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Abstract— The paper studies the problem of simultaneous de-
sign of fault tolerant controller and fault detector for a class of
linear continuous-time systems with bounded disturbances and
nonzero external constant inputs. A dynamic output feedback
controller and a fault detector are designed simultaneously,
where the output feedback controller stabilizes the closed-
loop system for both normal and faulty cases and attenuates
the effects of disturbances. By manipulating the steady-state
values of the system states with the fault detector, a residual is
then generated, through which the actuator outage faults can
be detected effectively. An F-18 aircraft model is studied to
illustrate the effectiveness of the proposed methods.

I. INTRODUCTION

In the last decades, the well established H∞ con-

trol theory has been widely used in fault detection, see

[2][7][19][20][24] for example. In [17][18][28], the fault

detection problem is formulated as an H∞ fault detection

filter design problem. And in [14], it is formulated as a mixed

H2/H∞ filtering problem.

Most of the methods discussed above are considered using

an open-loop model of the process, however, in many cases,

the fault detection systems are closed-loop feedback systems.

In such situation, faults may be covered by control actions

and the early detection of process faults (low frequency

faults) is clearly more difficult [6]. To solve this problem,

the so-called integrated design of fault detection and control

systems are proposed in the literature. In [10], the integrated

approach to control and fault detection using the four param-

eter controller is proposed. In [5][15], the H∞ optimization

approach is used to minimize the fault estimation errors and

attenuate the disturbance effects. In [4], an H2 cost-function

is introduced that involves traditional LQG cost terms and

in addition fault estimation error component. In [13][25], the

simultaneous fault detection and control problem is formu-

lated as a mixed H2/H∞ optimization problem. In [23], the

classical Youla parameterization technique is introduced. In
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[26], the authors make use of the extra degree of freedom

in an H∞-controller to optimize a diagnostic performance

measured in H2-norm.

In these papers, the magnitude of the fault should be

big enough such that they can be detected, and actuator

outage faults are not well investigated through these fault

models. Note that it is quite common to include nonzero

constant inputs in control systems, e.g., servo control systems

with constant reference inputs [16][22]. For these systems,

the steady-state values of their states do not converge to

zero. This motivates the main approach proposed in this

paper, using which the outage faults of actuators are detected

effectively.

In this paper, the outage fault model are exploited [16][27],

and new detection method is proposed to detect the actuator

outage faults. Through satisfying certain performance in-

dexes simultaneously, a dynamic output feedback controller

and a detector are designed simultaneously to stabilize the

closed-loop system with and without faults, attenuating the

effects of disturbances and detecting the actuator outage

faults. By the aid of the GKYP lemma proposed in [8],

these performance indexes are converted to satisfy a set

of inequalities, and through a two-step procedure, LMI

conditions are then obtained. It should be pointed out that

using the new methods proposed in this paper, the actuator

outage faults can be detected effectively which is nontrivial

in the literature.

Notation: For a matrix A, AT , A⊥ denote its transpose,

and orthogonal complement, respectively. I denotes the iden-

tity matrix with an appropriate dimension. For a symmetric

matrix A, A > 0 and A < 0 denote positive definiteness and

negative definiteness, respectively. The Hermitian part of a

square matrix M is denoted by He(M) := M + MT .The

symbol ⋆ within a matrix represents the symmetric entries.

σmax(G) and σmin(G) denote maximum and minimum

singular values of the transfer matrix G, respectively.

II. PROBLEM FORMULATION

A. System model

Consider a linear time-invariant system model

ẋ(t) = Ax(t) + B1w(t) + B2u(t) + Brr0

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D21w(t) (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,

w(t) ∈ R
nw is the bounded disturbance input satisfying

w(t)T w(t) ≤ w̄2, r0 ∈ Rp is the external constant input,

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrBI01.1

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4256



z(t) ∈ Rq denotes the controlled output, y(t) ∈ Rny denotes

the measured output, and A, B1, B2, Br, C1, C2, D12 and

D21 are known constant matrices of appropriate dimensions.

