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Abstract— This paper considers iterative learning control
applied to a mass-damper system subject to dry friction. The
dry friction nonlinearity is discontinuous, and therefore poses
challenges to the conventional learning control methods. We
apply the passivity based analysis in learning control and show
that it is applicable to the case with velocity output. In the
case of combined position and velocity output, the passivity
approach is not directly applicable. We derive a modified
update law based on the 2D system perspective and adjust
the combination coefficient in every iteration step to ensure
passivity. Asymptotic convergence is shown under the condition
that the combination coefficient does not asymptotically vanish.
Simulation results are included to demonstrate the performance
of these algorithms.

I. INTRODUCTION

Iterative learning control (ILC) is a control technique that

improves the performance of dynamical systems working

in a repetitive mode. In the same way a tennis player

improves shots after practicing over and over, an iterative

learning controller uses previous trial information to get

better performance of a system with respect to some desired

performance objective. The ILC concept was first proposed

for robot motion tracking in repetitive tasks [1] and later

popularized in [2]–[4]. The ILC technique has been shown

to be effective in compensating for nonlinear effects such as

gravity, Coriolis, and centrifugal forces without the need for a

precise dynamical model. Since the initial introduction, there

has been a proliferation of ILC applications such as batch

chemical processes [5], injection molding machines [6],

power electronics [7], aerospace [8], and magnetic bearings

[9], among many others. A comprehensive survey of ILC

publications has been given in [10].

This paper considers the application of ILC to specific

classes of nonsmooth systems: a mass-damper system subject

to dry friction. A nonsmooth dynamical system contains one

or more nonsmooth functions in its dynamics. Such system

occurs in many applications, including mechanical systems

(dry friction, intermittent contacts, hysteresis), electrical cir-

cuits (MOS transistors, relays, switched power converter),

thermal systems (phase changes), and control systems (gain

scheduling controller, sliding mode controller). There have

been some limited studies on the application of ILC to

systems subject to dry friction [11], [12], but no general

theory has been developed so far. In this paper, we will

limit our consideration to the dry friction nonlinearity, but the
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underlying theory is applicable to more general nonsmooth

systems.

For linear systems, the convergence of ILC depends on

a spectral radius condition. For nonlinear systems, there are

two main approaches: passivity based [13]–[17] and optimal

control [18], [19] (which results in a gradient descent). In

this paper, we will consider the application of the pas-

sivity approach. For the simple mass-damper example, we

consider two different outputs: velocity and a combination

of position and velocity. In the velocity output case, the

passivity approach may be directly applied to show asymp-

totic convergence of the velocity to the desired velocity

profile. In the combined position and velocity output case,

the passivity approach is not directly applicable. We first

derive a general class of modified ILC update law, moti-

vated by the two-dimensional (2D) discrete time passivity

interpretation of passivity based ILC. This leads to a new

approach to ILC where the combination between position and

velocity is adjusted in every iteration to ensure the passivity

condition holds. Under the assumption that the coefficient

of combination does not asymptotically vanish (which holds

true in simulation but has not been analytically proven), the

ILC would converge asymptotically. Simulation results are

included to demonstrate the performance of the proposed

methods.

II. ILC APPROACHES: A REVIEW

Consider a dynamic system, G, with input u(t) ∈ R
m,

output y(t) ∈ R
m, and a desired output yd(t), t ∈ [0,T ].

Assume that a unique input ud exists, such that yd = G(ud).
The objective of ILC is to find an iterative form of learning

control law uk+1 = F(uk,ek), uk = {uk(t)}
T
t=0 etc., to achieve

the output tracking objective yk(t) → yd(t) uniformly for

t ∈ [0,T ] as k → ∞, where ek is the tracking error in the

kth iteration: ek(t) = yk(t)− yd(t).

GMemory

Update Law

Iterative Learning Controller

Fig. 1. Iterative learning control schematic.

The past approaches to ILC can be classified by the update

laws:

2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA
June 11-13, 2008

FrB08.6

978-1-4244-2079-7/08/$25.00 ©2008 AACC. 4573



• Proportional update law [1]–[4]

uk+1 = uk −Lek , (1)

where L : Lm
2 → Lm

2 , Lm
2 := Lm

2 [0,T ].
• Gradient update law [18]–[23]

uk+1 = uk −α∇uk
G(ek) , (2)

where α > 0 and ∇uk
G is the Fréchet derivative of G

with respect to uk.

