Observer Based Tracking Control for Switched Linear Systems with Time-Delay

Qing-Kui Li, Georgi M. Dimirovski and Jun Zhao

Abstract

Observer based tracking control for switched linear systems with time-delay is investigated in this paper. Sufficient condition for the solvability of the tracking control problem is given for the case that the state of system is not available. The design of a switching control law based on measured output instead of the state information is considered. Lyapunov-Krasovskii functional method is utilized to the stability analysis and controller design for the switched linear timedelay systems. The Variation-of-constants formula and linear operator theory are used to conquer the difficulties caused by the estimation error and exotic disturbance. By using linear matrix inequalities techniques, the controller design problem can be solved efficiently. The numerical example shows the effectiveness of the switching control laws.

I. Introduction

As an important class of systems, time-delay systems are ubiquitous in chemical process, aerodynamics, and communication network (see, e.g.,[3], [5], [8]). It is well known that time-delay is great source of instability and poor performance. Therefore, how to deal with time-delay has been a hot topic in the control area [4], [6], [10].

On the other hand, switching control provides a new technique to the stability analysis and control synthesis for complex control systems (e.g., nonlinear systems, uncertain or parameter varying systems). Due to their significance both in theory development and practical applications, switched systems have been attracting considerable attention during the last decade [7], [9], [12], [16]. Two key problems in the study of switched systems are the stability analysis and control synthesis, it has been shown that Lyapunov functions as useful tools, can deal with the stability problems for switched systems, although certain switching laws incorporated with compatible information sometimes should be designed [1], [7]. Since switched systems with time-delay have strong engineering background, special attention has been attracted, and several useful results have been reported in the literature such as the issues on stability analysis [12], [15], optimal control [14], and so on. The importance of the study of tracking control for switched systems with time-delay arises from the extensive applications in robot tracking control [17],

[^0]guided missile tracking control, etc. However, to the authors' best knowledge, up to now, the issue of tracking control, which has been well addressed for non-switched systems without delay [11], has been rarely investigated for switched systems with time-delay.

In this paper, we investigate the problem of observer based tracking control for switched linear systems with time-delay. Sufficient condition for the solvability of the tracking control problem is given for the case that the state of a system is unmeasurable. The design of a switching control law based on measured output instead of the state information is considered. We use multiple Lyapunov function technique to design tracking controllers and a switching law such that the observer based H_{∞} model reference tracking performance is satisfied. The methods in [13] are extended to the design of the observer based switched tracking control laws, and some results of functional differential equations (see in [5]) such as the Variation-of-constants formula and linear operator theories are utilized to conquer the difficulties caused by the estimation error and exotic disturbance. The feasibility of the problem can be realized by convex optimization techniques and linear matrix inequalities. Finally, the simulation example show the validity of the proposed design method.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we use $P>0(\geq,<, \leq 0)$ to denote a positive definite (semi-definite, negative definite, seminegative definite) matrix P. The superscript " T " stands for matrix transpose; and the symmetric terms in a matrix are denoted by $*, \mathbb{R}^{n}$ denotes the n dimensional Euclidean space; $L_{2}[0, \infty)$ is the space of square integrable functions on $[0, \infty), \mathscr{L}_{1}^{\text {loc }}\left([\varrho, \infty), \mathbb{R}^{n}\right)$ is the space of locally Lebesgue integrable vector valued functions on $[\varrho, \infty)$. For given $\tau>$ 0 , let $\mathbb{R}_{+}=[0,+\infty]$ and $C_{n}=C\left([-\tau, 0], \mathbb{R}^{n}\right)$ be the Banach Space of continuous mapping from $\left([-\tau, 0], \mathbb{R}^{n}\right)$ to \mathbb{R}^{n} with topology of uniform convergence. Let $x_{t} \in C_{n}$ be defined by $x_{t}(\theta)=x(t+\theta), \theta \in[-\tau, 0]$. $\|\cdot\|$ denotes the usual 2-norm and $\left\|x_{t}\right\|_{c l}=\sup _{-\tau \leq t \leq 0}\|x(t+\theta)\|$.

Consider the switched linear system with time-delay

$$
\left\{\begin{array}{c}
\dot{x}(t)=A_{\sigma} x(t)+D_{\sigma} x(t-\tau)+B_{\sigma} u(t)+\omega(t), \tag{1}\\
\phi_{\sigma}(\theta)=x(t+\theta), \quad \theta \in\left[t_{j}-\tau, t_{j}\right], x(0)=0 \\
y(t)=C_{\sigma} x(t), \quad t \in[0, \infty), j=0,1, \cdots
\end{array}\right.
$$

where $x(t) \in \mathbb{R}^{n}$ is the state, $u(t) \in \mathbb{R}^{p}$ is the control input, $\omega(t) \in \mathbb{R}^{n}$ is bounded exogenous disturbance which belong to $L_{2}[0, \infty)$ and $\mathscr{L}_{1}^{\text {loc }}\left([\varrho, \infty), \mathbb{R}^{n}\right)$, respectively; $y(t) \in \mathbb{R}^{q}$ is the output, $\phi_{\sigma}(t)$ is the continuous vector valued function specifying the initial state of each
subsystem, $\tau>0$ is the constant, the right continuous function $\sigma(t):[0, \infty) \rightarrow \underline{N} \triangleq\{1,2, \cdots, N\}$ is the switching signal which can be characterized by the switching sequence $\Sigma=\left\{x_{0} ;\left(i_{0}, t_{0}\right),\left(i_{1}, t_{1}\right), \cdots,\left(i_{j}, t_{j}\right), \cdots \mid i_{j} \in\right.$ $\underline{N}, j=0,1, \cdots\}$. Moreover, $\sigma(t)=i$ implies that the i-th subsystem $\left(A_{i}, D_{i}, B_{i}, C_{i}\right)$ is active, where A_{i}, D_{i}, B_{i} and C_{i} are constant matrices of appropriate dimensions, $i \in \underline{N}$. For simplicity, we denote $\sigma:=\sigma(t)$.
Definition 1. The system (1) is said to be exponentially stabilizable under control law $u=u(t)$ and switching signal $\sigma=\sigma(t)$, if the solution $x(t)$ of switched system (1) through $\left(t_{0}, \phi\right) \in \mathbb{R}_{+} \times C_{n}$ satisfies

