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Abstract— In this paper, we study the global robust stabi-
lization problem of strict feedforward systems subject to input
unmodeled dynamics. We present a recursive design method
for a nested saturation controller which globally stabilizes
the closed-loop system in the presence of input unmodeled
dynamics. One of the specific difficulties of the problem is that
the Jacobian linearization of our system at the origin may not be
stabilizable. We overcome this difficulty by employing a special
version of the small gain theorem to address the stability of
the closed-loop system while employing the asymptotic small
gain theorem to establish the global attractiveness property of

the closed-loop system. An example is given to show that a
redesign of the controller is necessary to guarantee the global
robust asymptotic stability when the input unmodeled dynamics
is present.

I. INTRODUCTION

In this paper, we study the global robust stabilization

problem of strict feedforward systems described by

ẋi = gi(x
pi−1

i−1 , ..., xp1

1 , v, d), i = n, ..., 2

ẋ1 = g1(v, d)
(1)

subject to the following input unmodeled dynamics

ξ̇1 = q(ξ1, u, d), v = p(ξ1, u, d) (2)

where p1, ..., pn−1 are odd positive integers, xi ∈ R, i =
1, ..., n, ξ1 ∈ R

nξ1 , u, v ∈ R, d : [0,∞) → D ⊂ R
nd

with D a compact set having a known bound, is piecewise

continuous representing a static time-varying disturbance,

and gi, i = 1, ..., n, p, q are locally Lipschitz, and are

continuously differentiable and vanish at (0, ..., 0, d) for all

d ∈ D.

The robust stabilization problem of nonlinear systems

subject to input unmodeled dynamics has been studied for

over fifteen years, see, e.g., [1], [6], [5], [7], [8], [9] and the

references therein. Among them, [1], [7], [9] studied various

special cases of system (1) with p1 = ... = pn−1 = 1.

For example, it is assumed in [1] that, for i = 2, ..., n,

gi(xi−1, ..., x1, v, d) = xi−1 + g̃i(xi−1, ..., x1, v, d) where

g̃i(xi−1, ..., x1, v, 0) = o(xi−1, ..., x1, v). A common as-

sumption of these papers is the stabilizability of the Jacobian

linearization of system (1) at (0, ..., 0, d). However, this

assumption is not satisfied by system (1) when some of

the pi’s are greater than one. As a result, the approaches in

[1], [7], [9] do not work for our problem. In particular, the
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Lyapunov linearization technique cannot be used to establish

the local stability of the closed-loop system as what was done

in [1]. In this paper, we will adopt the small gain approach to

handle the global robust stabilization problem of system (1)

subject to the input unmodeled dynamics (2), and to design

a nested saturation controller recursively to guarantee the

global robust asymptotic stability in the presence of the input

unmodeled dynamics. More specifically, we will employ two

versions of the small gain theorem adapted from [12] to

establish the local stability and global attractiveness of the

closed-loop system at the origin respectively.

It is noted that when the input unmodeled dynamics (2)

is not present, the problem reduces to the global robust

stabilization problem of system (1) viewing v as the input.

This special case is also treated in [10], [13], [14] under

various assumptions. The approaches in [10], [13], [14] are

Lyapunov based. In contrast, ours is a small gain approach

which leads to the well-known nested saturation controller. It

will be seen later that even for this special case, the results in

[10], [13], [14] do not contain ours because the functions gi’s

in this paper only need to satisfy Assumption 4.1 to be given

in Section IV, while in [10], [13], [14], the functions gi’s are

subject to some other assumptions. For example, in [14], it is

assumed that, for i = 2, ..., n, ẋi = x
pi−1

i−1 + ĝi(x, v, d) where

|ĝi(x, v, d)| ≤ ai(1 + |xi|)(x
p1+1
1 + ... + x

pi−1+1
i−1 + v2) ×

χi(x1, ..., xi−1, v) with ai ≥ 0 being an unknown constant

and χi(x1, ..., xi−1, v) ≥ 0 being a known function. In the

case when ĝi(x, v, d) is a polynomial in x1, ..., xi−1, v, the

above assumption implies that the degree of each xj (j =
1, ..., i−2) and v has to be greater than pj and 1 respectively.

However, we allow the degree of each xj (j = 1, ..., i − 2)
and v to be equal to pj and 1 respectively. As an illustration

of this point, a simple example that cannot be handled by

the approaches in [10], [13], [14] will be given in Section

V.