A. Proportional ILC: Linear Case

In the linear case, the convergence condition may be easily

derived for the proportional update law using a Hilbert space

approach [22]. Consider G : Lm
2 → Lm

2 as a linear operator.

The output is then related to the input by y = Gu. The error

propagation under proportional update is given by

ek+1 = Guk+1 − yd = G(uk −Lek)− yd = (I −GL)ek. (3)

Then ek → 0 as k → 0 if and only if ρ(I −GL) < 1 where

ρ is the spectral radius. A modified update law, uk+1 =
Q(uk −Lek), called Q-modification, has also been proposed

[24]. The convergence condition becomes less restrictive, but

results in a nonzero steady state error. In the case that G

is known, L may be chosen based on G∗ (the non-causal

adjoint operator of G), e.g., L = αG∗, provided that G is an

onto operator (i.e., G∗ is one-to-one, or G∗ has a trivial null

space).

B. Proportional ILC: Passivity Analysis

Now consider (1) where L > 0 is a positive definite

operator. Let the input error be defined as euk
= uk − ud .

Then euk+1
= euk

−Lek, where ek = G(uk)−G(ud). We have

the following propagation:
〈
euk+1

,L−1euk+1

〉
=

〈
euk

−Lek,L
−1(euk

−Lek)
〉

=
〈
euk

,L−1euk

〉
−2

〈
ek,euk

〉
+ 〈ek,Lek〉 . (4)

Assume G is strictly output incremental passive (SOIP), i.e.,

there exists γ > 0 such that for any u1 and u2

〈G(u1)−G(u2),u1 −u2〉 ≥ γ ‖G(u1)−G(u2)‖
2 . (5)

Note that the inequality above assumes that the system is

initially at rest. It follows

〈
ek,euk

〉
≥ γ ‖ek‖

2 ≥ γ
〈ek,Lek〉

‖L‖
.

Denote
〈
e,L−1e

〉
by ‖e‖2

L−1 . Then from (4),

∥
∥euk+1

∥
∥2

L−1 ≤
∥
∥euk

∥
∥2

L−1 −

(
2γ

‖L‖
−1

)

︸ ︷︷ ︸

γ1

‖ek‖
2
L . (6)

If the update gain is bounded as

‖L‖ ≤ 2γ, (7)

we have γ1 > 0 and

∥
∥euk+1

∥
∥2

L−1 ≤
∥
∥eu0

∥
∥2

L−1 − γ1

k

∑
i=0

‖ei‖
2
L .

It follows that ‖ek‖L is an ℓ2[0,∞) sequence, which implies

ek converges to 0 as k → ∞.

III. DRY FRICTIONAL EXAMPLE

Consider the mechanical system with dry friction shown

in Figure 2 and described by

mẍ+β ẋ+σsgn(ẋ) = u. (8)

We will first consider the output to be the velocity ẋ, and

then the combination of position and velocity.

u

 x

m

(dry friction)

(position)

(damping)
(force)

(mass)

Fig. 2. Mechanical system with dry friction.

A. Velocity Output Case

Consider the velocity as the output of the system, y = ẋ.

Let (u1,u2) be two input trajectories with the correspondent

outputs (y1,y2). Considered the storage function

V (t) =
1

2
m(ẋ1(t)− ẋ2(t))

2 (9)

where t ∈ [0,T ]. The derivative of V along the solution is

V̇ = m(ẋ1 − ẋ2)(ẍ1 − ẍ2)

= (ẋ1 − ẋ2)
(
−β (ẋ1 − ẋ2)+(u1 −u2)

−σ(sgn(ẋ1)− sgn(ẋ2))
)

≤ −β (y1 − y2)
2 +(y1 − y2)(u1 −u2).

