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Abstract— This paper deals with the problem of robust H∞
control for a class of uncertain switched nonlinear systems via
the multiple Lyapunov functions approach. Based on the explicit
construction of Lyapunov functions, which avoids solving the
Hamilton-Jacobi-Isaacs (HJI) inequalities, a condition for the
solvability of the robust H∞ control problem and design of both
switching laws and controllers is presented. As an application, a
hybrid state feedback strategy is proposed to solve the standard
robust H∞ control problem for nonlinear systems when no single
continuous controller is effective.

I. INTRODUCTION

In recent years, switched control systems have drawn
considerable attention in the control community due to their
theoretical significance and practical applications [1-6]. The
motivation for studying switched systems arises from the
fact that many systems encountered in practice, such as me-
chanical systems, the automotive industry, switching power
converters and many other fields, exhibit switching between
several subsystems depending on various environmental fac-
tors and from the fact that the methods of intelligent control
design are mainly based on the idea of controller switching.
Loosely speaking, a switched system belongs to an important
class of hybrid systems, which consists of a family of
continuous-time subsystems and a rule that specifies the
switching among them. The interaction between continuous
dynamics and discrete dynamics makes the behavior of
switched systems much complicated. For instance, switching
between stable subsystems may lead to instability. Regarding
design of switched systems, the multiple Lyapunov function
approach has been proven to be a powerful and effective tool
[7,8].

On the other hand, H∞ control problem for nonlinear
systems has been extensively explored and results rely heav-
ily on the solution of HJI inequalities [9,10]. However, so
far no effective numerical methods are available for solving
HJI inequalities. This motivated some attempts to look for
methods for nonlinear systems which do not require solving
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HJI inequalities [11,12]. H∞ control problem has been rarely
addressed for switched systems, especially for the nonlinear
case in which results mainly focus on special structures. Such
a problem has been considered in [13] by using dwell time
approach incorporated with a piecewise Lyapunov function
for both switched linear and nonlinear systems. The problem
of H∞ control for switched nonlinear systems is addressed
in [14] via the multiple Lyapunov functions approach. The
aforementioned results are dependent on HJI inequalities. In
[15], H∞ control problem for a class of cascade switched
nonlinear system is concerned by using common Lyapunov
function and single Lyapunov function approach respectively
and results do not rely on HJI inequalities.

In this paper, the robust H∞ control problem for a class
of uncertain switched nonlinear systems is considered. It is
assumed that each subsystem of the switched system to be
controlled is globally asymptotically stable with a known
Lyapunov function. Based on this Lyapunov function and
the output function of each subsystem, a new Lyapunov
function candidate is constructed. By using the multiple
Lyapunov functions technique, a sufficient condition for
the switched nonlinear systems to be asymptotically stable
with H∞-norm bound and design of both switching laws
and controllers is derived for all admissible uncertainties.
Then, for a non-switched nonlinear system, when a single
continuous feedback control law can not solve the standard
robust H∞ control problem, the problem is solved by con-
troller switching among finite candidate controllers based on
switching technique. Finally, a numerical example illustrates
the effectiveness of the proposed approach. Compared with
the existing results, our approach for robust H∞ controllers
design do not rely on solutions of HJI inequalities, which is
highly desirable and of significant advantage due to the lack
of efficient numerical methods for solving HJI inequalities.

II. PROBLEM FORMULATION

Consider switched nonlinear systems described by the
state-space model of the form

ẋ = fσ(x)+∆fσ(x)+ (gσ(x)+∆gσ(x)) uσ
+ (pσ(x)+∆pσ(x))ωσ,

z = hσ(x)+dσ(x)uσ, (1)

where σ(t) :<+→M = {1, 2, . . . ,m} is the right continuous
piecewise constant switching signal to be designed, x ∈<n

is the state vector, ui ∈ <
mi and ωi ∈ <

pi which belong
to L2[ 0,∞) denote the control input and disturbance input
of the i-th subsystem respectively, z ∈ <qi is the regulated
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output, fi(x), gi(x), pi(x), hi(x) and di(x) are known smooth
nonlinear function matrices of appropriate dimensions with
fi(0)=0 and hi(0)=0, the smooth unknown function matrices
∆ fi(x), ∆gi(x) and ∆pi(x), which express the uncertainties of
the system, are described by

∆ fi(x) = e1i(x)δ1i(x),
∆gi(x) = e2i(x)δ2i(x),
∆pi(x) = e3i(x)δ3i(x)

with known smooth function matrices e ji(x) and unknown
smooth function matrices δ ji(x) which are assumed to belong
to sets defined by

Ω j =
{
δ ji(x)| ‖δ ji(x)‖ ≤ ‖n ji(x)‖, i ∈ M

}
, j = 1, 2, 3. (2)

where n ji(x) are given function matrices, ‖·‖ represents either
the Euclidean vector norm or the induced matrix 2-norm,
δ1i(0) = 0, i ∈ M.