II. PRELIMINARY

Throughout the paper, we will use (x1, x2) with x1 ∈ R
n1

and x2 ∈ R
n2 to denote the vector (xT

1 , xT
2 )T ∈ R

n1 ×R
n2 ,

and let Lm
∞ be the set of all piecewise continuous functions

w : [0,∞) → R
m with a finite supremum norm ‖w‖∞ =

supt≥0 ‖w(t)‖, and let ‖w‖a = lim supt→∞ ‖w(t)‖ denote

the asymptotic L∞ norm of w, where ‖·‖ is the standard

Euclidean norm. A function γ : R≥0 → R≥0 is called a

gain function if it is continuous, nondecreasing, and satisfies

γ(0) = 0. Let Id denote the gain function γ(s) = s,

and let O(‖v‖p) : R
n1 → R

n2 be a function such that

lim‖v‖→0
‖O(‖v‖p)‖

‖v‖p is a finite constant for some positive
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integer p. For a function g(v), the notation g(v) = o(v)

means lim‖v‖→0
‖g(v)‖
‖v‖ = 0.

In the following, we first review some terminologies

introduced in [4], [12].

Consider the following nonlinear system

ẋ = f(x, w, d), y = h(x, w, d) (3)

where x ∈ R
n is the plant state, y ∈ R

p the output, w ∈ R
m

the piecewise continuous input, f(x, w, d) and h(x, w, d) are

locally Lipschitz functions satisfying f(0, 0, d) = 0 and

h(0, 0, d) = 0 for all d ∈ D, and d : [0,∞) → D is a

piecewise continuous function with its range D a compact

subset of R
nd . Let x(t) denote the solution of system (3)

with initial state x(0), input w and d.

Definition 2.1: [4] The output y of system (3) is said to

satisfy a robust L∞ stability bound (RLB) with restrictions

Xs, ∆ on x(0), w and gains γ0, γ respectively, if there exist

open set Xs of the origin of R
n, positive real number ∆,

gain functions γ0, γ, all independent of d, such that, for each

x(0) ∈ Xs, d ∈ D, ‖w‖∞ < ∆, the solution of (3) exists

for all t ≥ 0 and

‖y‖∞ ≤ max{γ0(‖x(0)‖), γ(‖w‖∞)} (4)

Definition 2.2: [12] The output y of system (3) is said

to satisfy a robust asymptotic bound (RAB) with restriction

Xa on x(0), restriction ∆ on w and gain γ, if there exist

open set Xa of the origin of R
n, non-negative real number

∆, gain function γ, all independent of d, such that, for each

x(0) ∈ Xa, d ∈ D and piecewise continuous w satisfying

‖w‖a ≤ ∆, the solution of (3) exists for all t ≥ 0 and

‖y‖a ≤ γ(‖w‖a) (5)

Remark 2.1: In both Definitions 2.1 and 2.2, the word

robust is used to emphasize that the inequalities (4) and (5)

hold regardless of the presence of the disturbance d in (3).

For convenience, in the following, we will simply use LB

and AB to mean RLB and RAB respectively. Moreover, if

the state x of system (3) satisfies LB or AB, then we will

say system (3) satisfies LB or AB. If the output y of system

(3) satisfies LB with restriction on x(0), restriction ∆ on

w and gain γ, and satisfies AB with no restriction on x(0),
restriction ∆ on w and gain γ, then we will say y satisfies

LB with restriction and AB with no restriction on x(0), both

with restriction ∆ on w and gain γ.

III. A TECHNICAL LEMMA

Like [1], [12], our approach will utilize saturation func-

tions characterized as follows.

Definition 3.1: A locally Lipschitz function σ(·) : R →
[−λ, λ] is said to be a saturation function with saturation

level λ > 0, if for all s ∈ R,

(1) σ(s) = s when |s| ≤ λ
2 ;

(2) λ
2 ≤ sgn(s)σ(s) ≤ min{|s|, λ} when |s| ≥ λ

2 .

In the following, we consider the system

ż = θ(d)u + F (ξ, u, d), ξ̇ = G(ξ, u, d) (6)

where F : R
nξ × R × D → R, G : R

nξ × R × D → R
nξ

are locally Lipschitz functions vanishing at (0, 0, d) for all

d ∈ D, and θ : D → R is continuous, nonzero and does not

change its sign.

Under the control

u = −σ(k(z + H(d)ξ)p − ū) (7)

where σ is a saturation function with level λ > 0, k is a

nonzero real number with the same sign as θ(d), H(d) is a

1 × nξ matrix depending on d satisfying ‖H(d)‖ ≤ ν for

all d ∈ D and some positive constant ν, and p is an odd

positive integer, system (6) takes the form

ż = −θ(d)σ(k(z + H(d)ξ)p − ū)
+F (ξ,−σ(k(z + H(d)ξ)p − ū), d)

ξ̇ = G(ξ,−σ(k(z + H(d)ξ)p − ū), d)
(8)

which can be viewed as the interconnection

v1 = y2, v2 =

[

v21

v22

]

= y1 (9)

of the following two subsystems

Σ1 :
ξ̇ = G(ξ,−σ(kv1), d),

y1 =

[

y11

y12

]

=

[

H(d)ξ

F (ξ,−σ(kv1), d)/k̃

]

,

Σ2 :
ż = −σ̃(k̃[(z + v21)

p − ū
k
]) + k̃v22,

y2 = (z + v21)
p − ū

k

where σ̃(s) = θ(d)σ(s/θ(d)) is a saturation function with

level λ̃ = |θ(d)|λ, and k̃ = θ(d)k > 0.

