FiT
0
i (k − 1)FT

i + Gi(k)
}
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By iterations, we have (with a change in the subscript
notations)

T 0
jk+1

(k) =
r∑

jk=1

. . .

r∑

js=1

γjk+1jk
(k) . . . γjs+1js

(s)

[
Fjk

. . . Fj1T
0
j1(0)FT

j1 . . . FT
jk

+
k∑

s=1

Fjk
. . . FjsGjs−1(s− 1)FT

js
. . . FT

jk
+ Gjk

(k)
]

(46)

Using Corollary 1, and considering A(k) = Ajk
, K(k) =

Ka
jk

(k), etc, there exist gains Ka
jk

(k), such that

‖Fjk
Fjk−1 . . . Fjk0

‖ ≤ c0λ
k−k0
0 ∀k ≥ k0, c0 > 0, λ0 < 1

(47)
By taking the 2-norm on (46), and utilizing (22) and (47),
we see that ‖T 0

jk
(k)‖ ≤ c2 < ∞ for all k > 0. Hence,

T 0
jk

(k) is uniformly bounded from above, i.e. T 0
jk

(k) ≤ c2I .
From Lemma 4, it follows that P 0

jk
(k) ≤ T 0

jk
(k) ≤ c2I .

Then, from (34) and (12), we see that Pj(k|k) is uniformly
bounded from above.

C. Stability conditions for a special case

We define a Lyapunov function for the system (21) as

V (ẽ(k), k) = max
j∈Q

eT
j (k)P−1

j (k|k)ej(k) (48)

where Q := {1, 2, . . . , r}. From Lemmas 3 and 5, there exist
scalars κ5 > 0, κ6 < ∞ such that

κ5 max
j∈Q

‖ej(k)‖2 ≤ V (ẽ(k), k) ≤ κ6 max
j∈Q

‖ej(k)‖2

Furthermore, it can be shown that [9]

max
j∈Q

‖ej(k)‖2 ≤ ‖ẽ(k)‖2 ≤ r max
j∈Q

‖ej(k)‖2 (49)

Hence, V (ẽ(k), k) satisfies (23). For exponential stability,
we need to show that V (ẽ(k), k) also satisfies (24). We first
present the following lemmas which would be used later:

Lemma 6: Given any vectors yi and any positive definite
matrices Mi, i = 1, 2, . . . , r, of appropriate dimensions; and
nonnegative scalars γi such that

∑r
i=1 γi = 1, we have

( r∑

i=1

γiyi

)T ( r∑

i=1

γiMi

)−1( r∑

i=1

γiyi

)
≤

r∑

i=1

γiy
T
i M−1

i yi

(50)
Lemma 7: For any positive semi-definite matrix M , any

nonnegative scalars γi such that
∑r

i=1 γi = 1, and vectors
yi, we have

r∑

i=1

γiy
T
i Myi ≥

[ r∑

i=1

γiyi

]T

M
[ r∑

i=1

γiyi

]

Lemma 8: Consider the system (21). For j = 1, 2, . . . , r,
we define the functions

Vj(ej(k), k) := eT
j (k)P−1

j (k|k)ej(k) (51)

yj(k) := Aj

r∑

i=1

γji(k − 1)ei(k − 1) (52)

uj(k) :=
[
Pj(k|k)P−1

j (k|k − 1)− I
]
yj(k) (53)

Then, we have

Vj(ej(k), k) ≤
r∑

i=1

γji(k − 1)Vi (ei(k − 1), k − 1)−

eT
j (k)CT

j R−1
j Cjej(k)− uT

j (k)P−1
j (k|k − 1)uj(k)

(54)

for all k > 0, j = 1, 2, . . . , r.
Proof: From (12) and (51),

Vj(ej(k), k) =eT
j (k)

[
P−1

j (k|k − 1) + CT
j R−1

j Cj

]
ej(k)

Using (33), (34), (52) and (53), we have (see [5] for details)

Vj(ej(k), k) =
[
Aj

r∑

i=1

γji(k − 1)ei(k − 1)
]T [

Aj

r∑

i=1

γji(k − 1)Pi(k − 1|k − 1)AT
j + Qe

j(k) + BjQjB
T
j

]−1

[
Aj

r∑

i=1

γji(k − 1)ei(k − 1)
]
− eT

j (k)CT
j R−1

j Cjej(k)

− uT
j (k)P−1

j (k|k − 1)uj(k)

The inequality (54) can then be proved using Lemma 6 and
the fact that Qe

j(k) + BjQjB
T
j ≥ 0.