We shall adopt the following assumptions for system (1).
Assumption 1: There exist smooth functions Wi : <n →

<, which are positive definite and radially unbounded, and
smooth positive definite functions αi : <n→< such that

∂Wi(x)
∂x

fi(x)≤−αi(x), ∀x∈<n. (3)

Assumption 2: The function matrices di(x) are of full-
column rank for any x∈<n.

Assumption 3: The function vectors hi(x) are such that

hT
i (x)hi(x)
αi(x)

<∞, as x→0. (4)

Remark 1: Note that Assumption 1 implies that each sub-
system of (1) is globally asymptotically stable. Assumption 2
means that the H∞ control problem is “nonsingular”, which
is a standard assumption in nonlinear H∞ control problems
[10]. Assumption 3 simply implies that hT

i hi=O(αi). Observe
that since hi(x) is smooth and hi(0) = 0, Assumption 3 is
automatically satisfied when αi(x) are quadratic functions.

For convenience, we adopt the following notations [7] for
switched system (1). Let

Σ = {x0; (i0, t0), (i1, t1), · · · , (in, tn), · · · , |ik ∈ M, k ∈ N}

denote a switching sequence with the initial state x0 and the
initial time t0, where (ik, tk) means that the ik-th subsystem
is active for tk≤ t< tk+1.

Now, the robust H∞ control problem for switched system
(1) can be formulated as follows:
Given a constant γ > 0, design a continuous state feedback
controller ui=ui(x) for each subsystem and a switching law
i=σ(t) such that
(i) The closed-loop system is asymptotically stable when
ωi = 0.
(ii) System (1) has finite robust L2-gain γ from ωi to z for
all admissible uncertainties, i.e., there holds∫ T

0
zT(t)z(t) dt ≤ γ2

∫ T

0
ωT

i (t)ωi(t) dt + β(x0)

for all T > 0 and all admissible uncertainties, where β(·) is
some real-valued function.

III. MAIN RESULTS

This section gives a condition for the robust H∞ control
problem of the system (1) to be solvable, and designs
continuous controllers for subsystems and a switching law.

In view of Assumption 1 and 3 and the fact that hi(x) are
smooth, we shall make the following assumption.

Assumption 4: Given a constant γ>0, there exist positive
definite functions Ki(·), nonnegative functions βi j(x) and
positive real numbers ηi<γ

2 such that

hT
i (x)hi(x)
αi(x)

+
∑m

j=1
βi j(x)

[
Vi(x)−V j(x)

]
≤Ki(Wi) (5)

and

1
2εi

[
∂Wi

∂x

(
e1ieT

1i+e2ieT
2i+e3ieT

3i

)∂TWi

∂x
+nT

1in1i

]
+

1
2ε2

i

Ki(Wi)

·
∂Wi

∂x
pi

[
2γ2I−

1
εi

Ki(Wi)nT
3in3i

]−1

pT
i
∂TWi

∂x
≤ηiαi(x) (6)

where εi are real numbers satisfying

0<εi<
1
ηi+1

, i ∈ M.

Based on the functions Ki(Wi), we will construct the fol-
lowing Lyapunov function candidates Vi(Wi) for the switched
system (1):

Vi(Wi) =
1
εi

∫ Wi

0
Ki(t) dt. (7)

Since the functions Wi and Ki(Wi) are smooth, it is clear
that Vi(Wi) < ∞ for all x ∈ <n. Furthermore, as Ki(Wi)
are positive definite functions of Wi which do not vanish
as Wi → ∞ and Wi(·) are positive definite and radially
unbounded functions, Vi (Wi(x)) are positive definite and
radially unbounded functions of the argument x.