Lemma 3.1: Consider system (6). Assume ξ subsystem

satisfies LB with restrictions Ξ, ∆, on ξ(0), u and gains γ0
1 , γ

respectively, and satisfies AB with no restriction on ξ(0),
restriction ∆ on u and gain γ. Then under the control (7),

the following results hold:

1) With λ < ∆, the output y1i, i = 1, 2, of Σ1 subsystem

satisfies LB with restrictions Ξ, ∆̄1 on ξ(0), v1 and

gains γ̄0
1 , γ̄1i respectively, and satisfies AB with no

restriction on ξ(0), restriction ∆̄1 on v1 and gain γ̄1i.

2) If there exist sufficiently small λ, |k| such that the

following small gain condition holds:

max{2 · 6p(γ̄11(s))
p, 2 · 6pγ̄12(s)} < s, s > 0, (10)

then the state z, ξ of the closed-loop system (8) satisfy

LB with restriction and AB with no restriction on

(z(0), ξ(0)), both with restriction λ
3 on ū and gains

3( s
|k| )

1

p , γ(2 · 6ps) respectively.

Remark 3.1: Lemma 3.1 is a generalization of the corre-

sponding one in [4] in three aspects. First, the control (7)

takes a more general form; second, ξ subsystem is allowed

to satisfy LB and AB with a nonlinear gain from u instead

of the linear gain; and finally, the higher order assumption

F (ξ, u, 0) = o(ξ, u) has been removed.

Remark 3.2: The following inequalities are used in the

proof of Lemma 3.1:

2 · 6p(γ̄11(s))
p < s ⇔ γ̄11(2 · 6psp) < s

⇔ γ̄11(s) < 2−
1

p 6−1s
1

p , s > 0,
2 · 6pγ̄12(s) < s ⇔ γ̄12(2 · 6ps) < s, s > 0.

(11)
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Proof: Part 1): The assumption on ξ subsystem and

|σ(kv1)| ≤ min{|k||v1|, λ} with λ < ∆ implies that, for

all ξ(0) ∈ R
nξ , d ∈ D, piecewise continuous v1, ξ(t) exists

for all t ≥ 0, and satisfies

‖ξ‖∞ ≤ max{γ0
1(‖ξ(0)‖), γ(min{|k|‖v1‖∞, λ})} (12)

for all ξ(0) ∈ Ξ, d ∈ D, v1 ∈ L1
∞, and

‖ξ‖a ≤ γ(min{|k|‖v1‖a, λ}) (13)

for all ξ(0) ∈ R
nξ , d ∈ D and piecewise continuous v1.

Noting |y11| = |H(d)ξ| ≤ ‖H(d)‖‖ξ‖ ≤ ν‖ξ‖ yields

‖y11‖∞ ≤ max{νγ0
1(‖ξ(0)‖), γ̄11(‖v1‖∞)} (14)

for all ξ(0) ∈ Ξ, d ∈ D, v1 ∈ L1
∞, where γ̄11(s) =

νγ(min{|k|s, λ}) and

‖y11‖a ≤ νγ(min{|k|‖v1‖a, λ}) = γ̄11(‖v1‖a) (15)

for all ξ(0) ∈ R
nξ , d ∈ D and piecewise continuous v1.

Next consider y12. Since F (ξ, u, d) is locally Lipschitz

and F (0, 0, d) = 0 for all d ∈ D, there exists a gain

function γo(s) such that |F (ξ, u, d)| ≤ γo(‖(ξ, u)‖) for any

ξ ∈ R
nξ , u ∈ R and d ∈ D. Then, using (12) and (13) gives

‖y12‖∞ ≤ max{γo(2γ0
1(‖ξ(0)‖))/k̃, γ̄12(‖v1‖∞)} (16)

for all ξ(0) ∈ Ξ, d ∈ D, v1 ∈ L1
∞, where γ̄12(s) =

max{γo(2γ(min{|k|s, λ})), γo(2 min{|k|s, λ})}/k̃, and

‖y12‖a ≤ γ̄12(‖v1‖a) (17)

for all ξ(0) ∈ R
nξ , d ∈ D and piecewise continuous v1.