Remark 1: The external input r0 described in (1) is assumed

to be a known constant, which is general [11], e.g., the

reference input of a servo system [16][22].

B. Fault model

To formulate the simultaneous fault tolerant control and

fault detection problem of this work, the following type fault

model is adopted.

Definition 1 (Actuator outage fault): when outage faults

occur, the input signals of systems are given by

usi(t) = Fiu(t), i = 1, . . . , Ns (2)

where F ,
i s are diagonal matrices defined as

Fi = diag
[

Fi1 Fi2 . . . Fim

]

(3)

where Fik = 1 if the kth actuator is fault free, and Fik = 0
if the kth actuator is of outage.

C. Preliminaries

Consider the system model described by (1) with actuator

outage faults given by (2), a full order dynamic output

feedback controller K denoted as

ẋk(t) = Akxk(t) + Bky(t)

u(t) = Ckxk(t) (4)

is designed to stabilize the original system with or without

faults. This yields the closed-loop system

ξ̇(t) = Ānξ(t) + B̄w(t) + B̄n

z(t) = C̄nξ(t) (5)

for normal system model with ξ(t)T =
[

x(t)T xk(t)T
]

and

Ān =

[

A B2Ck

BkC2 Ak

]

, B̄ =

[

B1

BkD21

]

, B̄n =

[

Brr0

0

]

,

C̄n =
[

C1 D12Ck

]

and

ξ̇(t) = Āfi
ξ(t) + B̄w(t) + B̄fi

z(t) = C̄fi
ξ(t) (6)

for the ith fault model, with

Āfi
=

[

A B2FiCk

BkC2 Ak

]

, B̄fi
=

[

Brr0

0

]

,

C̄fi
=

[

C1 D12FiCk

]

The fault tolerant controller is designed as follows. Design a

dynamic output feedback controller (4) such that the normal

closed-loop system (5) and the faulty closed-loop system (6)

for i = 1, . . . , Ns are all stable and satisfy the following

performance indexes

‖Gzw(jω)‖peak < ζ1 (7)

‖Gzwi(jω)‖peak < ζ3, i = 1, . . . , Ns (8)

where Gzw(jω) = C̄n(jωI − Ān)−1B̄,Gzwi(jω) =
C̄fi

(jωI − Āfi
))−1B̄, and ‖Gzw‖peak and ‖Gzwi‖peak of

are peak-to-peak gains of the transfer matrices from distur-

bance w(t) to residual z(t) for both the normal and faulty

cases [21]. Solve the differential equations in (5) and (6)

respectively, we have

lim
t→∞

ξ(t) = −Ā−1
n B̄n +

∫ ∞

t0

eĀn(t−τ)B̄w(τ)dτ (9)

for normal case, and

lim
t→∞

ξ(t) = −Ā−1
fi

B̄fi
+

∫ ∞

t0

eĀfi
(t−τ)B̄w(τ)dτ (10)

for the ith faulty model.

Then, the detector is designed as follows. Design a weight-

ing matrix V ∈ R1×n such that the residual r(t) is obtained

as

r(t) = V xk(t) = Cvξ(t) (11)

with Cv =
[

0 V
]

.

Notice that for the normal system model

|Cv lim
t→∞

ξ(t)| ≤ |CvĀ−1
n B̄n|

+ lim
t→∞

|Cv

∫ t

t0

eĀn(t−τ)B̄w(τ)dτ |

≤ |CvĀ−1
n B̄n| + ‖Grw‖peakw̄ (12)

and for the ith faulty system model

|Cv lim
t→∞

ξ(t)| ≥ |CvĀ−1
fi

B̄fi
|

− lim
t→∞

|Cv

∫ t

t0

eĀfi
(t−τ)B̄w(τ)dτ |

≥ |CvĀ−1
fi

B̄fi
| − ‖Grwi‖peakw̄ (13)

where ‖Grw‖peak and ‖Grwi‖peak of (12) and (13) are the

peak-to-peak gains of the transfer matrices from disturbance

w(t) to residual r(t) and

Grw(jω) = Cv(jωI − Ān)−1B̄,

Grwi(jω) = Cv(jωI − Āfi
)−1B̄ (14)

