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Abstract— Model predictive control (MPC) is a favored
method for handling constrained linear control problems.
Normally, the MPC optimization problem is solved on-line,
but in ‘explicit MPC’ an explicit piecewise affine feedback law
is computed and implemented [1]. This approach is similar
to ‘self-optimizing control,’ where the idea is to find simple
pre-computed policies for implementing optimal operation, for
example, by keeping selected controlled variable combinations c

constant. The ‘nullspace’ method [2] generates optimal variable
combinations, which turn out to be equivalent to the explicit
MPC feedback laws, that is, c = u−Kx, where K is the optimal
state feedback matrix in a given region. More importantly, this
link gives new insights and also some new results. One is that
regions changes may be identified by tracking the variables c

for neighboring regions.

I. INTRODUCTION

Consider the general static optimization problem [2]:

min
u0,x

J0(x, u0, d)

s.t. fi(x, u0, d) = 0, i ∈ E

hi(x, u0, d) ≥ 0, i ∈ I,

(P1)

where x ∈ R
nx are the states, u0 ∈ R

nu0 are the inputs, and

d ∈ D ⊂ R
nd are disturbances. By discretization and refor-

mulation this may also represent some dynamic optimization

problems. Usually f is a model of the physical system, whilst

h is a set of inequality constraints that limits the operation

(e.g., physical limits on temperature measurements or flow

constraints). In addition to (P1) we have measurements on

the form

y0 = fy(x, u0, d). (1)

In this work the emphasis is on implementation of the

solution to (P1). This means that the optimization problem

(P1) is solved off-line to generate a ‘control policy’ which is

suitable for on-line implementation, with particular emphasis

on remaining close to optimal solution when there are un-

known disturbances. That is, we search for ‘control policies’

such that the cost J0 remains optimal or close to optimal

when disturbances occur without the need to reoptimize.

A. Self-optimizing control

In our previous work on ‘self-optimizing control’ we have

looked for simple control policies to implement optimal

operation, and in particular ‘what should we control’ (choice

of controlled variables (CV ’s)). Using off-line optimization
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we may determine regions where different sets of active con-

straints are active, and implementation of optimal operation

is then in each region to:

1) Control the active constraints.

2) For the remaining unconstrained degrees of freedom:

Control ‘self-optimizing’ variables c = Hy which

have the property that keeping them constant (c = cs)

indirectly achieves close-to optimal operation (with a

small loss), in spite of disturbances d. We here allow

for linear measurement combinations, c = Hy. There

are here two factors that should be considered:

a) Disturbances d. Ideally, we want the optimal

value of c (copt) to be independent of d.

b) Measurements errors ny . The loss should be

insensitive to these.

B. Relationship to explicit MPC

Consider a simple static optimization problem

minu J(u, d), where u are the unconstrained degrees

of freedom and the states x and the active constraints have

been eliminated by substitution. For the quadratic case

J(u, d) = [u d]T S[u d]

where S =

[

Juu Jud

Jud
T Jdd

]

.
(2)

In addition we have available ‘measurements’ y = Gyu+
Gdd. A key result, which is the basis for this paper, is

For a quadratic optimization problem there exists (in-

finitely many) linear measurement combinations c = Hy that

are optimally invariant to disturbances d.

One sees immediately that there may be some link to

explicit MPC, because the discrete form MPC problem can

be written as a static quadratic problem. The link is: If we

let y contain the inputs u and the states x, then the ‘self-

optimizing’ variable combination c = Hy is the same as the

explicit MPC feedback law (control policy), i.e. c = u−Kx.

(This is shown in section III.)

Based on this, we provide in this contribution some new

ideas on explicit MPC:

1) We propose that tracking the variables c (deviation

from optimal feedback law) for all regions, may be

used as a local method to detect when to switch

between regions.

2) We may use our results to include measurement error

in y (e.g. in x and u) when deriving the optimal explicit

MPC.

3) We may extend the results to output feedback (c =
u − Ky) by including in y present and past outputs

(and not present states x).
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Fig. 1. Block diagram of a feedback control structure including an
optimization layer [4].

4) We can also extend the results to the case where only

a subset of the states are measured (but in this case

there will be a loss, which we can quantify). This may

be of interest even in the unconstrained LQ case.

In this paper the basic framework and issue (1) are

discussed. In [3] it is shown how the results can be extended

to handle items (2)-(4), both with theorems and examples.