Defining ∆̄1 = ∞ and γ̄0
1(s) = max{νγ0

1(s), γo◦2γ0
1(s)/k̃}

completes Part 1).

Part 2): Let us first apply Propositions 2.1 and 2.2 of

[3] to show that the output (y1, y2) of Σ1 and Σ2 under the

interconnection (9) satisfies LB with restriction and AB with

no restriction on (z(0), ξ(0)), both with restriction on ū.

Step 1. Show that, for Σ2 system viewing v21, v22, ū as

inputs, there exists a gain function γ0
2 such that, y2 satisfies

LB with no restriction on z(0) and gain γ̄0
2 , restrictions

∆̄21, ∆̄22, ∆̄ū on v21, v22, ū and gains γ̄21, γ̄22, γ̄
ū
2 respec-

tively, and satisfies AB with no restriction on z(0), re-

strictions ∆̄21, ∆̄22, ∆̄ū on v21, v22, ū and gains γ̄21, γ̄22, γ̄
ū
2

respectively, where ∆̄21 = ∆̄ū = ∞, ∆̄22 = λ
3|k| and

γ̄0
2(s) = 2p+1(γ0

2(s))p, γ̄21(s) = 2 · 6psp, γ̄22(s) = 2 ·
6ps, γ̄ū

2 (s) = 2·6p

|k| s.

Let V (z) = 1
2z2. Then its time derivative along the

trajectory of Σ2 subsystem satisfies

V̇ = −(σ̃(k̃[(z + v21)
p −

ū

k
]) − k̃v22)z

Now consider the following three cases:

(1) k̃|(z + v21)
p − ū

k
| ≤ λ̃

2 : We have V̇ = −k̃((z + v21)
p −

ū
k
− v22)z. Thus,

|z| > 3 max{|v21|, |
ū

k
|
1

p , |v22|
1

p } ≥ |v21| + |
ū

k
|
1

p + |v22|
1

p

⇒ |z| > |v21| + | ū
k

+ v22|
1

p

⇒ |z + v21|
p > | ū

k
+ v22|

|z| > 3|v21|

}

⇒ V̇ < 0
(18)

(2) k̃|(z + v21)
p − ū

k
| > λ̃

2 and z > 0: We have

z = |z| > 2 max{|v21|, |
ū
k
|
1

p } ≥ −v21 + ( ū
k
)

1

p

⇒ k̃|(z + v21)
p − ū

k
| = k̃((z + v21)

p − ū
k
) > λ̃

2

⇒ σ̃(k̃[(z + v21)
p − ū

k
]) > λ̃

2

⇒ V̇ < −z( λ̃
2 − k̃|v22|) < 0

(19)

for all |v22| < λ̃

2k̃
= λ

2|k| .

(3) k̃|(z + v21)
p − ū

k
| > λ̃

2 and z < 0: We have

−z = |z| > 2 max{|v21|, |
ū
k
|
1

p } ≥ v21 − ( ū
k
)

1

p

⇒ k̃|(z + v21)
p − ū

k
| = −k̃((z + v21)

p − ū
k
) > λ̃

2

⇒ σ̃(k̃[(z + v21)
p − ū

k
]) < − λ̃

2

⇒ V̇ < −z(− λ̃
2 + k̃|v22|) < 0

(20)

for all |v22| < λ̃

2k̃
= λ

2|k| .

Noting (18) to (20), we claim that, there exists a gain

function γ0
2 such that, for all z(0) ∈ R, d ∈ D, piecewise

continuous ū, v21 and v22 satisfying ‖v22‖a ≤ λ
3|k| , z(t)

exists for t ≥ 0, and satisfies

‖z‖∞ ≤ max{γ0
2(|z(0)|),

3‖v21‖∞, 3(‖v22‖∞)
1

p , 3(‖ū‖∞

|k| )
1

p }
(21)

for all z(0) ∈ R, d ∈ D, ū, v21 ∈ L1
∞, ‖v22‖∞ < λ

3|k| , and

‖z‖a ≤ max{3‖v21‖a, 3(‖v22‖a)
1

p , 3(‖ū‖a

|k| )
1

p } (22)

for all z(0) ∈ R, d ∈ D, piecewise continuous ū, v21 and v22

satisfying ‖v22‖a ≤ λ
3|k| . In fact, the proof of (21) can be

derived by Lemma 3.3 in [12] and the proof of (22) can be

derived from the derivation of (A.16) of [1].