$$
\|x(t)\| \leq \kappa\left\|x_{t_{0}}\right\|_{c l} e^{-\lambda\left(t-t_{0}\right)}, \forall t \geq t_{0}
$$

for some constants $\kappa \geq 0$ and $\lambda>0$.
Suppose that the state observer is with the form

$$
\begin{align*}
\dot{\hat{x}}(t)= & A_{\sigma} \hat{x}(t)+D_{\sigma} \hat{x}(t-\tau)+B_{\sigma} u(t) \\
& +L_{\sigma}(y(t)-\hat{y}(t)) \tag{2a}\\
\hat{y}(t)= & C_{\sigma} \hat{x}(t) \tag{2b}
\end{align*}
$$

in which $y(t)$ and $\sigma(t)$ are the measurable output and switching signal of system (1), respectively. The matrices $L_{1}, L_{2}, \cdots, L_{N} \in \mathbb{R}^{n \times q}$ are to be determined later.

Given a reference model and performance index as

$$
\begin{gather*}
\dot{x}_{r}(t)=A_{r} x_{r}(t)+r(t), \quad x_{r}(0)=0 \tag{3}\\
\int_{0}^{\infty} e_{r}^{T}(t) e_{r}(t) d t<\gamma^{2} \int_{0}^{\infty} \varpi^{T}(t) \varpi(t) d t \tag{4}
\end{gather*}
$$

where $x_{r}(t) \in \mathbb{R}^{n}$ is reference state, A_{r} is a Hurwitz matrix, $r(t)$ is reference input which belong to $L_{2}[0, \infty)$ and $\mathscr{L}_{1}^{\text {loc }}\left([\varrho, \infty), \mathbb{R}^{n}\right)$, respectively; $e_{r}(t)=x(t)-x_{r}(t)$ denotes the error between the state of system (1) and the reference state; $\varpi(t)=\left(\omega^{T}(t), r^{T}(t)\right)^{T}, \gamma>0$ is disturbance attenuation level.

Define the difference between the real state and the observer state, the observer state and the reference state as

$$
\begin{aligned}
e(t) & =x(t)-\hat{x}(t) \\
\hat{e}_{r}(t) & =\hat{x}(t)-x_{r}(t)
\end{aligned}
$$

Design the error feedback control law

$$
\begin{equation*}
u(t)=K_{\sigma_{(t)}} \hat{e}_{r}(t) \tag{5}
\end{equation*}
$$

Subtracting (2a) from (1) gives the error switched system

$$
\begin{equation*}
\dot{e}(t)=\left(A_{\sigma}-L_{\sigma} C_{\sigma}\right) e(t)+D_{\sigma} e(t-\tau)+\omega(t) \tag{6}
\end{equation*}
$$

Now, combining (2a), (3) with (5) and (6), we have the augmented switching linear time-delay system as follows:

$$
\begin{align*}
& \dot{e}(t)=\left(A_{\sigma}-L_{\sigma} C_{\sigma}\right) e(t)+D_{\sigma} e(t-\tau)+\omega(t), \tag{7a}\\
& \left\{\begin{aligned}
\dot{\hat{x}}(t)= & A_{\sigma} \hat{x}(t)+D_{\sigma} \hat{x}(t-\tau)+B_{\sigma} K_{\sigma} \hat{e}_{r}(t) \\
& +L_{\sigma} C_{\sigma} e(t), \\
\dot{x}_{r}(t)= & A_{r} x_{r}(t)+r(t) .
\end{aligned}\right. \tag{7b}
\end{align*}
$$

Let

$$
\begin{aligned}
\bar{x}(t) & =\left[\begin{array}{c}
\hat{x}(t) \\
x_{r}(t)
\end{array}\right], \bar{D}=\left[\begin{array}{cc}
D_{\sigma} & 0 \\
0 & 0
\end{array}\right], f_{\sigma}(t)=\left[\begin{array}{c}
L_{\sigma} C_{\sigma} e(t) \\
r(t)
\end{array}\right] \\
\bar{A}_{\sigma} & =\left[\begin{array}{cc}
A_{\sigma}+B_{\sigma} K_{\sigma}-B_{\sigma} K_{\sigma} \\
0 & A_{r}
\end{array}\right], \bar{Q}=\left[\begin{array}{cc}
I & -I \\
-I & I
\end{array}\right]
\end{aligned}
$$

Then, (7b) can be rewritten as

$$
\begin{equation*}
\dot{\bar{x}}(t)=\bar{A}_{\sigma} \bar{x}(t)+\bar{D}_{\sigma} \bar{x}(t-\tau)+f_{\sigma}(t) \tag{7b’}
\end{equation*}
$$

and the corresponding nominal system of (7b') is

$$
\begin{equation*}
\dot{\bar{x}}(t)=\bar{A}_{\sigma} \bar{x}(t)+\bar{D}_{\sigma} \bar{x}(t-\tau) \tag{8}
\end{equation*}
$$

Remark 1. When $f_{\sigma}(t) \in \mathscr{L}_{1}^{\text {loc }}\left([\varrho, \infty), \mathbb{R}^{n}\right)$, by the stepping method in finite interval $\left[t_{j}, t_{j+1}\right)$ for each subsystem of (7) and well-defined switching law, the existence and uniqueness of the solution with initial condition for switched linear timedelay system (7) can be obtained.
Definition 2. For system (1), if there exist control input $u=u(t)$ and switching signal $\sigma=\sigma(t)$ such that (7) is asymptotically stable when $\varpi \equiv 0$ and (4) is satisfied when $\varpi \neq 0$ under the initial conditions stated in (1) and (3), then the switched system (1) is said to have observer based H_{∞} model reference tracking performance.