The bounds of the peak-to-peak gains are formulated as

‖Grw(jω)‖peak < ζ2 (15)

‖Grwi(jω)‖peak < ζ4 (16)

for both the normal and faulty cases.

To discriminate the normal and faulty system models, the

following conditions should be satisfied

|CvĀ−1
n B̄n| + ‖Grw‖peakw̄ + ‖Grwi‖peakw̄

< |CvĀ−1
fi

B̄fi
|, i = 1, . . . , Ns (17)

which can be realized by satisfying the following perfor-

mance indexes

σmax(Gn(jω)) < γ1, for ω = 0 (18)

σmin(Grfi
(jω)) > β1, for ω = 0, i = 1, . . . , Ns (19)

‖Grw(jω)‖peak < ζ2

‖Grwi(jω)‖peak < ζ4
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where Gn(jω) = Cv(jωI − Ān)−1B̄n, Grfi
(jω) =

Cv(jωI − Āfi
)−1B̄fi

.

D. Problem formulation

The problem of simultaneous design of fault tolerant

controller and fault detector can be formulated as to find

a dynamic output feedback controller K and a weighting

matrix V such that the following conditions are satisfied

‖Gzw(jω)‖peak < ζ1 (20)

‖Grw(jω)‖peak < ζ2 (21)

‖Gzwi(jω)‖peak < ζ3, i = 1, . . . , Ns (22)

‖Grwi(jω)‖peak < ζ4, i = 1, . . . , Ns (23)

σmax(Gn(jω)) < γ1, ω = 0 (24)

σmin(Grfi
(jω)) > β1, ω = 0, i = 1, . . . , Ns (25)

III. SIMULTANEOUS DESIGN OF FAULT TOLERANT

CONTROLLER AND FAULT DETECTOR

A. Usefull lemmas

The following lemmas are essential for later developments.

Lemma 1: (Generalized KYP Lemma [9]) Given system ma-

trices (A,B, C, D), and a symmetric matrix Π, the following

statements are equivalent:

i) The finite frequency inequality

[

G(jω) I
]

Π

[

G(jω)T

I

]

< 0, for all |ω| ≤ ̟ (26)

where G(jω) = C(jωI − A)−1B + D.

ii) There exist matrices P, Q satisfying Q > 0, and
[

A I
C 0

] [

−Q P
P ̟2Q

] [

A I
C 0

]T

+

[

B 0
D I

]

Π

[

B 0
D I

]T

< 0 (27)

Lemma 2: (Projection Lemma [3]) Let Γ,Λ,Θ be given.

There exists a matrix F satisfying ΓFΛ+(ΓFΛ)T +Θ < 0
if and only if the following two conditions hold

Γ⊥ΘΓ⊥
T

< 0, ΛT⊥

ΘΛT⊥
T

< 0

The following lemma provides an alternative condition to

(27) by introducing a multiplier R through the projection

lemma, which is similar to that of [9]. Firstly, define J ∈
R

(2n+nz), H̄ ∈ R(2n+nz)×(nw+nz), and L̄ ∈ R(2n+nz)×n as

J :=





I 0
0 I
0 0



 , H̄ :=





0 0
B 0
0 I



 , L̄ :=





−I
A
C





Lemma 3: Let symmetric matrices P, Q ∈ Rn×n and Q >
0, R ∈ Rn×(2n+nz). Let NR be the null space of R. The

following statements are equivalent:

i) The condition in (27) holds and

NT
R (J

[

−Q P
P ̟2Q

]

JT + H̄ΠH̄T )NR < 0 (28)

ii) There exists a variable matrix X ∈ Rn×n such that

J

[

−Q P
P ̟2Q

]

JT + H̄ΠH̄T < He(L̄XR) (29)

Proof: Notice that the null space of L̄ is

[

A I 0
C 0 I

]

,

and using Lemma 2, we have that ii) is equivalent to i).