Then it follows from (21), (22) and y2 = (z + v21)
p − ū

k

that, y2 satisfies

‖y2‖∞ ≤ max{γ̄0
2(|z(0)|),

γ̄21(‖v21‖∞), γ̄22(‖v22‖∞), γ̄ū
2 (‖ū‖∞)} (23)

for all z(0) ∈ R, d ∈ D, ū, v21 ∈ L1
∞, ‖v22‖∞ < λ

3|k| , and

‖y2‖a ≤ max{γ̄21(‖v21‖a), γ̄22(‖v22‖a), γ̄
ū
2 (‖ū‖a}) (24)

for all z(0) ∈ R, d ∈ D, piecewise continuous ū, v21 and v22

satisfying ‖v22‖a ≤ λ
3|k| .

Step 2. Choose λ, k appropriately to satisfy the small gain

conditions of Propositions 2.1 and 2.2 of [3].

Clearly, the small gain condition γ̄2i◦ γ̄1i(s) < s for s > 0
and i = 1, 2 of Proposition 2.1 of [3] is guaranteed according

to (10) with sufficiently small λ, |k|.
From (14), (16), (23), (11), and by Proposition 2.1 of [3],

‖y11‖∞ ≤ max{γ̄0
1(‖ξ(0)‖), (γ̄0

1(‖ξ(0)‖))
1

p ,

2−
1

p 6−1(γ̄0
2(|z(0)|))

1

p , (‖ū‖∞

|k| )
1

p },
(25)

‖y12‖∞ ≤ max{γ̄0
1(‖ξ(0)‖), (γ̄0

1(‖ξ(0)‖))p,

2−16−pγ̄0
2(|z(0)|), ‖ū‖∞

|k| },
(26)

‖y2‖∞ ≤ max{2 · 6pγ̄0
1(‖ξ(0)‖),

2 · 6p(γ̄0
1(‖ξ(0)‖))p, γ̄0

2(|z(0)|), 2 · 6p ‖ū‖∞

|k| },
(27)
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for all z(0) ∈ Z = {z ∈ R : γ̄0
2(|z|) < 2·6pλ

3|k| }, ξ(0) ∈ Ξ̂ =

{ξ ∈ Ξ : max{γ̄0
1(‖ξ‖), (γ̄0

1(‖ξ‖))p} < λ
3|k|}, d ∈ D and

‖ū‖∞ < λ
3 .

Next consider Proposition 2.2 of [3]. First note that the

solution of the interconnected system exists for all t ≥ 0
using the same argument as that in Lemma 3.5 of [12].

Then ∆̄1 = ∞ implies that the first condition of Proposition

2.2 of [3] is satisfied. To check the second condition, note

that lims→∞ γ̄11(s) = γ̄11(
λ
|k| ) < ∞, lims→∞ γ̄12(s) =

γ̄12(
λ
|k| ) < ∞ and ∆̄21 = ∞, ∆̄22 = λ

3|k| . Then we only

need to check lims→∞ γ̄12(s) ≤
λ

3|k| . From (10), we have

lims→∞ γ̄12(s) = γ̄12(
λ
|k| ) < λ

2·6p|k| < λ
3|k|

Finally, note that the small gain condition, i.e., γ̄2i◦ γ̄1i(s) <
s, for all s > 0 and i = 1, 2, is also guaranteed due to (10)

with sufficiently small λ, |k|.

From (15), (17), (24), (11), and by Proposition 2.2 of [3],

‖y11‖a ≤ (‖ū‖a

|k| )
1

p , ‖y12‖a ≤ ‖ū‖a

|k| (28)

‖y2‖a ≤ 2 · 6p ‖ū‖a

|k| (29)

for all z(0) ∈ R, ξ(0) ∈ R
nξ , d ∈ D and piecewise

continuous ū.

Let γ̃0(s) = max{γ0
1(s), γ0

2(s), 3γ̄0
1(s), 3(γ̄0

1(s))
1

p , 2−1− 1

p

(γ̄0
2(s))

1

p , γ(kγ̄0
2(s)), γ(2k6p(γ̄0

1(s))p), γ(2k6pγ̄0
1(s))}. For

all (z(0), ξ(0)) ∈ Z × Ξ̂, d ∈ D and ‖ū‖∞ < λ
3 , (26)

implies ‖y12‖∞ < λ
3|k| . Using (25), (26), (21) and (27),

(12), yields

‖z‖∞ ≤ max{γ̃0(‖(z(0), ξ(0))‖), 3(‖ū‖∞

|k| )
1

p }

‖ξ‖∞ ≤ max{γ̃0(‖(z(0), ξ(0))‖), γ(2 · 6p‖ū‖∞)}

for all (z(0), ξ(0)) ∈ Z × Ξ̂, d ∈ D and ‖ū‖∞ < λ
3 .