II. RESULTS FROM SELF-OPTIMIZING CONTROL

A. Steady state conditions

Once the set of active constraints in (P1) is known

we can form the reduced problem and the unconstrained

degrees of freedom u can be determined. The unconstrained

measurements are

y = Gyu + Gy
dd, (3)

and y contain information about the present state and dis-

turbances (y may include u0 and d, but not the active

constraints.) The (measured) value of ym available for im-

plementation is

ym = y + ny, (4)

where ny represents uncertainty in the measurement of y
including uncertainty of implementation in u.

The following theorem describes a method to find linear

invariants that yields zero loss from optimality when the

invariants are controlled at constant setpoint. The theorem

is based on the ‘nullspace method’ presented in [2]. Figure

1 illustrates how the H matrix is used to linearly combine

measurements (and square down the plant).

Theorem 1: (Linear invariants for quadratic optimization

problem [4]) Consider an unconstrained quadratic optimiza-

tion problem in the variables u (input vector of length nu)

and d (disturbance vector of length nd)

min
u

J(u, d) =
[

u d
]

[

Juu Jud

Jud
T Jdd

] [

u
d

]

(5)

In addition, there are ‘measurement variables’ y = Gyu +
Gy

dd.

If there exists ny ≥ nu + nd independent measurements

(where ‘independent’ means that the matrix G̃y =
[

Gy Gy
d

]

has full rank), then the optimal solution to (5) has the prop-

erty that there exists nc = nu linear variable combinations

(constraints) c = Hy that are invariant to the disturbances d.

The optimal measurement combination matrix H is found

by either: (1): Let F = ∂yopt

∂d
T be the optimal sensitivity

matrix evaluated with constant active constraints. Under the

assumptions stated above possible to select the matrix H in

the left nullspace of F , H ∈ N (F T), such that

HF = 0 (6)

(2): If ny = nu + nd:

H = M−1
n J̃(G̃y)−1, (7)

where J̃ =
[

J
1/2
uu J

−1/2
uu Jud

]

and G̃y =
[

Gy Gy
d

]

is the

augmented plant. M−1
n may be seen as a free parameter.

(Note that Mn = Jcc is the Hessian of the cost with respect

to the c-variables; in most cases we select Mn = I for

convenience.)

Remark 1: The sensitivity F matrix can be obtained from

F = −
(

GyJ−1
uu Jud − Gy

d

)

. (8)

Remark 2: An equivalent formulation is: Assume that

there exists a set of independent measurements y and that

the (operational) constraint c , Hy = cs (where cs is a

constant) is added to the problem. Then there exists an H
that does not change the solution to (5). In terms of operation,

this means that zero loss (optimal operation) is obtained by

controlling nc = nu0
variables c = Hy with a constant

set-point policy c = cs, where H is selected according to

theorem 1.

Theorem 1 may be extended:

Lemma 1: (Linear invariants for constrained quadratic op-

timization methods) Consider an optimization problem of the

form

min
u0,x

J0 =
[

x u0 d
]

S





x
u0

d





s.t. Ax + Bu + Cd = 0

Ãx + B̃u + C̃d ≤ 0,

(9)

with det(A) 6= 0 and [Ã B̃] full row rank.

Assume that the disturbance space has been partitioned

into na critical regions. In each region there are ni
u = nu0

−
ni

A ≥ 0 unconstrained degrees of freedom, where ni
A ≤ nm

is the number of optimally active constraints in region i.
If there exists a set of independent unconstrained mea-

surements yi = (Gy)iui +(Gy
d)id in each region i, such that

nyi ≥ nui + nd, the optimal solution to (9) has the property

that there exists variable combinations ci = Hiyi that are

invariant to the disturbances d in the critical region i. The

corresponding optimal Hi may be obtained from Theorem

1.
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Within each region, optimality requires that ci − ci
s = 0

(where ci
s is a constant). From continuity of the solution, we

have that ci is continuous across the boundary of region i.
This implies that the elements in the variable vector ci − ci

s

will change sign or remain zero when crossing into or from

a neighboring region.

Proof: See internal report [5].

B. Implementation of optimal solution

For the case of no measurement error, ny = 0, Theorem

1 shows that for the solution to quadratic optimization

problems, variable combinations c = Hy that are invariant

to the disturbances can be found. In section III this insight

will be used as a new approach to the explicit MPC problem.

III. APPLICATION TO EXPLICIT MPC

We will now look at the model predictive control problem

(MPC) with constraints on inputs and outputs. For a discus-

sion on MPC in a unified theoretical framework see [6].

The following discrete MPC formulation is based on [7].