We shall assume that each iteration starts with the same ini-

tial condition, so V (kT ) = V (0), k = 1,2, . . .. By integrating

both sides, it follows that the system is SOIP, i.e.,

〈y1 − y2,u1 −u2〉 ≥ β ‖y1 − y2‖
2 . (10)

Thus the proportional ILC is asymptotically convergent as

before. This result is generalized in the following theorem:

Theorem 3.1: Consider the dynamical system given by

Ẋ(t) = AX(t)+B(u(t)−η(y(t))) ; y(t) = CX(t). (11)

Assume (A,B,C,0) is strictly positive real (SPR) and η is

incrementally sector bounded in [0,∞), i.e., (y1−y2)(η(y1)−
η(y2)) ≥ 0 for all y1, y2. Then the proportional ILC update

law (1) is asymptotically convergent if L > 0 and ‖L‖ is

sufficiently small.

Proof: Since (A,B,C,0) is SPR, there exist symmetric

positive definite matrices P and Q such that

AT P+PA = −Q (12)

PB = CT . (13)

Consider two input trajectories, (u1,u2). Let the correspond-

ing states and outputs be (X1,X2) and (y1,y2). Consider the

following storage function

V =
1

2
(X1 −X2)

T P(X1 −X2). (14)
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The derivative of V along the solution is

V̇ =
1

2
(X1 −X2)

T (AT P+AP)(X1 −X2)

+(X1 −X2)
T PB(u1 −u2 − (η(y1)−η(y2)))

= −
1

2
(X1 −X2)

T Q(X1 −X2)+(y1 − y2)
T (u1 −u2)

−(y1 − y2)
T (η(y1)−η(y2))

≤ −
1

2
λmin(Q)‖X1 −X2‖

2 +(y1 − y2)
T (u1 −u2)

≤ −
1

2

λmin(Q)

‖C‖2
‖y1 − y2‖

2 +(y1 − y2)
T (u1 −u2).

By integrating both sides, it follows that the system is SOIP.

From the passivity analysis for ILC, this implies that ‖ek‖→
0 as k → ∞ if

‖L‖ ≤
λmin(Q)

‖C‖2
.

¤

For the mass damper case,

X = ẋ, A = −d/m, B = 1/m, C = 1, η = sgn.

Clearly, the conditions for Theorem 3.1 are all satisfied.

B. Combined Position and Velocity Output Case

In most applications, it is desired to track a position

trajectory rather than the velocity. In this section, we consider

the output to be y = ẋ + cx, c > 0 (motivated by robot

adaptive control [25], [26]). However, for the dry friction

example above, the SOIP property no longer holds. We will

now develop a modified proportional ILC to address this

problem. We will first re-examine the passivity based ILC

approach and interpret it from the 2D discrete passive system

perspective. The proportional update law is then generalized

to contain an output feedback term. The SOIP convergence

condition is weakened in this analysis. Finally, this approach

is applied to the combined velocity and position feedback

case.

1) 2D Interpretation of ILC and Modified Update Law:

The passivity based ILC may be considered from a 2D

dynamical system perspective. Consider the iterative control

law as a discrete time system, F , mapping input −ek to the

output euk
= uk−ud . Suppose that F is a discrete time passive

system, i.e., there exists a positive definite storage function

Sk such that

Sk+1 ≤ Sk +
〈
−ek,euk

〉
. (15)

If the plant G is SOIP, i.e.,
〈
ek,euk

〉
≥ γ ‖ek‖

2
, then Sk+1 ≤

Sk − γ ‖ek‖
2
, which implies ek converges to zero as k → ∞

as before.

Note that not all discrete passive system may be used for F

since ud is not known. However, the proportional ILC update

law (1) is admissible:

F :

{
zk+1 = zk +L(−ek)
wk = euk

− L
2

ek = zk + L
2
(−ek)

, (16)

where zk represents the discrete time state. The passivity

property of F follows from the storage function Sk =

〈
zk,L

−1zk

〉
. A continuous time SOIP system may be viewed

as a output positive operator:

〈e,eu〉 = 〈G(eu),eu〉 ≥ γ ‖G(eu)‖
2 = γ ‖e‖2

which is static in terms of discrete time iteration. It follows

that 〈

e,eu −
L

2
e

〉

≥

(

γ −
‖L‖

2

)

‖e‖2 .