Theorem 1: Let a constant γ>max
i∈M
{
√
ηi} be given. Consider

the switched system (1) satisfying Assumptions 1-4. Then,
the hybrid state feedback controllers

ui= ui(x) = −
[
2dT

i (x)di(x)+
1
εi

Ki(Wi)nT
2i(x)n2i(x)

]−1

·

[
1
εi

Ki(Wi)gT
i (x)
∂TWi

∂x
+2dT

i (x)hi(x)
]
, i∈M (8)

and the switching law

σ(t)=min
i

{
i : i = arg max

j∈M
Vj(x)

}
(9)

solve the robust H∞ control problem.
Proof: The time-derivative of Vi(Wi) along the trajectory

of the switched system (1) is

V̇i =
dVi(Wi)

dWi

∂Wi

∂x
[
fi+∆fi+(gi+∆gi) ui+(pi+∆pi)ωi

]
=

1
εi

Ki(Wi)
∂Wi

∂x
[
fi+∆fi+(gi+∆gi) ui+(pi+∆pi)ωi

]
(10)

Define
Hi (x, ui, ωi)= V̇i+

(
zTz − γ2ωT

iωi

)
.
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Then considering (10) and (2), the above equalities can be
rewritten as

Hi (x, ui, ωi)

=
1
εi

Ki(Wi)
∂Wi

∂x
[
fi+∆fi+(gi+∆gi) ui+(pi+∆pi)ωi

]
+zTz−γ2ωT

iωi

=
1
εi

Ki(Wi)
∂Wi

∂x
[
fi+e1iδ1i+(gi+e2iδ2i) ui+(pi+e3iδ3i)ωi

]
+hT

i hi+2hT
i diui+uT

i d
T
i diui−γ

2ωT
iωi

≤
1
εi

Ki(Wi)
[
∂Wi

∂x
fi+

1
2
∂Wi

∂x
e1ieT

1i
∂TWi

∂x
+

1
2
δT1iδ1i

+
∂Wi

∂x
giui +

1
2
∂Wi

∂x
e2ieT

2i
∂TWi

∂x
+

1
2

uT
i δ

T
2iδ2iui

+
∂Wi

∂x
piωi +

1
2
ωT

i δ
T
3iδ3iωi +

1
2
∂Wi

∂x
e3ieT

3i
∂TWi

∂x

]
+hT

i hi+2hT
i diui+uT

i d
T
i diui−γ

2ωT
iωi

≤
1
εi

Ki(Wi)
[
∂Wi

∂x
fi+

1
2
∂Wi

∂x
e1ieT

1i
∂TWi

∂x
+

1
2

nT
1in1i

+
∂Wi

∂x
giui +

1
2
∂Wi

∂x
e2ieT

2i
∂TWi

∂x
+

1
2

uT
i n

T
2in2iui

+
∂Wi

∂x
piωi+

1
2
ωT

i n
T
3in3iωi +

1
2
∂Wi

∂x
e3ieT

3i
∂TWi

∂x

]
+hT

i hi+2hT
i diui+uT

i d
T
i diui−γ

2ωT
iωi

, H∗i (x, ui, ωi) .

In view of Assumption 3, solving
∂H∗i
∂ωi
= 0,

∂H∗i
∂ui
= 0

for ωi and ui respectively leads to the saddle point of
H∗i (x, ui, ωi)

ω∗i =
1
εi

Ki(Wi)
[
2γ2I−

1
εi

Ki(Wi)nT
3in3i

]−1(
∂Wi

∂x
pi

)T

, (11)

u∗i =−
[
2dT

i di+
1
εi

Ki(Wi)nT
2in2i

]−1[1
εi

Ki(Wi)
∂Wi

∂x
gi+2hT

i di

]T

. (12)

Considering Assumption 1, (11) and (12), we obtain

H∗i
(
x, u∗i , ω

∗
i
)

≤−
1
εi

Ki(Wi)αi+
1

2εi
Ki(Wi)

∂Wi

∂x
e1ieT

1i
∂TWi

∂x

+
1

2εi
Ki(Wi)nT

1in1i+
1

2εi
Ki(Wi)

∂Wi

∂x
e2ieT

2i
∂TWi

∂x

+
1

2εi
Ki(Wi)

∂Wi

∂x
e3ieT

3i
∂T Wi

∂x

+
1

2ε2
i

K2
i (Wi)