Consider the state-space representation of a given process

model:

x(t + 1) = Ax(t) + Bu(t) (10)

y0(t) = Cx(t), (11)

subject to the following constraints:

ymin ≤ y0(t) ≤ ymax (12)

umin ≤ u(t) ≤ umax, (13)

where x(t) ∈ R
n, u(t) ∈ R

m, and y(t) ∈ R
p are the

state, input and output vectors, respectively, subscripts min

and max denote the lower and upper bounds, respectively,

and (A,B) is stabilizable. MPC problems for regulating to

the origin can then be posed as the following optimization

problem:

min
U

J(U, x(t)) = xt+Ny|y
TPxt+Ny|t+

+

Ny−1
∑

k=0

[

xt+k|t
TQxt+k|t + ut+k

TRut+k

]

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc

xt|t = x(t)

xt+k+1|t = Axt+k|t + But+k, k ≥ 0

yt+k|t = Cxt+k|t, k ≥ 0

ut+k = Kxt+k|t, Nu ≤ k ≤ Ny

where U , {ut, . . . , ut+Nu−1}, Q = QT ≥ 0, R = RT > 0,

P ≥ 0, Ny ≥ Nu, and K is some feedback gain. [7] show

that by substitution of the model equations, the problem can

be rewritten on the form

min
U

1

2
UTHU + x(t)TFU +

1

2
x(t)TY x(t)

s.t. GU ≤ W + Ex(t)
(14)

The MPC control law is based on the following

idea: At time t, compute the optimal solution U∗(t) =
{u∗

t , . . . , u
∗
t+Nu−1} and apply u(t) = u∗

t [1].

Remark 3: The trade-off between robustness and perfor-

mance is included in the weights in the MPC cost function

and in the constraints.

If we let the initial state x(t) be treated as a disturbance,

(14) can be written as:

min
U

1

2

[

UT dT
]

[

H F
F Y

] [

U
d

]

s.t. GU ≤ W + Ed,

(15)

and we observe that (15) is on the same form as (9), where

the model equations f(x, u0, d) = 0 have already been

substituted into the objective function.

A property of the solution to (15) is that the disturbance

space (initial state space) is divided into critical regions. In

the i’th critical region there are ni
u = nU −ni

A unconstrained

degrees of freedom, where ni
A is the number of active

constraints in region i.

As we discuss in section III-A, a possible set of measure-

ments y is the current state and the inputs, yT =
[

xT uT
]

.

We further note that causality is not an issue here, as we

have the information at the current time.

A. Exact measurements of all states (state feedback)

The following theorem is well known, but we will here

prove the theorem using the nullspace method.

Theorem 2: (Optimal state feedback [1]) The control law

u(t) = f(x(t)), f : R
n 7→ R

m, defined by the MPC

problem, is continuous and piecewise affine

f(x) = Kix + gi if Hix ≤ ki, i = 1, . . . , Nmpc (16)

where the polyhedral sets
{

Hix ≤ ki
}

, i =
1, . . . , Nmpc ≤ Nr are a partition of the given set of

states X .

In this case causality is not a problem and from Theorem

1 the optimal solution is simply u = Kx + g (i.e. c =
u − (Kx − g)). Note that nd = nx in this case.

Proof:

We consider the explicit MPC formulation as in (15).

First we consider the unconstrained case. Let y = (U, x)
be the set of candidate measurements. With this choice of

measurements and disturbances on the present state, we form

the process model:

∆y = Gy∆U + Gy
d∆d (17)

Gy =

[

0nx×(nuNu)

I(nuNu)×(nuNu)

]

∈ R
(nx+nuNu)×(nuNu) (18)

Gy
d =

[

Inx×nx

0(nuNu)×nx

]

∈ R
(nx+nuNu)×nx . (19)
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We then get the optimal sensitivity as

F =
∂yopt

∂dT
= −

(

GyJ−1
uu Jud − Gy

d

)

= (20)

−

([

0nx×(nuNu)

(J−1
uu Jud)(nuNu)×nx

]

−

[

Inx×nx

0(nuNu)×nx

])

(21)

=

[

Inx×nx

−J−1
uu Jud

]

(22)

We now search for a matrix H that gives a non-trivial

solution to HF = 0:

[

(H1)(nuNu)×nx
(H2)(nuNu)×(nuNu)

]

[

Inx×nx

J−1
uu Jud

]

= (23)

= H1 − H2

(

J−1
uu Jud

)

= 0 (24)

To ensure a non-trivial solution we can for example choose

H2 = I(nuNu)×nuNu
. Then we must have H1 = J−1

uu Jud,

and hence the optimal combination c of x and U becomes

c = Hy = J−1
uu Judx + U = 0 ∈ R

(nuNu) (25)

In the internal report by [5] it is shown how the affine term

in (16) enters as a function of the active constraints.