Therefore, the SOIP system is discrete time strictly output

passive under condition (7). The asymptotic convergence of

the proportional ILC update then follows from the intercon-

nection of the two discrete passive systems. More generally,

with input wk (a linear combination of euk
and ek), if the

plant is a discrete time strictly output passivity system, i.e.,

there exists Vk ≥ 0 such that

Vk+1 ≤Vk + 〈wk,ek〉−α ‖ek‖
2 , (17)

then combining with the discrete passivity of F , we get

Sk+1 +Vk+1 ≤ Sk+1 +Vk+1 −α ‖ek‖
2 . (18)

Using the same analysis as before, we can show that ‖ek‖ is

an ℓ2 sequence and hence ‖ek‖→ 0 as k → ∞.

Now consider a feedforward term Γ > 0 be added to F as

show in Figure 3:

F ′ :

{
zk+1 = zk +L(−ek)
euk

= zk +Γ(−ek)
(19)

Let Sk =
〈
zk,L

−1zk

〉
. Then

Sk+1 −Sk = −2
〈
ek,euk

〉
−2

〈

ek,

(

Γ−
L

2

)

ek

〉

. (20)

The condition on the plant G may now be significantly

relaxed. Suppose G is bounded below:

〈
ek,euk

〉
≥−ν ‖ek‖

2
(21)

where ν ≥ 0 (note that Γ could affect ν). If ν = 0, the plant

G is only required to be passive. For ν > 0, the system may

not be passive at all, it only needs to be bounded below as

above. The evolution of the storage function is then bounded

by

Sk+1 −Sk ≤ 2

(

λmin(Γ−
L

2
)−ν

)

‖ek‖
2 . (22)

Under the condition that Γ−L/2 is sufficiently large:

λmin(Γ−
L

2
) > ν (23)

‖ek‖ is an ℓ2 sequence and ‖ek‖ converges to zero as k → ∞.

From (19), the update law now is of the form

uk+1 = uk − (L−Γ)ek −Γek+1, (24)

where the last term is implemented as a direct output

feedback. Note that direct output feedback augmentation has

been proposed in [27] for linear ILC systems.
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Fig. 3. Modified ILC update law.

2) Modified Update Law for Combined Position/Velocity

Output: Motivated by the modified ILC update (24) to the

mass-damper example (8), we now re-examine the combined

position and velocity output case:

y = cx+ ẋ. (25)

We first choose a position feedback loop to ensure the

linear portion of the system is stable:

u = w−Kx. (26)

The system then becomes

mẍ+β ẋ+Kx+σsgnẋ = w. (27)

Choose the desired trajectory to satisfy the same dynamics:

mẍd +β ẋd +Kxd +σsgnẋd = wd . (28)

We now apply the modified ILC algorithm (24) to w:

wk+1 = wk − (L−Γ)eyk
−Γeyk+1

, (29)

where eyk
= yk−yd . In terms of the original control, we have

uk+1 = uk − (L−Γ)eyk
−Γeyk+1

−Kexk+1
. (30)

As shown in (23), if the following system with input ew and

output ey is passive (i.e., ν = 0 in (21)),

mëx +β ėx +Kex +σ(sgnẋ− sgnẋd) = ew

ey = cex + ėx, (31)

then
∥
∥eyk

∥
∥ converges to zero if

Γ >
L

2
. (32)

In the state space form, X =
[

ex ėx

]T
, (31) is of the form

Ẋ =

[
0 1

−K
m

− β
m

]

︸ ︷︷ ︸

A

X +

[
0
1
m

]

︸ ︷︷ ︸

B

(ew −σ(sgnẋ− sgnẋd))

ey =
[

c 1
]

︸ ︷︷ ︸

C

X . (33)

For

P =

[
K + cβ mc

mc m

]

, Q = 2

[
cK 0

0 β −mc

]

,

K + cβ > mc2 and c > 0, we have P,Q > 0 and

AT P+PA = −Q, PB = CT .

Hence (A,B,C,0) is SPR.

Let V = 1
2
XT PX . Then the derivative of V may be manip-

ulated to satisfy:

V̇ ≤−
1

2
XT QX − cσeT

x (sgnẋ− sgnẋd)+ eT
y ew.