B. Conditions for normal case

a) Conditions for performance index (24)

Firstly, consider the normal system model, combining (5)

and (11), we have

ξ̇(t) = Ānξ(t) + B̄w(t) + B̄n

z(t) = C̄nξ(t)

r(t) = Cvξ(t) (30)

The following Lemma 4 is essential for Theorem 1.

Lemma 4: Given the same matrices Ān, B̄n, Cv as stated in

(30), the following statements are equivalent:

i) There exist matrix variables P1, Q1, X =

[

X11 X12

⋆ X22

]

and positive scalar γ1 such that




−Q1 P1 0
⋆ B̄nB̄T

n 0
⋆ ⋆ −γ2

1



 < He(





−I
Ān

Cv



X





0
−I
0



) (31)

holds, where Ān =

[

A B2Ck

BkC2 Ak

]

.

ii) There exist matrix variables Pa1, Qa1, Xa =
[

Y −N
−N N

]

and positive scalar γ1 such that





−Qa1 Pa1 0
⋆ B̄nB̄T

n 0
⋆ ⋆ −γ2

1



 < He(





−I
Āan

Cv



Xa





0
−I
0





T

) (32)

holds, where Āan =

[

A B2Cke

BkeC2 Ake

]

, and Ake =

X12X
−1
22 AkX22X

−1
12 , Bke = −X12X

−1
22 Bk, Cke =

−CkX22X
−1
12 .

Theorem 1: Consider the normal system model (30), let

real matrices Ān ∈ R2n×2n, B̄n ∈ R2n×1, Cv ∈ R1×2n,

a symmetric matrix Π1 =

[

1 0
0 −γ2

1

]

be given. Then, the

inequality condition

σmax(Gn(jω)) < γ1, for ω = 0 (33)

holds if there exist matrix variables Y, N,A, C,V , symmtric

matrices P1 =

[

P11 P12

⋆ P22

]

, Q1 =

[

Q11 Q12

⋆ Q22

]

satisfying

Q1 > 0, and












−Q11 −Q12 P11 − Y P12 + N 0
⋆ −Q22 PT

12 + N P22 − N 0
⋆ ⋆ Φ1 Φ2 −V∗

⋆ ⋆ ⋆ Φ3 V∗

⋆ ⋆ ⋆ ⋆ −γ2
1













< 0 (34)

where

Φ1 = (Brr0)(Brr0)
T + AY − B2C + (AY − B2C)T ,

Φ2 = −AN + B2C + (BkC2Y −A)T ,

Φ3 = −BkC2N + A + (−BkC2N + A)T

A = AkN, C = CkN,V = V N
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Proof: Note that for system (30), given Π1 =
[

1 0
0 −γ2

1

]

and let ̟ = 0, from Lemma 1, condition (26)

becomes

Gn(jω)Gn(jω)T < γ2
1 , for ω = 0 (35)

which is equivalent to (33).

Then applying Lemma 1 and Lemma 3, it can be con-

cluded that inequality

J

[

−Q1 P1

P1 0

]

JT +





0 0
B̄n 0
0 I



Π1





0 0
B̄n 0
0 I





T

< He(





−I
Ān

Cv



XR) (36)

provides a sufficient condition for performance index (33).