To conclude this section, we recall the following lemma. Lemma 1 [2]. Let M, N be real matrices of appropriate dimensions. Then, for any matrix $Q>0$ of appropriate dimension and any scalar $\gamma>0$, it holds that

$$
M N+N^{T} M^{T} \leq \gamma^{-1} M Q^{-1} M^{T}+\gamma N^{T} Q N
$$

III. Performance analysis and controller design

In this section, we will give our main result.
Assumption 1. There exist positive definite matrices X, G and matrices Y_{i}, such that

$$
\begin{align*}
\Theta_{i}:= & A_{i}^{T} X+X A_{i}-C_{i}^{T} Y_{i}^{T}-Y_{i} C_{i}+G \\
& +X D_{i} G^{-1} D_{i}^{T} X<0 \tag{9}
\end{align*}
$$

Remark 2. The above assumption asserts the existence of a common Lyapunov-Krasovskii functional candidate $V(e(t))$ for the switched linear time-delay system

$$
\begin{equation*}
\dot{e}(t)=\left(A_{\sigma}-L_{\sigma} C_{\sigma}\right) e(t)+D_{\sigma} e(t-\tau) . \tag{10}
\end{equation*}
$$

In fact, let $L_{i}=X^{-1} Y_{i}$, and choose

$$
V(e(t))=e^{T}(t) X e(t)+\int_{t-\tau}^{t} e^{T}(s) G e(s) d s
$$

as a Lyapunov-Krasovskii functional candidate. It is easy to show that there exist scalars $\alpha_{1}>0, \alpha_{2}>0$, such that $\alpha_{1}\|e(t)\|^{2} \leq V(e(t)) \leq \alpha_{2}\left\|e_{t}\right\|_{c l}^{2}$. Moreover,

$$
\|e(t)\| \leq \sqrt{\frac{\alpha_{2}}{\alpha_{1}}} e^{-\frac{\lambda}{2 \alpha_{1}}\left(t-t_{0}\right)}\left\|e_{t_{0}}\right\|_{c l}
$$

holds with λ being the smallest eigenvalue of the matrices Θ_{i}. This implies that the system (10) is exponentially stable under arbitrary switching.
Before developing conditions for the solvability of observer based tracking control for switched time-delay systems, a preliminary result is presented. The following state constitutes a generalization of Hale's results (see in [5]).
Consider the linear time-delay system (7b') without switching and its homogeneous system

$$
\begin{align*}
& \dot{x}(t)=A x(t)+D x(t-\tau)+f(t) \tag{11}\\
& \dot{x}(t)=A x(t)+D x(t-\tau) \tag{12}
\end{align*}
$$

We rewrite them with operator form

$$
\begin{align*}
& \dot{x}_{t}=L\left(t, x_{t}\right)+f(t), \quad t \geq \varrho \tag{13}\\
& \dot{x}_{t}=L\left(t, x_{t}\right), x_{\varrho}=\phi . t \geq \varrho \tag{14}
\end{align*}
$$

where the operator $L(t, \phi)$ is linear in ϕ, and has the form $L(t, \phi)=A \phi(0)+D \phi(-\tau)$, in which $\phi(\theta)=x(t+\theta), \theta \in$ $(-\tau, 0)$. Suppose there is an $m \in \mathscr{L}_{1}^{\mathrm{loc}}([\varrho, \infty), \mathbb{R})$ such that

$$
\begin{equation*}
|L(t, \phi)| \leq m(t)|\phi| \tag{15}
\end{equation*}
$$

for all $t \in(-\infty, \infty), \phi \in C_{n}$.
Lemma 2 (Variation-of-constants [5]). If L satisfies the hypotheses of condition (15), $x(\varrho, \phi, f)$ denotes the solution of system (11) or (13), and $x(\varrho, \phi, 0)$ is the solution of the corresponding homogeneous system (12) or (14), then

$$
\begin{align*}
x(\varrho, \phi, f)(t) & =x(\varrho, \phi, 0)(t)+\int_{\varrho}^{t} U(t, s) f(s) d s, \\
x_{\varrho} & =\phi, \quad t \geq \varrho \tag{16}
\end{align*}
$$

where $U(t, s)$ is the solution of the equation

$$
U(t, s)=\left\{\begin{array}{cr}
\int_{s}^{t} L\left(u, U_{u}(\cdot, s)\right) d u+I \text { a.e. in } s, t \geq s \\
0 . & s-r \leq t<s
\end{array}\right.
$$

in which $U_{t}(\cdot, s)(\theta)=U(t+\theta, s),-\tau \leq \theta \leq 0$.
For the convenience of using the variation-of-constants formula, some notations are introduced to rewrite the formula.

Denote $x(\varrho, \phi, 0)(t+\theta)$ as $x_{t}(\varrho, \phi, 0)$, and if $x(\varrho, \phi, 0) \triangleq$ $T(t, \varrho) \phi$, then the $T(t, \varrho)$ is a continuous linear operator. Therefore

$$
U_{t}(\cdot, s)=T(t, s) X_{0}, \quad X_{0}(\theta)=\left\{\begin{array}{l}
0,-\tau \leq \theta<0 \\
I, \theta=0
\end{array}\right.
$$

With the above notations, the variation-of-constants formula becomes

$$
x_{t}(t, \varrho, \phi, f)=T(t, \varrho) \phi+\int_{\varrho}^{t} T(t, s) X_{0} f(s) d s, t \geq \varrho .
$$

Theorem 1. For system (7), suppose that Assumption 1 holds. If there exist positive definite matrices P_{i}, S, H_{i}, matrices K_{i}, and scalars $\alpha_{i j}>0, \eta>0,(i, j \in \underline{N})$, such that the following matrices inequalities

$$
\left[\begin{array}{ccc}
\Xi_{i} & P_{i} \bar{D}_{i} & P_{i} \tag{17}\\
* & -e^{-\eta \tau} S & 0 \\
* & * & -\rho^{2} I
\end{array}\right]<0
$$

hold, where
$\Xi_{i}:=\bar{A}_{i}^{T} P_{i}+P_{i} \bar{A}_{i}+\eta P_{i}+S+\bar{Q}+\sum_{j \neq i, j \in \underline{N}} \alpha_{i j}\left(P_{j}-P_{i}\right)$,
then the feedback controller $u(t)=K_{\sigma} \hat{e}_{r}(t)$ for the system (7), such that the observer based H_{∞} model reference tracking performance in (1) is guaranteed, the corresponding switching law is given as

$$
\begin{equation*}
\sigma(t)=\arg \min _{i \in \underline{N}}\left\{\bar{x}^{T}(t) P_{i} \bar{x}(t)\right\} \tag{18}
\end{equation*}
$$

Proof. By Schur complement lemma, the condition (17) is equivalent to the following inequalities

$$
\left[\begin{array}{cc}
\Xi_{i}+\rho^{-2} P_{i} P_{i} & P_{i} \bar{D}_{i} \tag{19}\\
* & -e^{-\eta \tau} S
\end{array}\right]<0 .
$$

Design Lyapunov-Krasovskii functional candidate as
$V(\bar{x}(t))=\bar{x}^{T}(t) P_{\sigma(t)} \bar{x}(t)+\int_{t-\tau}^{t} \bar{x}^{T}(s) e^{-\eta(t-s)} S \bar{x}(s) d s$.
Obviously, the Lyapunov-Krasovskii functional candidate is positive definite.