Remark 4: (Comparison with previous results on uncon-

strained MPC) In (25) the state feedback gain matrix is given

as J−1
uu Jud. This is gives the same result as conventional

MPC, see equation (3) in [8].

Remark 5: These are not new results but the alternative

proof leads to some new insights. The most important is

probably that the “self-optimizing” variables ci = u−(Kix+
gi) which are optimally zero in region i, may be used

for identifying when to switch between regions (Theorem

3) rather than using a “centralized” approach, for example

based on a state tree structure search. This seems to be

new. Another insight is to understand why a simple feedback

solution must exist in the first place. A third is to allow for

new extensions.

Theorem 3: (Optimal region for explicit MPC detection

using feedback law) The variables c = uk − (Kxk + g) can

be used to identify region changes.

Proof: See report by [5].

Remark 6: Neighboring regions with the same feedback

law (including regions where the feedback law is to keep

the input saturated) can be merged (provided that the regions

remain convex or if the “crossings” inside a non-convex

region due to the optimal direction of the process in closed

loop only occurs in the convex part of the region). This

may greatly reduce the number of regions compared to

presently used enumeration schemes. Note that the number of

c-variables that need to be tracked to detect region changes is

only equal to the number of inputs nu0
times the number of

distinct merged regions. Because of the merging of regions,

this may be a small number even with a large input or control

horizon and with output (state) constraints.

We present a simple example from [1] that confirms that

our switching policy based on tracking the sign of the c-

variables works in practice.

Algorithm 1 Detect current region and calculate uk

Require: CRk−1, i.e. the region of the last sample time,

and xk

1: uk = K(CRk−1) + g(CRk−1)
2: [Regions, α] = Neighbors(CRk−1)
3: for i = 1 to length(Regions) do

4: ck(i) = αi (uk − (K(Regions(i)) + g(Regions(i))))
5: end for

6: if sign(ck(i) 6= −1 ) then

7: CRk = Regions(i)
8: else

9: CRk = CRk−1

10: end if

11: return uk = K(CRk)xk + g(CRk), CRk

Example 3.1 (Optimal switching): This example is taken

from [1] (with correction), and is included here to demon-

strate optimal switching using the sign change of c = u−Kx
as the criterion. The system is:

y(t) =
2

s2 + 3s + 2
u(t).

With a sampling time T = 0.1 seconds the following state-

space representation is obtained:

x(t + 1) =

[

0.7326 −0.0861
0.1722 0.9909

]

x(t) +

[

0.0609
0.0064

]

u(t)

y(t) =
[

0 1.4142
]

x(t)

One observes that only the last state is measured, but it

will be assumed that both states are known (measured) in

the remainder of this example.

The task is to regulate the system to the origin while

fulfilling the input constraint

−2 ≤ u(t) ≤ 2. (26)

The objective function to be minimized is

min xt+2|t
TPxt+2|t +

1
∑

k=0

[

xt+k|t
Txt+k|t + 0.01u2

t+k

]

(27)

subject to the constraints and xt|t = x(t).
P solves the Lyapunov equation P = ATPA + Q, where

Q = I in this case. The optimal control problem can be

solved for example using the MPT toolbox [9]. The P -matrix

is numerically:

P =

[

5.5461 4.9873
4.9873 10.4940

]

To illustrate ideas a simulation from x0 = (1, 1) was done.

State space trajectories and inputs are shown in figures 2

and 3. As long as the state is in the input-constrained region

where uopt = −2, the linear combination c = uk − Kxk

remains positive. One chooses to leave the input-constrained

region when ck becomes zero. As one observes, this happens

at time instant 8, where the process indeed is on the boundary

between the input-saturated region and the center region.
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Fig. 2. Partition of state space for first input. (Example 3.1.)
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Fig. 3. Closed loop MPC with region detection using uk − (Kxk).
(Example 3.1.)

After the switching the controller for the center region is

implemented. The state trajectory is the same as in [1].

The reason for why c never becomes negative is because

both states are assumed measured at the present time and

hence optimal switching is achieved. This can be understood

from the algorithm 1, where we show how the current critical

region (CRk) is tracked and how the current input uk is

calculated.