Let R =
[

0 −I 0
]

, after some matrix manipulation,

(36) becomes




−Q1 P1 0
⋆ B̄nB̄T

n 0
⋆ ⋆ −γ2

1



 < He(





−I
Ān

Cv



X





0
−I
0





T

) (37)

From Lemma 4, choose X =

[

Y −N
−N N

]

without in-

troducing any conservatism. Define Q1 :=

[

Q11 Q12

⋆ Q22

]

,

P1 :=

[

P11 P12

⋆ P22

]

, after some matrix manipulation, (37)

becomes (34), which completes the proof.

C. Conditions for faulty cases

a) Conditions for performance index (25)

Consider the ith faulty case, combine (6) and (11), we

have

ξ̇(t) = Āfi
ξ(t) + B̄w(t) + B̄fi

z(t) = C̄fi
ξ(t)

r(t) = Cvξ(t) (38)

To satisfy condition (25), we have the following theorem.

Theorem 2: Consider the ith faulty system model (38), let

real matrices Āfi
∈ R2n×2n, B̄fi

∈ R2n×1, Cv ∈ R1×2n,

a symmetric matrix Π2 =

[

−1 0
0 β2

1

]

be given. Then, the

inequality condition

σmin(Grfi
(jω)) > β1, for ω = 0 (39)

holds if there exist matrix variables Y, N,A, C,V , symmetric

matrices P i
2 =

[

P i
11 P i

12

⋆ P i
22

]

, Qi
2 =

[

Qi
11 Qi

12

⋆ Qi
22

]

satisfying

Qi
2 > 0, and












−Qi
11 −Qi

12 P i
11 − Y P i

12 + N −Y ℓ

⋆ −Qi
22 P iT

12 + N P i
22 − N 0

⋆ ⋆ Υi
1 Υi

2 Υi
4

⋆ ⋆ ⋆ Υ3 Υ5

⋆ ⋆ ⋆ ⋆ Υ6













< 0 (40)

with Υi
1 = −B̄fi

B̄T
fi

+AY −B2FiC+(AY −B2FiC)T ,Υi
2 =

−AN + B2FiC + (BkC2Y −A)T ,Υ3 = −BkC2N + A +
(−BkC2N + A)T ,Υi

4 = AY ℓ − B2FiCℓ − VT ,Υ5 =
BkC2Y ℓ − Aℓ + VT ,Υ6 = β2

1 − Vℓ − (Vℓ)T , where A =

AkN , C = CkN , V = V N , and ℓ =
[

ℓ1 . . . ℓn

]T
∈

R
n×1 is a vector that should be determined beforehand.

Proof: Let R =

[

0 0 −I 0 ℓ
0 0 0 −I 0

]

, following the same

lines of that for Theorem 1, it is immediate.

Remark 2: Note that vector ℓ in inequality (40) results

from the projection lemma which should be determined

beforehand, and it can be obtained through heuristic method.

b) Conditions for performance indexes (22) and (23)

In order to regulate the performance output z(t) and

attenuate the disturbance effects on the residual output, the

peak-to-peak gain bounds of Gzwi(jω) and Grwi(jω) are

minimized. Then we have the following two lemmas.

Lemma 5: Consider system (38), the peak-to-peak gain of

Gzwi(jω) is bounded by

‖Gzwi(jω)‖peak < ζ3

if there exist variables Y, N,A, C,V , λ3 > 0, µ3 and ζ3 such

that the following inequalities hold




φ1i
φ2i

B1

⋆ φ3 BkD21

⋆ ⋆ −µ3I



 < 0 (41)









λ3Y −λ3N 0 Y CT
1 − CT FiD

T
12

⋆ λ3N 0 −NCT
1 + CT FiD

T
12

⋆ ⋆ ( ζ3

w
− µ3)I 0

⋆ ⋆ ⋆ ζ3

w
I









> 0

(42)

where φ1i
= AY −B2FiC + (AY −B2FiC)T + λ3Y, φ2i

=
−AN +B2FiC+(BkC2Y −A)T −λ3N, φ3 = −BkC2N +
A + (−BkC2N + A)T + λ3N,A = AkN, C = CkN,V =
V N .