Then for all (z(0), ξ(0)) ∈ R×R
nξ , d ∈ D and piecewise

continuous ū satisfying ‖ū‖a ≤ λ
3 , (28) implies ‖y12‖a ≤

λ
3|k| . Using (28), (22) and (29), (13), yields

‖z‖a ≤ 3(
‖ū‖a

|k|
)

1

p , ‖ξ‖a ≤ γ(2 · 6p‖ū‖a)

for all (z(0), ξ(0)) ∈ R × R
nξ , d ∈ D and piecewise

continuous ū satisfying ‖ū‖a ≤ λ
3 .

Remark 3.3: Let x = z + H(d)ξ = z + y11. Noting

|x| ≤ 2 max{|z|, |y11|}, u = −σ(k(z + H(d)ξ)p − ū) =
−σ(kv1) = −σ(ky2) and equations (25) to (29), yields that

x, u satisfy LB with restriction and AB with no restriction

on (z(0), ξ(0)), both with restriction λ
3 on ū and gains

6( s
|k| )

1

p , 2 · 6p · Id respectively. Similarly, assume y =

h(ξ, u, d) is an output of ξ subsystem, and satisfies LB with

restriction and AB with no restriction on ξ(0), both with

restriction ∆ on u and gain γ̃. Then y satisfies LB with

restriction and AB with no restriction on (z(0), ξ(0)), both

with restriction λ
3 on ū and gain γ̃(2 · 6ps). These facts will

be used in the proof of Theorem 4.2.

IV. NESTED SATURATION CONTROLLER DESIGN

We first design a nested saturation controller for system

(1) and then show how to redesign the controller when the

input unmodeled dynamics (2) is present.

Let us make the following assumption.

Assumption 4.1: Assume p1, ..., pn−1 are odd positive in-

tegers satisfying p1 ≤ p2 ≤ ... ≤ pn−1 and c1(d) =
∂g1

∂v
|(0,d), ci(d) = ∂gi

∂x
pi−1

i−1

|(0,...,0,d), i = 2, ..., n, are nonzero

and do not change their signs for all d ∈ D.

As a result of this assumption, system (1) can be rewritten

in the following form:

ẋi = cix
pi−1

i−1 + gr
i (x

pi−1

i−1 , ..., xp1

1 , v, d), i = n, ..., 2

ẋ1 = c1v + gr
1(v, d)

(30)

where gr
i , i = 1, ..., n, are suitably defined functions vanish-

ing at (0, ..., 0, d), and for simplicity, we have dropped the

argument d in ci, i = 1, ..., n.

Theorem 4.1: Consider system (30). Under Assumption

4.1, there exist λi > 0 and nonzero ki with the same sign as

θi where θ1 = c1 and θi = ci/ki−1, i = 2, ..., n, such that

under the control

v = −σ1(k1x
p1

1 + ... + σn(knxpn
n − un)) (31)

where, for i = 1, ..., n, σi is a saturation function with

level λi and pn ≥ pn−1 is an odd positive integer, the

closed-loop system satisfies LB with restriction and AB with

no restriction on (xn(0), ..., x1(0)), both with restriction on

un. In particular, when un = 0, the closed-loop system at

(0, ..., 0, d) is globally asymptotically stable.

Proof: The proof is a special case of the proof of Theorem

4.2 with v = u and nξ1
= 0, i.e., when the input unmodeled

dynamics (2) is not present.

As will be shown in Section V, the control law (31) can

be destabilizing when the input unmodeled dynamics (2) is

present. So we have to redesign. Let us make the following

assumption on the input unmodeled dynamics (2).

Assumption 4.2: ξ1 subsystem satisfies an a-L∞ stability

bound (a-LB, see [12]) with no restriction on ξ1(0), restric-

tion ∆1 on u and gain N̄1·Id, and moreover, the linearization

of ξ1 subsystem at (0, 0, d), A1(d) = ∂q
∂ξ1

|(0,0,d), B1(d) =
∂q
∂u

|(0,0,d), D1(d) = ∂p
∂ξ1

|(0,0,d), e1(d) = ∂p
∂u

|(0,0,d) is such

that e1(d) − D1(d)A−1
1 (d)B1(d) is nonzero and does not

change its sign for all d ∈ D.