First, we prove asymptotic stability of system (7b') with $\varpi(t) \equiv 0$ (noticing that $f_{\sigma}(t) \neq 0$ in (7b')).
Consider the switched linear time-delay system (7b'). For any $t>0$, the j th switching instant is denoted by $t_{j}(j \geq$ $0)$. During any time interval $\left[t_{j}, t_{j+1}\right)$, suppose that the i th subsystem is active. Let $\xi(t)=\left[\bar{x}^{T}(t) \bar{x}^{T}(t-\tau)\right]^{T}$. The time derivative of $V(\bar{x}(t))$ along the trajectory of (8) is

$$
\begin{align*}
& \dot{V}(\bar{x}(t))+\eta V(\bar{x}(t)) \\
& =\xi^{T}(t)\left[\begin{array}{cc}
\bar{A}_{i}^{T} P_{i}+P_{i} \bar{A}_{i}+\eta P_{i}+S & P_{i} \bar{D}_{i} \\
* & -e^{-\eta \tau} S
\end{array}\right] \xi(t) . \tag{21}
\end{align*}
$$

According to the condition (19), we have

$$
\left[\begin{array}{cc}
\bar{A}_{i}^{T} P_{i}+P_{i} \bar{A}_{i}+\eta P_{i}+S & P_{i} \bar{D}_{i} \tag{22}\\
* & -e^{-\eta \tau} S
\end{array}\right]<\left[\begin{array}{rr}
\Pi_{i} & 0 \\
0 & 0
\end{array}\right],
$$

where

$$
\Pi_{i}:=-\rho^{-2} P_{i} P_{i}-\bar{Q}-\sum_{j \neq i, j \in \underline{N}} \alpha_{i, j}\left(P_{j}-P_{i}\right)
$$

By virtue of the designed switching law (18), it follows

$$
\bar{x}^{T}(t)\left(\sum_{j \neq i, j \in \underline{N}} \alpha_{i j}\left(P_{j}-P_{i}\right)\right) \bar{x}(t) \geq 0, \forall t \in R^{2 n}
$$

Also we note that $\bar{Q} \geq 0$. During $\left[t_{j}, t_{j+1}\right)$, when $\xi(t) \neq$ 0 , we easily get

$$
\dot{V}(\bar{x}(t))+\eta V(\bar{x}(t))<\xi^{T}(t)\left[\begin{array}{rr}
\Pi_{i} & 0 \\
0 & 0
\end{array}\right] \xi(t) \leq 0
$$

Thus, there holds

$$
\begin{equation*}
\dot{V}(\bar{x}(t)) \leq-\eta V(\bar{x}(t)) \tag{23}
\end{equation*}
$$

During any $\left[t_{j}, t_{j+1}\right)$, (23) gives rise that

$$
\begin{equation*}
V(\bar{x}(t)) \leq e^{-\eta\left(t-t_{j}\right)} V\left(\bar{x}\left(t_{j}\right)\right) \tag{24}
\end{equation*}
$$

In addition, by the switching law (18), at the switching instant t_{j}, we have

$$
\bar{x}^{T}\left(t_{j}\right) P_{\sigma\left(t_{j}\right)} \bar{x}\left(t_{j}\right) \leq \lim _{t \rightarrow t_{j}^{-}} \bar{x}^{T}(t) P_{\sigma(t)} \bar{x}(t)
$$

which implies $V\left(\bar{x}^{T}\left(t_{j}\right)\right) \leq \lim _{t \rightarrow t_{j}^{-}} V\left(\bar{x}^{T}(t)\right)$, by induction on $t_{0}, t_{1}, \cdots, t_{j}$, from (24) we get

$$
V(\bar{x}(t)) \leq e^{-\eta\left(t-t_{0}\right)} V\left(\bar{x}\left(t_{0}\right)\right)
$$

Then we have

$$
\|\bar{x}(t)\|^{2} \leq \frac{\lambda_{M}\left(P_{i}\right)+\tau \lambda_{M}(S)}{\lambda_{m}\left(P_{i}\right)} e^{-\eta\left(t-t_{0}\right)}\left\|\bar{x}\left(t_{0}\right)\right\|_{c l}^{2}
$$

where $\lambda_{m}(\cdot)\left(\lambda_{M}(\cdot)\right)$ denotes the minimum (maximum) eigenvalue of a symmetric matrix, which implies exponential stability of the nominal systems of (7 b '), i.e., the system (8).