Proof: Consider inequality conditions for the peak-to-

peak gain of a transfer matrix, let the lyapunov variable

matrix X be chosen to be X =

[

Y −N
−N N

]

, the conclusion

is immediate.

Lemma 6: Consider system (38), the peak-to-peak gain of

Grwi(jω) is bounded by

‖Grwi(jω)‖peak < ζ4

if there exist variables Y, N,A, C,V , λ4 > 0, µ4 and ζ4 such

that the following inequalities hold




φ4i
φ5i

B1

⋆ φ6 BkD21

⋆ ⋆ −µ4I



 < 0 (43)









λ4Y −λ4N 0 −VT

⋆ λ4N 0 VT

⋆ ⋆ ( ζ4

w
− µ4)I 0

⋆ ⋆ ⋆ ζ4

w
I









> 0 (44)
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where φ4i
= AY −B2FiC + (AY −B2FiC)T + λ4Y, φ5i

=
−AN +B2FiC+(BkC2Y −A)T −λ4N, φ6 = −BkC2N +
A + (−BkC2N + A)T + λ4N,A = AkN, C = CkN,V =
V N .

Proof: By following the same lines of that stated in

Lemma 5, it is immediate.

Remark 3: Let Fi = I in Lemma 5 and Lemma 6 viz.,

let Fi = I of LMIs (41)-(42), and (43)-(44), then the LMI

conditions in Lemma 5 and Lemma 6 also provide sufficient

conditions for performance indexes (20), (21), respectively.

D. Solutions of controller parameters and V

Till now, conditions for performance indexes (20)-(25)

have been formulated. Summarily, we have the following

theorem.

Theorem 3: Consider system model (1), there exists a

dynamic output feedback controller (4) and a weighting

matrix V such that the augmented system model (5), (6) with

residual output r(t) in (11) satisfying performance indexes

(20)-(25) if inequality conditions (34), (40), and (41)-(44)

for i = 0, 1, . . . , Ns hold where F0 = I .

Proof: Combining Lemmas 5-6 and Theorems 1-2, it is

immediate.

It should be pointed that conditions (34), (40), (41), and

(43) are all nonlinear due to the product terms between

controller parameter Bk and matrix variables Y, N , to solve

this problem, a two step procedure is presented which follows

from the idea proposed in [12], it can be summarized as

follows:

1) Step 1: Initial solution of Bk: Consider system (1)

regardless of the constant input r0 as

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D12u(t)

y(t) = C2x(t) + D21w(t) (45)

An initial solution of Bk can be obtained by solving the

following LMIs (46)-(47)
[

ψ QB1 + ZD21

⋆ −µ1I

]

< 0 (46)





λ1Q 0 CT
1

⋆ ( ζ1

w
− µ1)I 0

⋆ ⋆ ζ1

w
I



 > 0 (47)

where ψ = QA + ZC2 + (QA + ZC2)
T + λ1Q, variables

λ1, µ1, ζ1 are scalars, and matrix variables Q > 0, Z = QBk.

2) Step 2: Design of controller parameters and the weight-

ing matrix: After Bk has been determined in Step 1, inequal-

ities (34), (40), (41), and (43) for i = 0, 1, . . . , Ns become

LMIs. Then, the output feedback controller parameters and

the weighting matrix V can be obtained by solving LMI

conditions (34), (40), (41), and (43) for i = 0, 1, . . . , Ns

simultaneously which are

Ak = AN−1, Ck = CN−1, V = VN−1

Lemma 7: Conditions (46)-(47) are necessary conditions of

(41)-(42) with Fi = I for the fault free case, respectively.

Proof: The proof is omitted due to space limit.

Remark 4: As conditions (41)-(42) with Fi = I are satisfied

in Step 2, we have that it is feasible to obtain the initial

solution of Bk by satisfying conditions (46)-(47)(necessary

conditions of (41)-(42)).

