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Abstract— In this paper we study the robustness analysis
problem for linear discrete-time systems subject to parametric
time-varying uncertainties making use of polyhedral Lyapunov
functions. We propose a novel procedure to construct, in the
general n-dimensional case, a polyhedral Lyapunov function to
prove the robust stability of a given system.

I. INTRODUCTION

In this paper we focus on the robust stability analysis prob-
lem for linear discrete-time systems subject to parametric
time-varying uncertainties. Typically, this problem is tackled
by means of quadratic Lyapunov functions. As a matter
of fact, this approach has been shown to be conservative
with respect to approaches using other types of Lyapunov
functions [8].

The use of polyhedral Lyapunov functions for robust
stability analysis was first proposed in [5]. In [6] it is proved
that they are universal for the robustness analysis problem
involving linear systems subject to parametric uncertainties.

One problem concerning the use of polyhedral functions
in the robust stability context, consists in the development
of an efficient numerical approach to find, for a given
uncertain system, an optimal polyhedral Lyapunov function
(see for instance [3], [4]). In this paper, we propose a novel
procedure to construct, in the general n-dimensional case, a
polyhedral Lyapunov function for the class of linear discrete-
time systems subject to parametric uncertainties. A necessary
and sufficient condition for the existence of a polyhedral
Lyapunov function is provided. Such condition requires that
a certain optimization problem admit a feasible solution. A
numerical example is included to illustrate the effectiveness
of the proposed approach.

II. PRELIMINARIES

In this paper we deal with the stability of a linear discrete-
time system subject to uncertain parameters

x(k + 1) = A(p)x(k) , (1)

where A(·) : R ⊂ Rq → Rn×n, and R is a box, i. e. R :=
[p

1
, p1]×[p

2
, p2]×· · ·×[p

q
, pq]. In the sequel we assume that:

i) The vector-valued function p(·) is any function p(·) : N →
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R; ii) The matrix-valued function A(·) depends affinely on
the parameter vector p, that is

A(p) =
1∑

i1,...,iq
=0

Ai1,...,iqp
i1
1 · · · piq

q . (2)

Definition 1 (Robust stability): System (1) is said to be
robustly stable if for any function p(·) : N → R, the
resulting linear time-varying system

x(k + 1) = A
(
p(k)

)
x(k)

is exponentially stable.
We focus on the problem of determining some conditions

guaranteeing the robust stability of system (1) making use
of the class of (symmetrical) polyhedral Lyapunov functions,
which are piecewise linear functions of the following form

V (x) = ‖QT x‖∞ , (3)

where Q ∈ Rn×m is a full row rank matrix.
Definition 2 (Polyhedral stability, [4]): System (1) is said

to be polyhedrally stable iff there exist a polyhedral Lya-
punov function in the form (3) such that the one step
Lyapunov difference along the solutions of system (1)

D+V (x) = V (A (p) x)− V (x)

is negative definite for all p ∈ R.
Remark 1: As shown in [4], [5], the class of polyhedral

Lyapunov functions is universal for system (1), i. e. the ex-
istence of a Lyapunov function which proves robust stability
of the uncertain system implies the existence of a Lyapunov
function belonging to the class which does the same job.

A. Notions on polytopes

If we deal with a finite set, say K = {x(1), . . . , x(l)} ⊂
Rn, the convex hull of K turns out to be a polytope, whose
dimension ([9], p. 5), is given by the dimension of the affine
hull of K, i. e.

rank
[

x(2) − x(1) x(3) − x(1) . . . x(l) − x(1)
]

.

In this paper we will focus on polytopes symmetrical with
respect to the origin of Rn. To this regard note that, given
any symmetrical polytope P ⊂ Rn, there always exists a full
row rank matrix Q ∈ Rn×m, m ≥ n, such that the polytope
P can be alternatively defined as (see [7], p. 6)

P = ℘(Q) := {x ∈ Rn : ‖QT x‖∞ ≤ 1} . (4)
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Therefore a given symmetric polytope P admits two
different equivalent descriptions. The algorithm in [1], imple-
mented in the Matlab routine convhulln, enables to find the
description matrix Q of a polytope starting from its vertices.