By the variation-of-constants formula, since $f_{\sigma}(t) \in$ $\mathscr{L}_{1}^{\text {loc }}\left([\varrho, \infty), R^{2 n}\right)$, the solution through $\left(t_{0}, \varphi_{0}\right)$ of (7b') can be expressed as follows

$$
\begin{aligned}
\bar{x}_{t}\left(t, t_{0}, \varphi_{0}, f_{\sigma}\right) & =T\left(t, t_{0}\right) \varphi_{0} \\
& +\int_{t_{0}}^{t} T(t, s) X_{0}(\theta) f_{\sigma}(s) d s, t \geq t_{0}
\end{aligned}
$$

Recalling that we have obtained that the nominal system of (7 b ') is exponentially stable under the conditions of theorem 1 , that is, there are constants $\alpha>0,0<\kappa \leq 1$ such that, for all $\varrho \in \mathbb{R}$,

$$
\|T(t, \varrho)\| \leq \kappa e^{-\alpha(t-\varrho)},\left\|T(t, \varrho) X_{0}\right\| \leq \kappa e^{-\alpha(t-\varrho)}, t>\varrho
$$

Now, we consider the following stepping iterative process from $t_{0}=0$ to t_{j} :

- when $t \in\left[t_{0}, t_{1}\right)$, suppose that the i_{0} th subsystem is active, noticing $\varphi_{i_{0}}=0$ there has

$$
\begin{aligned}
& \left\|\bar{x}_{t}\left(t, t_{0}, \varphi_{i_{0}}, f_{i_{0}}\right)\right\| \\
& \leq\left\|T\left(t, t_{0}\right)\right\| \cdot\left\|\varphi_{i_{0}}\right\|+\int_{t_{0}}^{t}\left\|T(t, s) X_{0}\right\| \cdot\left\|f_{i_{0}}(s)\right\| d s \\
& \leq \int_{t_{0}}^{t_{1}} \kappa e^{-\alpha(t-s)}\left\|f_{i_{0}}(s)\right\| d s
\end{aligned}
$$

- when $t \in\left[t_{1}, t_{2}\right)$, suppose that the i_{1} th subsystem is active,

$$
\begin{aligned}
& \left\|\bar{x}_{t}\left(t, t_{1}, \varphi_{i_{1}}, f_{i_{1}}\right)\right\| \\
& \leq\left\|T\left(t, t_{1}\right)\right\| \cdot\left\|\varphi_{i_{1}}\right\|+\int_{t_{1}}^{t}\left\|T(t, s) X_{0}\right\| \cdot\left\|f_{i_{1}}(s)\right\| d s \\
& \leq \kappa e^{-\alpha\left(t-t_{1}\right)} \cdot \int_{t_{0}}^{t_{1}} \kappa e^{-\alpha(t-s)}\left\|f_{i_{0}}(s)\right\| d s \\
& \quad+\int_{t_{1}}^{t_{2}} \kappa e^{-\alpha(t-s)}\left\|f_{i_{1}}(s)\right\| d s
\end{aligned}
$$

- when $t \in\left[t_{j}, t_{j+1}\right)$, suppose that the i th subsystem is active,

$$
\begin{align*}
& \left\|\bar{x}_{t}\left(t, t_{j}, \varphi_{i}, f_{i}\right)\right\| \\
& \leq\left\|T\left(t, t_{j}\right)\right\| \cdot\left\|\varphi_{i}\right\|+\int_{t_{j}}^{t} \kappa e^{-\alpha(t-s)} f_{i}(s) d s \\
& \leq \kappa^{j} e^{-\alpha\left(t-t_{j}\right)-\cdots-\alpha\left(t-t_{1}\right)} \int_{t_{0}}^{t_{1}} \kappa e^{-\alpha(t-s)}\left\|f_{i_{0}}(s)\right\| d s \\
& +\kappa^{j-1} e^{-\alpha\left(t-t_{j}\right)-\cdots-\alpha\left(t-t_{2}\right)} \int_{t_{1}}^{t_{2}} \kappa e^{-\alpha(t-s)}\left\|f_{i_{1}}(s)\right\| d s \\
& +\cdots+\kappa e^{-\alpha\left(t-t_{j}\right)} \int_{t_{j-1}}^{t_{j}} \kappa e^{-\alpha(t-s)}\left\|f_{i_{j-1}}(s)\right\| d s \\
& +\int_{t_{j}}^{t} \kappa e^{-\alpha(t-s)}\left\|f_{i}(s)\right\| d s \tag{25}
\end{align*}
$$

Note that $\kappa^{j-n} \exp \left\{\sum_{m=0}^{j-1-n}-\alpha\left(t-t_{j-m}\right)\right\} \leq 1, n=$ $0, \cdots, j-1$, (25) gives

$$
\begin{equation*}
\left\|\bar{x}_{t}\left(t, t_{j}, \varphi_{i}, f_{i}\right)\right\| \leq \int_{t_{0}}^{t} \kappa e^{-\alpha(t-s)}\left\|f_{\sigma(t)}(s)\right\| d s \tag{26}
\end{equation*}
$$

When $\varpi(t)=0$, note that $f_{i}(t)=\left[\begin{array}{c}L_{i} C_{i} e(t) \\ 0\end{array}\right]$, with $\omega(t)=0$ Assumption 1 guarantees $e(t) \rightarrow 0(t \rightarrow \infty)$, which in turn gives $f_{i}(t) \rightarrow 0(t \rightarrow \infty)$, that is, $\forall \epsilon>$ $0, \exists T_{1}>0$, when $t>T_{1}$, there holds $\left\|f_{i}(t)\right\|<\epsilon$. The boundedness of $f_{i}(t)$ follows consequently, i. e., $\left\|f_{i}(t)\right\| \leq$ $B_{0}(i \in \underline{N})$ follows. When $t \in\left[t_{j}, t_{j+1}\right) \subset\left[T_{1}, \infty\right)$, (26) gives that

$$
\begin{align*}
& \int_{t_{0}}^{t} \kappa e^{-\alpha(t-s)}\left\|f_{\sigma(t)}(s)\right\| d s \\
\leq & B_{0} \int_{t_{0}}^{T_{1}} \kappa e^{-\alpha(t-s)} d s+\int_{T_{1}}^{t} \kappa e^{-\alpha(t-s)} d s \cdot \epsilon \\
\leq & \frac{\kappa B_{0}}{\alpha} e^{-\alpha\left(t-T_{1}\right)}+\frac{\kappa}{\alpha} \epsilon \tag{27}
\end{align*}
$$

For $\forall \varepsilon>0$, choose $T=T_{1}+\frac{\ln \varepsilon^{-1}}{\alpha}$ and $\epsilon=\varepsilon$. When $t \in\left[t_{j}, t_{j+1}\right) \subset[T, \infty)$, it follows from (26) and (27) that

$$
\left\|\bar{x}_{t}\left(t, t_{j}, \varphi_{i}, f_{i}\right)\right\| \leq\left(\frac{\kappa B_{0}}{\alpha}+\frac{\kappa}{\alpha}\right) \varepsilon .
$$

The above inequality and the continuity of the state trajectory $\bar{x}(t)$ imply that $\bar{x}(t) \rightarrow 0$ as $t \rightarrow \infty$, this in turn gives rise to that the switched linear time-delay system (7) is asymptotically stable with $\varpi(t)=0$.