∂Wi

∂x
pi

[
2γ2I−

1
εi

Ki(Wi)nT
3in3i

]−1

pT
i
∂TWi

∂x

−
2
εi

Ki(Wi)
∂Wi

∂x
gi

[
2dT

i di+
1
εi

Ki(Wi)nT
2in2i

]−1

dT
i hi

−
1

2ε2
i

K2
i (Wi)

∂Wi

∂x
gi

[
2dT

i di+
1
εi

Ki(Wi)nT
2in2i

]−1

gT
i
∂TWi

∂x

+hT
i

I − 2di

[
2dT

i di+
1
εi

Ki(Wi)nT
2in2i

]−1

dT
i

 hi

=−
1
εi

Ki(Wi)αi+
1

2εi
Ki(Wi)

∂Wi

∂x
e1ieT

1i
∂TWi

∂x

+
1

2εi
Ki(Wi)nT

1in1i +
1

2εi
Ki(Wi)

∂Wi

∂x
e2ieT

2i
∂TWi

∂x

+
1

2εi
Ki(Wi)

∂Wi

∂x
e3ieT

3i
∂T Wi

∂x
−

1
2

riRirT
i

+
1

2ε2
i

K2
i (Wi)

∂Wi

∂x
pi

[
2γ2I−

1
εi

Ki(Wi)nT
3in3i

]−1

pT
i
∂TWi

∂x

+hT
i

I − 2di

[
2dT

i di+
1
εi

Ki(Wi)nT
2in2i

]−1

dT
i

 hi

+2hT
i di

[
2dT

i di +
1
εi

Ki(Wi)nT
2in2i

]−1

dT
i hi

≤−
1
εi

Ki(Wi)αi+
1

2εi
Ki(Wi)

∂Wi

∂x
e1ieT

1i
∂TWi

∂x

+
1

2εi
Ki(Wi)nT

1in1i +
1

2εi
Ki(Wi)

∂Wi

∂x
e2ieT

2i
∂TWi

∂x

+
1

2εi
Ki(Wi)

∂Wi

∂x
e3ieT

3i
∂T Wi

∂x
+ hT

i hi

+
1

2ε2
i

K2
i (Wi)

∂Wi

∂x
pi

[
2γ2I−

1
εi

Ki(Wi)nT
3in3i

]−1

pT
i
∂TWi

∂x
,

where

Ri(x) =
[
2dT

i di+
1
εi

Ki(Wi)nT
2in2i

]−1

,

ri(x) =
1
εi

Ki(Wi)
∂Wi

∂x
gi+2hT

i di.

It follows from Assumption 4 and the switching law (9) that

H∗i
(
x, u∗i , ω

∗
i
)
≤

(
−

1
εi
+ ηi + 1

)
Ki(Wi)αi.

Since ω∗i is the maximum of ωi, u∗i is the maximum of ui,
then

Hi (x, ui, ωi)≤H∗i (x, ui, ωi)≤H∗i
(
x, u∗i , ωi

)
≤H∗i

(
x, u∗i , ω

∗
i
)
.

Hence, we have

V̇i ≤

(
−

1
εi
+ ηi + 1

)
Ki(Wi)αi − zTz + γ2ωT

iωi. (13)

Note that 0 < εi <
1
ηi + 1

and Ki(Wi)αi are positive definite

functions, (13) leads to

V̇i + zTz − γ2ωT
iωi < 0. (14)

Now, we introduce

JT =

∫ T

0

(
zTz−γ2ωT

iωi

)
dt.
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According to the switching sequence Σ, suppose t0=0, x(t0)=
x(0), when T ∈ [tk, tk+1), for any admissible uncertainties, we
have

JT =

k−1∑
j=0

∫ tj+1

t j

(
zTz−γ2ωT

ij ωij+V̇i j (x(t))
)

dt

−

k−1∑
j=0

(
Vij (x(t j+1))−Vij (x(t j))

)
+

∫ T

tk

(
zTz−γ2ωT

ikωik+V̇ik (x(t))
)

dt

−
(
Vik (x(T ))−Vik (x(tk))

)
≤−

k−1∑
j=0

(
Vij (x(tj+1))−Vij (x(t j))

)
−

(
Vik(x(T ))−Vik(x(tk))

)
=Vi0 (x(0))−Vik (x(T ))

+

k−1∑
j=0

(
Vij+1 (x(tj+1))−Vij (x(tj+1))

)
(15)

Since at switching time tk,

Vσ(tk−1)(x(tk))=Vσ(tk)(x(tk)),

then (15) leads to

JT ≤ Vi0 (x(0))−Vik (x(T ))

+

k−1∑
j=0

(
Vij+1 (x(tj+1))−Vi j (x(tj+1))

)
≤ Vi0 (x(0))−Vik (x(T ))
≤ Vi0 (x(0))

Let
β(x(0))=max

i0∈M

{
Vi0 (x(0))

}
.