To simplify the notation, we drop the argument d in

the above defined matrices and numbers. Then, system (1)

subject to (2) can be written as follows:

ẋi = cix
pi−1

i−1 + fi(x
pi−1

i−1 , ..., xp1

1 , ξ1, u, d), i = n, ..., 2

ẋ1 = c1D1ξ1 + c1e1u + f1(ξ1, u, d)

ξ̇1 = A1ξ1 + B1u + f0(ξ1, u, d)
(32)

where f0(ξ1, u, d) = q(ξ1, u, d)−A1ξ1−B1u, f1(ξ1, u, d) =
gr
1(p(ξ1, u, d), d) + c1(p(ξ1, u, d) − D1ξ1 − e1u), and

fi(x
pi−1

i−1 , ..., xp1

1 , ξ1, u, d) = gr
i (x

pi−1

i−1 , ..., xp1

1 , p(ξ1, u, d), d),
i = 2, ..., n.
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Theorem 4.2: Consider system (32). Under Assumptions

4.1-4.2, there exist λi > 0 and nonzero ki with the same sign

as θi where θ1 = c1(e1−D1A
−1
1 B1) and θi = ci/ki−1, i =

2, ..., n, such that under the control

u = −σ1(k1x
p1

1 + ... + σn(knxpn
n − un)) (33)

where for i = 1, ..., n, σi is a saturation function with level

λi, and pn ≥ pn−1 is an odd positive integer, the closed-

loop system satisfies LB with restriction and AB with no

restriction on (xn(0), ..., x1(0), ξ1(0)), both with restriction

on un. In particular, when un = 0, the closed-loop system

at (0, ..., 0, d) is globally asymptotically stable.

Proof: The proof is omitted due to the space limit.

Remark 4.1: Like [1], our design does not require the

detailed knowledge of the input unmodeled dynamics ei-

ther, and the redesigned control can guarantee the global

robust stability against a class of input unmodeled dynamics

characterized by the bounds on D, ci, i = 1, ..., n and

e1 − D1A
−1
1 B1 respectively, and the upper bounds on N̄1,

∆1, ‖D1A
−1
1 ‖, and f0(ξ1, u, d) − c1D1A

−1
1 f1(ξ1, u, d) re-

spectively.

V. AN EXAMPLE

Consider the system

ẋ2 = x3
1 + av

ẋ1 = v
(34)

where a is a positive real number. Clearly, system (34)

satisfies Assumption 4.1 although it does not satisfy the

assumptions needed in [10], [13], [14]. When a = 2−5, we

can design the following nested saturation control law:

v = −σ1(0.24x3
1 + σ2(6.10 × 10−5x3

2)) (35)

where σ1, σ2 are saturation functions with level 10 and 2.5
respectively.

However, for system (34), in the presence of the input

unmodeled dynamics

v(s) =
s − 1

s + 1
u(s) (36)

and under the control

u = −σ1(k1x
3
1 + σ2(k2x

3
2))

where σ1, σ2 are saturation functions with arbitrary level

λ1, λ2 respectively, and k1, k2 are arbitrary positive real num-

bers, the resulting closed-loop system is not only unstable at

the origin, but also has unbounded solutions.

Note that the state space equation of (36) is

ξ̇1 = −ξ1 + u, v = −2ξ1 + u

then the resulting closed-loop system takes the following

form

ẋ2 = x3
1 + a(−2ξ1 − σ1(k1x

3
1 + σ2(k2x

3
2)))

ẋ1 = −2ξ1 − σ1(k1x
3
1 + σ2(k2x

3
2))

ξ̇1 = −ξ1 − σ1(k1x
3
1 + σ2(k2x

3
2))

(37)

Suppose x1(0), x2(0) are any positive real numbers such

that σ1(·) is saturated, i.e., σ1(k1x1(0)3 + σ2(k2x2(0)3)) =
λ1 > 0. Let ξ1(0) = −λ1. Then, we have ξ1(t) = −λ1 for

all t ≥ 0 and x1(t), x2(t) are strictly increasing and diverge

to infinity as t → ∞, because ẋ1(t) = λ1 > 0, ẋ2(t) =
x1(t)

3 + aλ1 > 0 for all t ≥ 0.

To show the instability of the origin of (37), let φ =
(φ2, φ1) where φ2 = x2 − ax1 and φ1 = x1 − 2ξ1. Then,

system (37) can be written as follows:

φ̇ = f(φ, ξ1) =

[

f̄2(φ, ξ1)
f̄1(φ, ξ1)

]

ξ̇1 = −ξ1 + g(φ, ξ1)

(38)

where f̄2(φ, ξ1) = (φ1 + 2ξ1)
3 and f̄1(φ, ξ1) = σ1(k1(φ1 +

2ξ1)
3 + σ2(k2(aφ1 + φ2 + 2aξ1)

3)), and g(φ, ξ1) =
−σ1(k1(φ1 + 2ξ1)

3 + σ2(k2(aφ1 + φ2 + 2aξ1)
3)).