For a fixed c, in each iteration, we may choose K sufficiently

large to ensure that

{
1
2
〈X ,QX〉+ cσ 〈ex,(sgnẋ− sgnẋd)〉

= cK ‖ex‖
2 +(β −mc)‖ėx‖

2 + cσ 〈ex,(sgnẋ− sgnẋd)〉 > 0
(34)

which implies that the system in (31) is passive. There are

two potential problems with this approach: The value of K

for the kth run depends on the result of the kth run, and

K may become unbounded. The first issue may require re-

running an iteration with a larger K. The second problem

has indeed been observed in simulation. It may be addressed

by bounding K by a maximum gain Kmax. A bound on the

growth of K may be obtained from (34):

K ‖ex‖
2 ≥ σ ‖ex‖ =⇒ K ≥

σ

‖ex‖
. (35)

Given the upperbound Kmax, then the worst case ‖ex‖ such

that (34) is still satisfied is σ
Kmax

.

IV. SIMULATION

Numerical simulation results for this system working in a

repetitive mode with different ILC update laws are presented

in this section. The numerical integration is done using the

classical fourth-order Runge-Kutta method with a fixed step

size of 0.1ms. The desired position, velocity, and acceleration

trajectories (xd , ẋd , and ẍd) are shown in Figure 4. The

0 5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [sec]

xd

ẋd

ẋ̇d

Fig. 4. Desired position xd , desired velocity ẋd and desired acceleration
ẍd .

parameters utilized in the simulations are shown in Table

I. The value of σ has been chosen so that dry friction

significantly affects the behavior of the system. The input

at the first iteration is chosen to be zero, i.e., u0 = 0.

Property Parameter Value Units

mass m 0.01 Kg
damping β 0.05 Ns/m
dry friction σ 0.2 N

TABLE I

SIMULATION PARAMETERS.
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A. Velocity Output Case

When the output is just the velocity, we use the following

proportional update rule:

uk+1 = uk −0.1(ẋk − ẋd). (36)

The gain is chosen to satisfy (7). Figure 5 shows the

monotonic convergence of the velocity tracking error. Figure

6 shows the convergence of the input to a discontinuous

ud . However, the position error in Figure 7 oscillates as the

iteration progresses.

100 200 300 400 500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration [k]

V
e

lo
c
it
y
 C

o
s
t 

F
u

n
c
ti
o

n
a

l

1
2‖ẋk − ẋd‖
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Fig. 5. Velocity convergence: 1
2
‖ẋk − ẋd‖

2
L2[0,33.15] → 0 as k → ∞.
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Fig. 6. Input convergence: uk → ud as k → ∞.
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Fig. 7. Position convergence: 1
2
‖xk − xd‖

2
L2 [0,33.15] → 0 as k → ∞.

B. Combined Position/Velocity Output Case

For the combined position and velocity feedback case, the

output is chosen to be (c = 1)

y = x+ ẋ.

The modified update law in (30) with Γ = 1 and L = 1.95

(to satisfy (32)) is

uk+1 = uk −0.95eyk
− eyk+1

−Kexk+1
. (37)

The adjustment of K to ensure the passivity condition (34)

for each iteration is shown in Figure 8. The evolution of

K is shown in Figure 9, which increases as ‖ex‖ decreases.

The velocity and position errors both now converge mono-

tonically as shown in Figures 10–11. Figure 12 shows the

convergence of the input to a discontinuous ud .
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 C
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Fig. 8. Passivity condition to ensure convergence: cK ‖ex‖
2 + (β −

mc)‖ėx‖
2 + cσ 〈ex,(sgnẋ− sgnẋd)〉 > 0 .
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Fig. 9. Adjustment of the feedback gain K.
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Fig. 10. Velocity convergence: 1
2
‖ẋk − ẋd‖

2
L2[0,33.15] → 0 as k → ∞.

V. CONCLUSION

This paper presented the application and extension of

the passivity based ILC to a mass-damper system under

dry friction. The approach is potentially applicable to more

general nonsmooth dynamical systems as well. A 2D system

theoretic interpretation of passivity based ILC is also pro-

vided with an extension that is equivalent to an additional

output feedback. In the case that the passivity analysis is

not directly applicable, such as a combined velocity and

position output, we showed that by adjusting the combination
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Fig. 11. Position convergence: 1
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‖xk − xd‖

2
L2 [0,33.15] → 0 as k → ∞.
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Fig. 12. Input convergence: uk → ud as k → ∞.

between the position and velocity outputs (essentially a two-

output system) to ensure passivity, asymptotic convergence

may still be obtained under certain conditions. This approach

may have broader application to sensor rich systems where

there are more outputs than inputs.
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