In the following, we will show that the IMM algorithm
is globally exponentially stable for hybrid systems which
satisfy the following conditions:

1) The system (1)-(2) is uniformly controllable.
2) The system (1)-(2) is uniformly observable and sat-

isfies the observability condition in Definition 3 with
N ≤ 2.

3) The observation model (2) is the same in all modes,
i.e. Ci = C and Ri = R for all i = 1, 2, . . . , r.

Condition 3 above is common in hybrid state estimation
applications such as target tracking. Condition 2 is more
restrictive but it is still applicable in some applications such
as that in [10]. We conjecture that Condition 2 could be
relaxed to include general controllable hybrid systems which
satisfy the observability condition with any finite N , and we
hope to extend the result here to the more general case in
future.

From Lemma 8, we can deduce the following:

Vj(ej(k), k) ≤
r∑

i=1

r∑

l=1

γji(k − 1)γil(k − 2)Vl(el(k − 2), k − 2)− Jj(k)

(55)

Jj(k) =
r∑

i=1

γji(k − 1)eT
i (k − 1)CT R−1Cei(k − 1)+

r∑

i=1

γji(k − 1)uT
i (k − 1)P−1

i (k − 1|k − 2)ui(k − 1)

+ eT
j (k)CT R−1Cej(k) + uT

j (k)P−1
j (k|k − 1)uj(k)

(56)
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Using Lemma 7 and (52), we can write (56) as

Jj(k) ≥ yT
j (k)A−T

j CT R−1CA−1
j yj(k)+

r∑

i=1

γji(k − 1)uT
i (k − 1)P−1

i (k − 1|k − 2)ui(k − 1)

+ eT
j (k)CT R−1Cej(k) + uT

j (k)P−1
j (k|k − 1)uj(k)

(57)

Let
Mj := A−T

j CT R−1CA−1
j (58)

From (20), (52) and (53), we have

yj(k) = ej(k)− uj(k) (59)

Substituting (58) and (59) into (57), we have (after simpli-
fying the notations by ej = ej(k), uio = ui(k − 1) etc.)

Jj ≥(ej − uj)T Mj(ej − uj) +
r∑

i=1

γjiu
T
i0P

−1
i0 ui0

+ eT
j CT R−1Cej + uT

j P−1
j uj := Jj

(60)

We now consider the problem of minimizing Jj with respect
to the variables uio and uj . By differentiation,

∂Jj

∂uio
= 2γjiu

T
i0P

−1
i0 i = 1, 2, . . . , r

∂Jj

∂uj
= −2(ej − uj)T Mj + 2uT

j P−1
j

Putting the first derivatives to zero, we have

γjiu
∗
i0 = 0 i = 1, 2, . . . , r (61)

u∗j = (Mj + P−1
j )−1Mjej (62)

Substituting (61) and (62) into (60), the minimum Jj is

J∗j =eT
j [I − (Mj + P−1

j )−1Mj ]T Mj

[I − (Mj + P−1
j )−1Mj ]ej + eT

j CT R−1Cej+

eT
j Mj(Mj + P−1

j )−1P−1
j (Mj + P−1

j )−1Mjej

=eT
j [Mj −Mj(Mj + P−1

j )−1Mj ]ej + eT
j CT R−1Cej

(63)

Using (58) and the matrix inversion lemma,

[Mj −Mj(Mj + P−1
j )−1Mj ]