In the following, given a symmetric polytope ℘(Q), we
indicate with x

(i)
Q with i = 1 . . . 2l the vertices of ℘(Q) and

we suppose that x
(i)
Q = −x

(i+l)
Q for i = 1 . . . l.

III. MAIN RESULT

The following result provides a necessary and sufficient
condition for polyhedral stability of system (1).

Theorem 1: System (1) is polyhedrally stable iff there ex-
ists a polytope ℘(Q) of dimension n such that the following
condition holds for all i = 1, . . . , 2l,

max
p∈vert(R)

max
j

q̃T
j A(p)x(i)

Q < 1 , (5)

where q̃j denotes the j-th column of Q̃ =
(
Q −Q

)
, and

vert(R) denotes the set of all vertices of R.
Proof: We will show that the one step difference of the

polyhedral Lyapunov function V (x) = ‖QT x‖∞ along the
solutions of system (1) is negative definite iff condition (5)
holds. To this end, the one step Lyapunov difference can be
expressed as

D+V (x) = ‖QT A(p)x‖∞ − ‖QT x‖∞ =

= max
j

q̃T
j A(p)x−max

j
q̃jx . (6)

Thus equation (6) is negative definite iff

max
j

q̃T
j A(p)x < max

j
q̃jx ∀x ∈ Rn ∀p ∈ R (7)

Taking into account that for each vector x ∈ Rn there exist
a scalar λ and a point xQ belonging to the boundary ∂℘(Q)
of the polytope ℘(Q) such that xQ = λx, equation (7) can
be rewritten as

max
j

q̃T
j A(p)x < max

j
q̃jx = 1 ∀x ∈ ∂℘(Q) ∀p ∈ R

from the definition of boundary of a polytope. It is straight-
forward to recognize that the previous condition is equivalent
to the following

max
j

q̃T
j A(p)x(i)

Q < 1 ∀p ∈ R . (8)

To conclude the proof, note that inequality (8) holds for all
p ∈ R iff its maximum on R is negative. Thus we have

max
p∈vert(R)

max
j

q̃T
j A(p)x(i)

Q < 1 (9)

where we have used the fact that a multiaffine function
defined on a box R attains its maximum at one of the vertices
of R (see [2]).

In order to find a polyhedral Lyapunov function satisfying
the conditions of Theorem 1, the following procedure can be
adopted.

Procedure 1 (Implementation of Theorem 1):
1) Fix an initial number 2l ≥ 2n of symmetric points x

(i)
Q

on a hypersphere with radius 1. Let indicate with K0 =
{x(i)

Q }i=1,...,2l the set of such points.

2) Find a set of symmetric points K solving the problem

min
K

max
p∈vert(R)

f(K, p) s.t. rank(Q) = n (10)

with initial condition K0, where

f(K, p) = max
j

q̃T
j A(p)x(i)

Q − 1 .

3) Let M = minK (maxp f(K, p)). If M < 0 then set
Kopt = arg M , and go to step 4, else set l = l + 1 and

K0 = K ∪
{

x
(l+1)
Q ,−x

(l+1)
Q

}
, x

(l+1)
Q ∈ Rn

and go to step 2.
4) The polyhedral Lyapunov function that proves the poly-

hedral stability of system (1) is V (x) = ‖QT x‖∞ where
Q describes the polytope of vertices Kopt.

A. Numerical Example

Consider the linear uncertain system

ẋ = (A1 + A2p)x , p ∈ [−γ, γ] , (11)

with

A1 =

0 1 0
0 0 1
0 −0.4 1

 , A2 =

0 0 0
0 0 0
0 0.4 0

 .

It is easy to show that system (11) is quadratically stable
for |γ| ≤ 0.92. On the other hand, using the approach based
on polyhedral functions, it is possible to prove the robust
stability of (11) up to γ = 0.999 with the polytope ℘(Q) of
12 vertices (l = 6).

IV. CONCLUSIONS

In this paper we have considered the robustness analysis
problem for a linear uncertain discrete-time system subject to
parametric time-varying uncertainties. To tackle this problem
we have made use of polyhedral Lyapunov functions. A novel
procedure, which enables to construct a polyhedral Lyapunov
function proving robust stability of a given uncertain system,
has been provided, and an example has been presented.
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