IV. NUMERICAL EXAMPLE

Consider the following decoupled linearized longitudinal

dynamical equation of motion of the F-18 aircraft model

given in [1]

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

y(t) = C2x(t) + D21w(t) (48)

where x =

[

α
q

]

denotes the angle of attack and the pitch

rate, u =

[

δE

δPTV

]

denotes the symmetrical elevator position

and the symmetric pitch thrust velocity nozzle position, w(t)
denotes the external disturbance input, satisfying ‖w(t)‖ ≤
0.5, where ‖w(t)‖ =

√

w(t)T w(t). And system matrices

A =

[

−1.175 0.9871
−8.458 −0.8776

]

, B2 =

[

−0.194 −0.03593
−19.29 −3.803

]

which are borrowed from [1], and the other matrices are

assumed to be

B1 =

[

0.1
0.2

]

, C2 =
[

1 2
]

, D21 = 0.2

Let the output y(t) track the reference input r0 = 0.5, we

get the tracking error e(t) = r0 − y(t). Define ξ(t) =
[

(
∫ t

0
e(τ)dτ)T xT (t)

]T

. Using the new state variable ξ(t),

we have the following augmented system model

ξ̇(t) = Āξ(t) + B̄1w(t) + B̄2u(t) + B̄rr0

z(t) = C1ξ(t) + D12u(t)

yf (t) = C̄2ξ(t) + D̄21w(t)

Ā =

[

0 −C2

0 A

]

, B̄1 =

[

−D21

B1

]

, B̄2 =

[

0
B2

]

,

B̄r =

[

I
0

]

, C̄2 =

[

I 0
0 C2

]

, D̄21 =

[

0
D21

]

and yf (t) =

[
∫ t

0
e(τ)dτ
y(t)

]

is to be used as the input of the

dynamic output feedback controller. Firstly, the controller

parameter Bk obtained using the method given in Step

1 of Section III is Bk =





−1.3118 1.0000
0.3024 −0.5000
−0.4613 −1.0000



. Then,

let ℓ =
[

−2 −2 1
]T

be chosen beforehand, the other

controller parameters and the weighting matrix V obtained

through Step 2 are

Ak =





−1.4526 −0.8808 0.5261
0.7739 −1.4345 −0.4016
5.6281 −1.9517 −7.5015



 ,

Ck =

[

0.2916 0.3039 −0.2522
1.4770 1.5382 −1.2775

]

,

V =
[

−2.4185 −1.1569 1.7330
]
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then we get the residual output as

r(t) =
[

−2.4185 −1.1569 1.7330
]

xk(t) (49)

the performance indexes are obtained as β1 = 0.5661, γ1 =
0.3, ζ1 = ζ2 = ζ3 = ζ4 = 0.5.

To illustrate the simulation results, assume that the dis-

turbance w(t) = 0.5sin(t). When actuator 1 is of outage at

t = 50s, the residual output is shown in Fig. 1(a), and for the

other case, when actuator 2 is of outage, the residual output

is shown in Fig. 1(b).

The threshold for this example is chosen as rth =
σmax(Gn(j0)) + ‖Grw(jω)‖peakw̄ = 0.3895 which is de-

noted by the dashed line in Fig. 1(a,b). Then from Fig. 1(a-b),

it can easily be formulated that by comparing the steady-state

value of the residual output with the threshold, either actuator

1 or actuator 2 is of outage, it can be detected.
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Fig. 1. Residual outputs |r(t)| for different cases.

V. CONCLUSIONS

In this paper, the problem of simultaneous design of fault

tolerant controller and fault detector for output feedback con-

trol systems with bounded disturbances and nonzero constant

inputs has been investigated. The considered system models

are modeled via multiple modes, namely, nominal case and

faulty cases. The actuator outage faults are considered, which

is nontrivil in the literature. The numerical example has

illustrated the effectiveness of the proposed approach.
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