= A−T
j CT [R−1 −R−1CA−1

j (A−T
j CT R−1CA−1

j +

P−1
j )−1A−T

j CT R−1]CA−1
j

= A−T
j CT [R + CA−1

j PjA
−T
j CT ]−1CA−1

j

Using Lemma 5, we can show that Pj = Pj(k|k −
1) is uniformly bounded from above, i.e. Pj ≤ β3I
where 0 < β3 < ∞. The matrices C, R and Aj are
constant and bounded. Thus, it can be shown that [R +
CA−1

j PjA
−T
j CT ]−1 ≥ β4I where β4 > 0.Therefore, from

(63),

J∗j ≥ β4e
T
j A−T

j CT CA−1
j ej + eT

j CT R−1Cej

From (3), A−T
j CT R−1CA−1

j ≤ ξ−1
3 A−T

j CT CA−1
j . Hence

J∗j ≥ β4ξ3e
T
j A−T

j CT R−1CA−1
j ej + eT

j CT R−1Cej

≥ β5e
T
j [A−T

j CT R−1CA−1
j + CT R−1C]ej

where β5 = min(β4ξ3, 1) > 0. If Condition 2 holds, then

A−T
j CT R−1CA−1

j + CT R−1C ≥ κ3I

where κ3 > 0. Thus,

J∗j ≥ β5κ3‖ej‖2

From (55), we have

Vj(ej(k), k) ≤max
l∈Q

Vl(el(k − 2), k − 2)− β5κ3‖ej‖2

Using Lemma 3, we have

Vj(ej(k), k) ≤max
l∈Q

Vl(el(k − 2), k − 2)− c1Vj(ej(k), k)

where c1 = β1β5κ3 > 0. Hence,

max
j∈Q

Vj(ej(k), k) ≤
max
l∈Q

Vl(el(k − 2), k − 2)−max
j∈Q

c1Vj(ej(k), k)

⇒ Ṽ (ẽ(k), k)− Ṽ (ẽ(k − 2), k − 2) ≤ −c1Ṽ (ẽ(k), k)

≤ −c2‖ẽ(k)‖2

Thus, if Conditions 1-3 holds, the Lyapunov function
Ṽ (ẽ(k), k) satisfy (23) and (24). By Lyapunov’s stability
theorem, the IMM algorithm is globally exponentially stable.

IV. CONCLUSIONS

We have derived bounds on the error covariance and
presented sufficient conditions for the exponential stability
of the IMM algorithm. We are currently working on the
possible extension of the current stability conditions to
general controllable and observable hybrid systems.

REFERENCES

[1] H.A.P. Blom and Y. Bar-Shalom. The interacting multiple model
algorithm for systems with markovian switching coefficients. IEEE
Trans. on Automatic Control, 33(8):780–783, 1988.

[2] X.R. Li and Y. Bar-Shalom. Performance prediction of the interacting
multiple model algorithm. IEEE Trans. on Aerospace and Electronic
Systems, 29(3):755–771, 1993.

[3] C.E. Seah and I. Hwang. Performance analysis of Kalman filter based
hybrid estimation algorithms. In Proceedings of the 17th IFAC World
Congress, June 2008.

[4] E. Derbez and B. Remillard. The IMM CA CV performance. Technical
report, 2000.

[5] J.J. Deyst and C.F. Price. Conditions for asymptotic stability of the
discrete minimum-variance linear estimator. IEEE Trans. on Automatic
Control, pages 702–705, 1968.

[6] H.K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.
[7] R.E. Kalman. Contributions to the theory of optimal control. Boletin

de la Sociedad Matematica Mexicana, 5:102–119, 1968.
[8] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Clarendon

Press, 1995.
[9] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins

University Press, Maryland, 1983.
[10] X.R. Li and Y. Bar-Shalom. Design of an interacting multiple model

algorithm for air traffic control tracking. IEEE Transactions on Control
Systems Technology, 1(3):186–194, 1993.

2420