Therefore, we conclude that∫ T

0
zT(t)z(t) dt ≤ γ2

∫ T

0
ωT

i (t)ωi(t) dt + β(x(0))

holds for all admissible uncertainties and disturbance input
ωi, which means the switched system (1) has finite L2-gain.

When ωi=0, it follows from (14) that

V̇i(x(t))≤‖z‖2+V̇i(x(t))<0.

Asymptotical stability of the switched system (1) under
switching law (9) follows. This completes the proof.

Remark 2: When M = {1}, the switched system (1)
degenerates into a regular nonlinear system and the robust
H∞ control problem becomes the standard robust H∞ control
problem for nonlinear systems. Additionally, if ∆ f (x) = 0,
∆g(x) = 0 and ∆p(x) = 0, this result is equivalent to the
condition given in [12].

Remark 3: Let ∆gi(x)=0 and ∆pi(x)=0. If each subsystem
of (1) is unstable, but there exist stabilizing controllers ui=

v0i(x) with v0i(0) = 0, smooth positive definite and proper

functions Wi(x) and smooth positive definite functions αi(x)
satisfying vT

0iv0i=O(αi) such that

∂Wi(x)
∂x

[
fi(x)+gi(x)v0i(x)

]
≤−αi(x), ∀x∈<n,

Theorem 1 still works to solve the robust H∞ control prob-
lem, providing that Assumption 1-4 hold. In fact, considering
stabilizing state feedback ui(x)=v0i(x)+vi(x), where vi(x) are
new controllers to be determined, the switched system (1)
can be rewritten as

ẋ = f̄σ(x)+∆fσ(x)+gσ(x)uσ+ (pσ(x)+∆pσ(x))ωσ,
z = h̄σ(x)+ dσ(x)vσ, (16)

where
f̄σ(x)= fσ(x) + gσ(x)v0σ(x),

h̄σ(x)=hσ(x) + dσ(x)v0σ.

Note that system (16) satisfies Assumption 1-4. Therefore,
Theorem 1 is still applicable.

Next, we consider how to apply the obtained result to non-
switched nonlinear systems by controller switching. For a
nonlinear system, a continuous robust H∞ controller may not
exist or may be sometimes too complex to implement. Thus,
in some control problems, control actions are decided by
switching between finite candidate controllers. Subsequently,
we try to use hybrid state feedback strategy to solve the
robust H∞ control problem for uncertain nonlinear systems.

Consider the following nonlinear system

ẋ = f (x)+∆f (x)+(g(x)+∆g(x))u
+ (p(x)+∆p(x))ω,

z = h(x)+d(x)u, (17)

where x ∈<n is the state vector, u ∈<m and ω ∈<p which
belong to L2[ 0,∞) denote the control input and disturbance
input respectively, z∈<q is the regulated output, f (x), g(x),
p(x), h(x) and d(x) are known smooth nonlinear function
matrices of appropriate dimensions with f (0)=0 and h(0)=
0, the smooth unknown function matrices ∆ f (x), ∆g(x) and
∆p(x), which express the uncertainties of the system, are
described by

∆ f (x) = e1(x)δ1(x),
∆g(x) = e2(x)δ2(x),
∆p(x) = e3(x)δ3(x)

with known smooth function matrices e j(x) and unknown
smooth function matrices δ j(x) which are assumed to belong
to sets defined by

Ω j =
{
δ j(x)| ‖δ j(x)‖ ≤ ‖n j(x)‖

}
, j=1, 2, 3. (18)

where n j(x) are given function matrices, δ1(0)=0.
We shall adopt the following assumptions for system (17).
Assumption 5: There exist smooth functions Wi : <n →

<, which are positive definite and radially unbounded, and
smooth positive definite functions αi : <n→< such that

∂Wi(x)
∂x

f (x)≤−αi(x), ∀x∈<n. (19)
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Assumption 6: The function matrices d(x) is of full-column
rank for any x∈<n.