Secondly, we prove under zero initial condition with $\varpi(t) \neq 0$ that $\int_{0}^{\infty} e_{r}^{T}(t) Q e_{r}(t) d t<\gamma^{2} \int_{0}^{\infty} \varpi^{T}(t) \varpi(t) d t$.

Again, assume $\sigma(t)=i, t \in\left[t_{j}, t_{j+1}\right)$. Differentiating the Lyapunov-Krasovskii functional candidate $V(\bar{x}(t))$ along the trajectory of the system (7b') with $\varpi(t) \neq 0$, we have

$$
\begin{align*}
\dot{V}(\bar{x}(t)) & =\xi^{T}(t)\left[\begin{array}{cc}
\bar{A}_{i}^{T} P_{i}+P_{i} \bar{A}_{i}+S & P_{i} \bar{D}_{i} \\
* & -e^{-\eta \tau} S
\end{array}\right] \xi(t) \tag{28}\\
& +2 \bar{x}^{T}(t) P_{i} f_{i}(t)-\eta \int_{t-\tau}^{t} \bar{x}^{T}(s) e^{-\eta(t-s)} S \bar{x}(s) d s
\end{align*}
$$

Using Lemma 1 again, we have
$2 \bar{x}^{T}(t) P_{i} f_{i}(t) \leq \rho^{-2} \bar{x}^{T}(t) P_{i} P_{i} \bar{x}(t)+\rho^{2} f_{i}^{T}(t) f_{i}(t)$.
Substituting (29) into (28) and taking into account the condition (19), the switching law (18), and the structure of \bar{Q} yields

$$
\begin{align*}
\dot{V}(\bar{x}(t)) & <\xi^{T}(t)\left[\begin{array}{rr}
-\bar{Q} & 0 \\
0 & 0
\end{array}\right] \xi(t)+\rho^{2} f_{i}^{T}(t) f_{i}(t) \\
& \leq-\hat{e}_{r}^{T}(t) \hat{e}_{r}(t)+\rho^{2} f_{i}^{T}(t) f_{i}(t) \tag{30}
\end{align*}
$$

Note that $\hat{e}_{r}(t)=e_{r}(t)-e(t)$, using Lemma 1 with $Q=$ $\operatorname{diag}\left\{\frac{1}{2}, \cdots, \frac{1}{2}\right\} \in \mathbb{R}^{n \times n}$ gives

$$
\begin{align*}
-\hat{e}_{r}^{T}(t) \hat{e}_{r}(t)= & -e_{r}^{T}(t) e_{r}(t)-e^{T}(t) e(t)+2 e_{r}^{T}(t) e(t) \\
\leq & -e_{r}^{T}(t) e_{r}(t)-e^{T}(t) e(t) \\
& +e_{r}^{T}(t) Q e_{r}(t)+e^{T}(t) Q^{-1} e(t) \\
= & -\frac{1}{2} e_{r}^{T}(t) e_{r}(t)+\|e(t)\|^{2} . \tag{31}
\end{align*}
$$

Similar to the disposal in above proving, let $e_{t}\left(t, t_{j}, \psi_{i}, \omega\right)$ denote the solution of error switched system (6) or (7a) with initial condition $\left(t_{j}, \psi_{i}\right)$. By the variation-of-constants formula, there has

$$
e_{t}\left(t, t_{j}, \psi_{i}, \omega\right)=T_{1}\left(t, t_{j}\right) \psi_{i}+\int_{t_{j}}^{t} T_{1}(t, s) X_{0} \omega(s) d s
$$

where T_{1} is a proper continuous linear operator. Noticing that Assumption 1 guarantees that the error switched system (6) or (7a) is exponentially stable when $\omega(t)=0$, that is, there are constants $\beta>0,0<k \leq 1$ such that,
$\left\|T_{1}(t, \varrho)\right\| \leq k e^{-\beta(t-\varrho)},\left\|T_{1}(t, \varrho) X_{0}\right\| \leq k e^{-\beta(t-\varrho)}, t>\varrho$.
Repeating the stepping iterative process such as in (26) easily gives

$$
\begin{equation*}
\left\|e_{t}\left(t, t_{j}, \psi_{i}, \omega\right)\right\| \leq \int_{t_{0}}^{t} k e^{-\beta(t-s)}\|\omega(s)\| d s \tag{32}
\end{equation*}
$$

According to Cauchy-Schwartz Inequality, (32) gives

$$
\begin{align*}
\|e(t)\|^{2} & \leq \int_{t_{0}}^{t} k^{2} e^{-\beta(t-s)} d s \cdot \int_{t_{0}}^{t} e^{-\beta(t-s)}\|\omega(s)\|^{2} d s \\
& \leq \frac{k^{2}}{\beta} \int_{t_{0}}^{t} e^{-\beta(t-s)}\|\omega(s)\|^{2} d s \tag{33}
\end{align*}
$$

Therefore, when $\varpi(t) \neq 0$, there has

$$
\begin{align*}
f_{i}^{T}(t) f_{i}(t) & =e^{T}(t) C_{i}^{T} L_{i}^{T} L_{i} C_{i} e(t)+r^{T}(t) r(t) \\
& <\lambda^{2}\|e(t)\|^{2}+r^{T}(t) r(t) \tag{34}\\
& <\frac{\lambda^{2} k^{2}}{\beta} \int_{t_{0}}^{t} e^{-\beta(t-s)}\|\omega(s)\|^{2} d s+r^{T}(t) r(t)
\end{align*}
$$

where $\lambda=\max _{i \in \underline{N}}\left\{\lambda_{M}\left(L_{i} C_{i}\right)\right\}$,
Substituting (31), (33), (34) into (30), we can obtain

$$
\begin{align*}
\dot{V}(\bar{x}(t)) & <-\frac{1}{2} e_{r}^{T}(t) e_{r}(t)+\rho^{2} r^{T}(t) r(t) \\
& +\frac{\left(\rho^{2} \lambda^{2}+1\right) k^{2}}{\beta} \int_{t_{0}}^{t} e^{-\beta(t-s)}\|\omega(s)\|^{2} d s \tag{35}
\end{align*}
$$