Example 3.2 (Double integrator): Consider the double

integrator disussed by [1], y(t) = 1/s2u(t), and its equiva-

lent discrete-time state-space representation,

xk+1 =

[

1 1
0 1

]

xk +

[

0
1

]

uk, yk =
[

1 0
]

xk,

which is obtained by setting ÿ(t) = (ẏ(t + Ts) − ẏ(t))/Ts,

−15 −10 −5 0 5 10 15
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0

1

2

3

4

x1

x
2

1

2

3

4

56

7

8

9
10

11

u = 1

u = − 1

Fig. 4. Regions for double integrator example (Example 3.2).

ẏ(t) = (y(t + Ts)− y(t))/Ts, Ts = 1. The control objective

is to regulate the system to the origin while minimizing the

quadratic cost funcion J =
∑∞

t=0 y(t)Ty(t) + 1
10u2 subject

to the input constraint −1 ≤ u(t) ≤ 1. The infinite horizion

control problem can be converted to a finite horizion problem

by solving [1], [10]:

KLQ = −(R + BTPB)−1BTPA,

P = (A + BKLQ)TP (A + BKLQ) + KLQ
TRKLQ + Q

to obtain the unconstrained feedback gain KLQ and the final

state weight matrix P (see example 3.1). In this case we

get KLQ =
[

0.8166 1.7499
]

and P =

[

2.1429 1.2246
1.2246 1.3996

]

.

For demonstration purposes we choose Nu = 6, and by

solving the paramteric program we get 73 regions initially. In

this case there are 11 regions of unsaturated control actions,

which agrees with the general result of (2Nu − 1) regions

given in [1]. Merging all regions where the first optimal input

is the same, leaves us with the 11 unsaturated regions, and

two regions for which the optimal input is either at the high

or low constraint. The final partitioning with 13 regions is

shown in figure 4. We note that [1] find 57 regions after their

merging scheme.

Considering figure 4 one observes that the input-saturated

regions are non-convex. However, optimally, this process

moves clockwise in the state space, and we observe that

the “non-convex” crossings will not occur in practise. The

remaing boundaries then form convex regions (indicated by

the dashed lines in the figure.)

Figure 5 shows the evolution of the invariants ci in each

region when we start the simulation at x0 = (0,−3) and

close the loop by using the optimal inputs. We start in

the input-saturated region u = 1, and need to track the

invariants for regions 1,2,3,4,5, and 6 to determine optimal

switching. We should switch to unsaturated control when one

the variables c1 to c6 becomes zero or changes sign. As one

sees, this happens for c3 at t = 6, so we change to this

region. After using the feedback law for region 3 for one
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Fig. 5. Invariants for double integrator example.

sample time, we reach the other input constraint u = −1
at t = 8. Now, to decide when to leave this constrained

region we track the invariants for regions 1,7,8,9,10,11, and

we observe that at t = 9 the invariant for the center region

becomes zero, hence we switch control to this region.

Note that in this example, where we have only input

constrained regions, the challenge is to decide when to leave

the input constraints. Note that the converse crossing can also

be tracked using their invariants on the form ck = uk − g.

The idea of using directionality (clockwise movement in

this case) to reduce the number of reigons in explicit MPC

can be generalized by using the directional derivative of the

process under optimal control, (A−BKi), together with the

normal vectors to the boundaries of the regions, and by some

normalization scheme we remove all boundaries for which

crossings under optimal control will not occur. Here Ki is

the optimal feedback gain for region i.

IV. DISCUSSION

In this paper we have described the link between self-

optimizing control and explicit MPC. This link has been used

to propose a new method for detecting region changes. This

new method lets us reduce the number of regions by merging

all regions for which the first input is the same. In its simple

form presented in this paper, it does not handle non-convex

regions, but we noted that for some processes directionality

of the process in closed loops implies that the non-convex

crossings may be ignored.

In a forthcoming contribution [3] we show how the results

can be extended to output feedback and how to find invariants

that give minimal loss when controlled at constant set points

also when we have noisy measurements. We further show

how we one choose the order of the controller and we

show by examples that the resulting controller will have

performance in the order of magnitude of LQG controllers.

The most important problem of using results from steady

state self-optimizing control is causality, in steady state

optimization all measurements are available at the current

time (i.e. t → ∞), but in dynamic optimization we may

need to find invariants between measurements at current and

future times and then switch the invariants back to get a

casual controller, but this controller will be non-optimal by

construction. Also this is discussed in more detail in [3].
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