Assumption 7: The function vector h(x) is such that

hT(x)h(x)
αi(x)

<∞, as x→0. (20)

Assumption 8: Given a constant γ>0, there exist positive
definite functions Ki(·), nonnegative functions βi j(x) and
positive real numbers ηi<γ

2 such that

hT(x)h(x)
αi(x)

+

m∑
j=1

βi j(x)
[
Vi(x)−V j(x)

]
≤Ki(Wi) (21)

and

1
2εi

[
∂Wi

∂x

(
e1eT

1 +e2eT
2 +e3eT

3

) ∂TWi

∂x
+nT

1n1

]
+

1
2ε2

i

Ki(Wi)

·
∂Wi

∂x
p
[
2γ2I−

1
εi

Ki(Wi)nT
3 n3

]−1

pT∂
TWi

∂x
≤ηiαi(x) (22)

where εi are real numbers satisfying

0<εi<
1
ηi+1

, i∈M.

For system (17), suppose that there exists the following
class of finite candidate state feedback controllers

ui=ui(x)=−
[
2dT(x)d(x)+

1
εi

Ki(Wi)nT
2(x)n2(x)

]−1

·

[
1
εi

Ki(Wi)gT(x)
∂TWi

∂x
+2dT(x)h(x)

]
, (23)

the control law u is generated by switching among them.
Theorem 2: Let a constant γ>

√
ηi be given. Consider the

switched system (17) satisfying Assumptions 5-8. Then, the
hybrid state feedback controllers (23) and the switching law
(9) solve the robust H∞ control problem for system (17).

Proof: Substituting the designed controllers (23) into the
system (17) results in a switched nonlinear system. Then,
applying Theorem 1 yields the result.

IV. EXAMPLE

In this section, we give an example to demonstrate the
effectiveness of the proposed design method.

Example: Consider the following uncertain switched non-
linear system

ẋ = fi(x)+∆fi(x)+ (gi(x)+∆gi(x)) ui

+ (pi(x) +∆pi(x))ωi,

z = hi(x)+di(x)ui, i = 1, 2, (24)

where

f1(x)=−6x, g1(x)= x, p1(x)=1, h1(x)= x sin x, d1(x)=1,

f2(x)=−6x3, g2(x)=−1, p2(x)=1, h2(x)= x3, d2(x)=−1,

∆ f1(x)=
1
2

a1x sin x, e11=
1
2
, δ11(x)=a1x sin x, n11= x,

∆ f2(x)=
1
2

a2x3cos x, e12=
1
2
, δ12(x)=a2x3cos x, n12= x3,

∆g1(x)=
1
2

b1sin x, e21=
1
2
, δ21(x)=b1sin x, n21=1,

∆g2(x)=
1
2

b2cos x, e22=
1
2
, δ22(x)=b2cos x, n22=1,

∆p1(x)=0, ∆p2(x)=0,

and ai, bi are unknown constants belonging to [0, 1].
Obviously, di(x) satisfy Assumption 2. In view of Assump-

tion 1 and Assumption 3, we can choose

α1(x)=4x2, α2(x)=4x6

and

W1(x)=
1
2

x2,W2(x)=
1
4

x4.

Taking εi = 0.5 and γ = 2, from Assumption 4, we select
ηi = 0.5. Then from (6), we obtain Ki(Wi) ≤ 2. Choosing
Ki(Wi)=1, we get

V1(W1)=2W1(x)= x2,

V2(W2)=2W2(x)=
1
2

x4.

Let
β1(x)=sin2x and β2(x)=

(
x2+1

)−2
,

then (5) is satisfied.
The switching law

σ(t) =
{

1 if −
√

2 ≤ x ≤
√

2,
2 otherwise.

and the hybrid controllers

u1=−
1
2

(
x2+x sin x

)
,

u2= x3

solve the robust H∞ problem.

V. CONCLUSIONS

In this paper, we have investigated the problem of robust
H∞ control for a class of uncertain switched nonlinear sys-
tems. Based on the multiple Lyapunov functions approach, a
sufficient condition has been derived by designing a switch-
ing law and hybrid state feedback controllers. Furthermore, a
hybrid state feedback strategy is proposed to solve the robust
H∞ control problem for uncertain nonlinear system. The
proposed controller design method is based on the explicit
construction of Lyapunov functions of the switched system,
which avoids the need for solving HJI inequalities.
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