Integrating (35) from zero to ∞, we get

$$
\begin{align*}
& \int_{0}^{\infty} \sum_{i_{j} \in \underline{N}} \dot{V}(\bar{x}(t)) d t=\sum_{j=0}^{\infty} \sum_{i_{j} \in \underline{N}} \int_{t_{i_{j}}}^{t_{i_{j+1}}} \dot{V}(\bar{x}(t)) d t \\
< & -\frac{1}{2} \int_{0}^{\infty} e_{r}^{T}(t) e_{r}(t) d t+\rho^{2} \int_{0}^{\infty} r^{T}(t) r(t) d t \\
& +\frac{\left(\rho^{2} \lambda^{2}+1\right) k^{2}}{\beta} \int_{0}^{\infty} \int_{0}^{t} e^{-\beta(t-s)}\|\omega(s)\|^{2} d s d t \\
= & -\frac{1}{2} \int_{0}^{\infty} e_{r}^{T}(t) e_{r}(t) d t+\rho^{2} \int_{0}^{\infty} r^{T}(t) r(t) d t \\
& +\frac{\left(\rho^{2} \lambda^{2}+1\right) k^{2}}{\beta^{2}} \int_{0}^{\infty}\|\omega(t)\|^{2} d t \tag{36}
\end{align*}
$$

Let $\frac{k^{2}}{\beta^{2}-\lambda^{2} k^{2}}<\rho^{2}$. There has

$$
\begin{align*}
& \int_{0}^{\infty} \sum_{i_{j} \in \underline{N}} \dot{V}(\bar{x}(t)) d t \\
< & -\frac{1}{2} \int_{0}^{\infty} e_{r}^{T}(t) e_{r}(t) d t+\rho^{2} \int_{0}^{\infty} \varpi^{T}(t) \varpi(t) d t \tag{37}
\end{align*}
$$

Again, taking the switching law (18) into account, on the switching instant t_{j}, it holds

$$
\begin{equation*}
V\left(\bar{x}\left(t_{j}\right)\right) \leq V\left(\bar{x}\left(t_{j}^{-}\right)\right) \tag{38}
\end{equation*}
$$

Substituting (38) into the expansion form of the left side of (37) with $\gamma^{2}=2 \rho^{2}$ yields

$$
\begin{aligned}
& \lim _{t_{f} \rightarrow \infty} V\left(\bar{x}\left(t_{f}\right)\right)-V\left(\bar{x}\left(t_{0}\right)\right) \\
\leq & \lim _{t_{f} \rightarrow \infty}\left[V\left(\bar{x}\left(t_{f}\right)\right)-V\left(\bar{x}\left(t_{f-1}\right)\right)+V\left(\bar{x}\left(t_{f-1}^{-}\right)\right)\right. \\
& \left.-V\left(\bar{x}\left(t_{f-2}\right)\right)+\cdots+V\left(\bar{x}\left(t_{1}^{-}\right)\right)-V\left(\bar{x}\left(t_{0}\right)\right)\right] \\
= & \int_{0}^{\infty} \sum_{i_{j} \in \underline{N}} \dot{V}(\bar{x}(t)) d t=\sum_{j=0}^{\infty} \sum_{i_{j} \in \underline{N}} \int_{t_{i_{j}}}^{t_{i_{j+1}}} \dot{V}(\bar{x}(t)) d t \\
< & -\frac{1}{2} \int_{0}^{\infty} e_{r}^{T}(t) e_{r}(t) d t+\frac{1}{2} \gamma^{2} \int_{0}^{\infty} \varpi^{T}(t) \varpi(t) d t .
\end{aligned}
$$

By the zero initial condition and the positive definiteness of $V(\bar{x}(t))$, that $\int_{0}^{\infty} e_{r}^{T}(t) e_{r}(t) d t<\gamma^{2} \int_{0}^{\infty} \varpi^{T}(t) \varpi(t) d t$ with $\varpi(t) \neq 0$ holds. This end the proof.

IV. Numerical example

Consider the systems (1) and the reference system (3) with
$A_{1}=\left[\begin{array}{cc}-1.5 & -1.2 \\ -1.2 & 1\end{array}\right], D_{1}=\left[\begin{array}{cc}-0.5 & 0.8 \\ -0.1 & -0.4\end{array}\right], B_{1}=\left[\begin{array}{c}-0.1 \\ -0.3\end{array}\right] ;$
$A_{2}=\left[\begin{array}{cc}1.5 & -1 \\ -1 & -2.3\end{array}\right], \quad D_{2}=\left[\begin{array}{cc}-0.3 & -0.2 \\ 0.1 & -0.3\end{array}\right], \quad B_{2}=\left[\begin{array}{c}-1.3 \\ -0.1\end{array}\right] ;$
$A_{r}=\left[\begin{array}{cc}-1.5 & -1.2 \\ 2 & -0.2\end{array}\right], C_{1}=\left[\begin{array}{ll}-0.1 & 0.5\end{array}\right], C_{2}=\left[\begin{array}{ll}1.3 & -0.7\end{array}\right]$.
First, by Assumption 1, we have the candidate observer gains via arbitrary switching as

$$
L_{1}=\left[\begin{array}{c}
-39.3909 \\
41.7974
\end{array}\right], \quad L_{2}=\left[\begin{array}{c}
12.9363 \\
-11.9392
\end{array}\right]
$$