By the property of the saturation function and the Local

Center Manifold Theorem [11] (see also [2]), there exists

a local center manifold ξ1 = h(φ) for sufficiently small φ,

where h is C2 and h(0) = 0, h′(0) = 0. Let

χ(φ) = −k1φ
3
1 − k2(aφ1 + φ2)

3

then we have, for sufficiently small φ, that

∂χ(φ)

∂φ
f(φ, χ(φ)) + χ(φ) − g(φ, χ(φ)) = O(‖φ‖5)

Then by Theorem 3 in Chap. 1 of [2], h(φ) = χ(φ) +
O(‖φ‖5) for sufficiently small φ. In turn, by Theorem 2 in

Chap. 1 of [2], we obtain that, the equation which determines

the stability of (38) is

φ̇ = f(φ, χ(φ) + O(‖φ‖5))

=

[

φ3
1

k1φ
3
1 + k2(aφ1 + φ2)

3

]

+ O(‖φ‖5)
(39)

We further perform the coordinate transform ϕ1 = φ2, ϕ2 =
φ1 − k1φ2 on (39) and yield

[

ϕ̇2

ϕ̇1

]

=

[

k2[aϕ2 + (ak1 + 1)ϕ1]
3

(ϕ2 + k1ϕ1)
3

]

+ O(‖ϕ‖5) (40)

where ϕ = (ϕ2, ϕ1). If we can show the instability of the

origin of system (40) for arbitrary positive a, λ1, λ2, k1, k2,

then the origin of (38), and thus the origin of (37), is unstable

for arbitrary positive a, λ1, λ2, k1, k2.

Let ϕ(t) denote the solution of (40) starting from ϕ(0). We

will show the instability of the origin of (40) by definition,

that is, given some ε > 0, there exist some ϕ(0) (can be

arbitrarily small) and a finite T > 0 such that ‖ϕ(T )‖ ≥ ε.

To show this, note that if ϕi > 0, i = 1, 2, then

k2[aϕ2 + (ak1 + 1)ϕ1]
3 ≥ q1(ϕ2 + ϕ1)

3

≥ q1(ϕ
2
2 + ϕ2

1)
3

2 = q1‖ϕ‖
3

(ϕ2 + k1ϕ1)
3 ≥ q2(ϕ2 + ϕ1)

3 ≥ q2(ϕ
2
2 + ϕ2

1)
3

2 = q2‖ϕ‖
3

where q1 = k2(min{a, ak1 + 1})3, q2 = (min{k1, 1})
3.

By the definition of O(‖ϕ‖5), given any 0 < q3 <
1
2 min{q1, q2}, there exists q4 > 0 such that ‖O(‖ϕ‖5)‖ ≤
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q3‖ϕ‖
3 for all ‖ϕ‖ ≤ q4. Let ε = 1

2q4. Then, for any positive

ϕ1, ϕ2 satisfying ‖ϕ‖ ≤ 2ε, we have

ϕ̇1 ≥ (q1 − q3)‖ϕ‖
3 > 0, ϕ̇2 ≥ (q2 − q3)‖ϕ‖

3 > 0,

which implies that, the solutions ϕ1(t), ϕ2(t) starting from

any positive ϕ1(0), ϕ2(0) satisfying ‖ϕ(0)‖ < ε, are strictly

increasing and there must exist a finite T > 0 such that

‖ϕ(T )‖ ≥ ε. Hence, the origin of system (40) is unstable

for arbitrary positive a, λ1, λ2, k1, k2.

As a result, we have to redesign the nested saturation

control law by Theorem 4.2. In the presence of (36), system

(34) becomes

ẋ2 = x3
1 + a(−2ξ1 + u)

ẋ1 = −2ξ1 + u

ξ̇1 = −ξ1 + u

(41)

It can be verified that, system (41) satisfies the assumptions

of Theorem 4.2. When a = 2−5, we can design the following

nested saturation control law:

u = −σ1(−6.5 × 10−4x3
1 + σ2(−3.5 × 10−16x3

2)) (42)

where σ1, σ2 are saturation functions with level 1.2247 and

0.0047 respectively.

For illustration, Fig. 1 and Fig. 2 show the simulation

results with the initial condition (ξ1(0), x1(0), x2(0)) =
(0.1, 0.2,−5) for system (34) under the control (35), and

for system (34) subject to the input unmodeled dynamics

(36) under the control (42), respectively.

VI. CONCLUSION

In this paper, we have addressed the global robust sta-

bilization problem for strict feedforward system (1) subject

to some type of input unmodeled dynamics (2). A specific

difficulty in dealing with this problem is that the Jacobian

linearization of (1) is not stabilizable. We have overcome

this difficulty by employing two versions of the small gain

theorem adapted from [12] to establish the local stability and

global attractiveness of the closed-loop system at the origin

respectively.

It is noted that, even in the special case where the input

unmodeled dynamics (2) is not present, our result cannot be

covered by the existing results in [10], [13], [14] because

in this paper the functions gi’s do not have to satisfy some

structural constraints needed in [10], [13], [14]. In particular,

the functions gi’s are allowed to be linear in its arguments.
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