Consider the closed-loop systems (7). We adopt the parameters below: $\gamma=1, \tau=3$. Solving the inequality (17) by using LMIs, we get

$$
\begin{aligned}
& P_{1}=\left[\begin{array}{cc}
\tilde{P}_{1}^{-1} & 0 \\
0 & \tilde{P}_{1}^{-1}
\end{array}\right], P_{2}=\left[\begin{array}{cc}
\tilde{P}_{2}^{-1} & 0 \\
0 & \tilde{P}_{2}^{-1}
\end{array}\right], \text { in which } \\
& \tilde{P}_{1}=\left[\begin{array}{cc}
0.5426 & -0.2007 \\
* & 0.4784
\end{array}\right], \tilde{P}_{2}=\left[\begin{array}{cc}
0.5026 & -0.0527 \\
* & 0.7023
\end{array}\right] \\
& S=\left[\begin{array}{cc}
S_{1} & 0 \\
0 & S_{1}
\end{array}\right], \text { where } S_{1}=\left[\begin{array}{cc}
6.5442 & -0.0466 \\
* & 6.4185
\end{array}\right] \\
& K_{1}=\left[\begin{array}{ll}
4.0344 & 14.3356
\end{array}\right], K_{2}=\left[\begin{array}{ll}
-4.4402-1.6902
\end{array}\right] .
\end{aligned}
$$

According to theorem 1, the switching control law are given by

$$
\sigma(t)=\arg \min _{i \in \underline{N}}\left\{\tilde{x}^{T}(t) P_{i} \tilde{x}(t)\right\}, u(t)=K_{\sigma(t)} \hat{e}_{r}(t)
$$

When $\omega(t)=0$, the error switched system (6) is exponentially stability under arbitrary switching (see in Fig.1). With $t_{f}=40, r(t)=\omega(t)=\frac{\sin t}{t}$, the simulation results are given in Fig. 2 and Fig.3.

Fig. 1. Error state $e(t)$ via arbitrary switching.

Fig. 2. State x_{1} tracking the reference state $x_{r 1}$.

V. Conclusions

In this paper, observer based tracking control for switched linear systems with time-delay is investigated. The possibility of designing switching control law based on measured output instead of the state information is considered when the state is not available. The Variation-of-constants formula and linear operator theory are used to conquer the difficulties caused by the estimation error and exotic disturbance, and multiple Lyapunov function technique is utilized to design switched tracking controllers such that the observer based H_{∞} model reference tracking performance is satisfied. Meanwhile, the controller design problem can be solved efficiently by using linear matrix inequalities and convex optimization techniques. The numerical example show the feasibility and validity of the proposed design methods. However, due to the difficulties of switched system with time-delay, the cases of time varying delay and delay depended criteria for switched linear and nonlinear systems are not investigated yet, this constitutes our next work in the future.

Fig. 3. State x_{2} tracking the reference state $x_{r 2}$.

REFERENCES

[1] M. S. Branicky, "Multiple Lyapunov functions and other analysis tools for switched and hybrid systems", IEEE Trans. Automat. Contr., vol.43, no.4, pp.475-482, 1998.
[2] Y. Cao, Y. Sun and C. Cheng, "Delay dependent robust stabilization of uncertain systems with multiple state delays," IEEE Trans. Automat. Contr., vol.43, no.11, pp.1608-1612, 1998.
[3] L. Dugard and E. L. Verrist, Stability and Control of Time-Delay Systems. Springer, London, Newyork; 1998.
[4] E. Fridman and U. Shaked, "An improved stabilization method for linear time-delay systems," IEEE Trans. Automat. Contr., vol.47, no.11, pp.1931-1937, 2002.
[5] J. K. Hale, Theory of functioal differential equations. Springer-Verlag, 1977.
[6] Q. Han and K. Gu, "On robust stability of time delay systems with norm-bounded uncertainty," IEEE Trans. Automat. Contr., vol.46, no.9, pp.1426-1431, 2001.
[7] J. P. Hespanha, A. S. Morse, "Stability of switched systems with average dwell-time," in Proceedings of the 38th IEEE Conference on Decision and control, Phoenix, AZ, 1999, (pp.2655-2660).
[8] V. L. Kharitonov, "Robust stability analysis of time delay system: A survey," in the 4th IFAC Conference on System structure and control, Nantes, France, 8-10, July, (pp.1993-1998), 1998.
[9] D. Liberzon and A. S. Morse, "Basic problem in stability and design of switched systems," IEEE Contr Syst Mag., vol. 19, no.5, pp.59-70, 1999.
[10] J. P. Richard, "Time-delay systems: on overview of some recent advances and open problems," Automatica, vol. 39, no.10, pp.16671694, 2003.
[11] W. E. Schmitendorf, "Methods for obtaining robust tracking control laws," Automatica, vol. 23, no.5, pp.675-677, 1987.
[12] X. M. Sun, J. Zhao and D. J. Hill, "Stability and L_{2}-gain analysis for switched delay systems: a delay-dependent method," Automatica, vol. 42, no.5, pp.1769-1774, 2006.
[13] Z. D. Sun and S. S. Ge, Switched linear systems-control and design. Springer, Berlin, Heidelberg, New York, Hong Kong, London, Milan, Paris, Tokyo, 2004.
[14] C. Z. Wu, K. L. Teo, R. Li and Y. Zhao, "Optimal control of switched systems with time delay," Applied Mathematics Letters, vol.19, pp.1062-1067, 2006.
[15] G. S. Zhai, B. Hu, K. Yasuda and A. Michel, "Stability analysis of switched delayed systems with stable and unstable subsystems: An average dwell time approach," in Proceedings of the American Control Conference, Chicago, 2000, (pp.200-204).
[16] J. Zhao and D. J. Hill, "On stability, L_{2} gain and H_{∞} control for switched systems", Automatica, To appear, 2008.
[17] C. j. Zhou, K. Ogata, S. Fujii, "Adaptive switching control method and its application to tracking control of a robot," in Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, vol.1, 5-10, Aug. 1996, pp.214-219.

[^0]: This work was supported by the Dogus University Fund for science and NSF of China under Grant 60574013

 Qing-Kui Li and Jun Zhao are with Key Lab of Process Industry Automation of Ministry of Education; School of Information Science and Engineering, Northeastern University, Shenyang, 110004, P. R. China. Jun Zhao is also with Research School of Information Sciences and Engineering, Australian National University, Canberra ACT 0200, Australia zhaojun@ise.neu.edu.cn; sdlqk01@126.com

 Georgi M. Dimirovski is with Department of Computer Engineering, Dogus University, Kadikoy, TR-34722, Istanbul, Turkey gdimirovski@dogus.edu.tr

