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Abstract— Robust tracking control for switched linear sys-
tems with time-varying delays is investigated in this paper.
Sufficient conditions for the solvability of robust tracking
control problem are developed. Average dwell time approach
and piecewise Lyapunov functional methods are utilized to the
stability analysis and controller design, and with free weighting
matrix scheme, switching control laws are obtained such that
the weighted H∞ model reference robust tracking performance
is satisfied. By using linear matrix inequalities, the controller
design problem can be solved efficiently. A simulation example
shows the effectiveness of the proposed switching control laws.

I. INTRODUCTION

As an important class of hybrid systems, switched systems

involve both a family of subsystems described by continuous

or discrete time dynamics, and a rule specifying the switch-

ing among them. Due to their significance both in theory

development and practical applications, switched systems

have been attracting considerable attention during the last

decades, see e.g., [5], [9], [13], [15] and [16]. Two key

problems in the study of switched systems are the stability

analysis and control synthesis. It has been shown that average

dwell time approach is an effective tool for choosing certain

switching laws, under which asymptotic (or exponential)

stability can be obtained ([5], [6], [15]).

On the other hand, time-delays, which are common phe-

nomenon encountered in many engineering process, are

known to be great sources of instability and poor perfor-

mance. Therefore, how to deal with time delays has been a

hot topic in the control area, see e.g., [2], [3], [7] and [10].

For switched systems, because of the complicated behavior

caused by the interaction between the continuous dynamics

and discrete switching, the problem of time delays is more

difficult to study. Only a few results have been reported in

the literature such as the issues on stability analysis [12],

[15]. As for control synthesis, it is much more difficult

than stability analysis for switched uncertainty system with

time-delays, to the authors’ best knowledge, up to now

results on such issues are rarely found. However, due to the

complexity of system modelling, uncertainty and time-delays
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are inevitably considered in most cases. We are interested

in the issue of tracking control for switched linear systems

with time-varying delays, which has been well addressed for

non-switched systems without delay [11]. The importance

of the study of robust tracking control for switched systems

with time-varying delays also arises from the extensive

applications in robot tracking control, guided missile tracking

control, etc.

This paper investigates the robust tracking control problem

for switched linear systems with time-varying delays. Suf-

ficient conditions for the solvability of the robust tracking

control problem are developed. Here are three features of

our results compared with existing results (see e.g., [4], [12]).

First of all, weighted H∞ model reference robust tracking

performance is given for the switched systems with time-

varying delays, whereas most existing results are concerned

with stability analysis; secondly, we use average dwell time

technique to design a class of switching laws with the chatter

bound N0 > 0, while the existing works mostly aimed at

arbitrary switching or N0 = 0; thirdly, free weighting matrix

scheme is used to design Lyapunov functional candidate, and

the number of constraint conditions is reduced.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we use P > 0 (≥, <,≤ 0) to denote

a positive definite (semi-definite, negative definite, semi-

negative definite) matrix P , and λmax(P ) and λmin(P )
denote the maximum and minimum eigenvalues of P . The

superscript “T” stands for matrix transpose; and the sym-

metric terms in a matrix are denoted by ∗, R
n denotes the

n dimensional Euclidean space; L2[0,∞) is the space of

square integrable function on [0,∞). For given τ > 0, let

R+ = [0,+∞] and Cn = C([−τ, 0], Rn) be the Banach

Space of continuous mapping from ([−τ, 0], Rn) to R
n with

topology of uniform convergence. Let xt ∈ Cn be defined

by xt(θ) = x(t + θ), θ ∈ [−τ, 0]. ‖ · ‖ denotes the usual

2-norm and ‖xt‖cl = sup−τ≤θ≤0{‖x(t + θ)‖, ‖ẋ(t + θ)‖}.

Consider the switched linear uncertain system with time-

varying delays






















ẋ(t) = (Aσ(t) + △Aσ(t))x(t)
+(Dσ(t) + △Dσ(t))x(t − dσ(t))
+(Bσ(t) + △Bσ(t))u(t) + Πσ(t)ω(t),

x(t) = φ(t), t ∈ [−τ, 0], x(0) = φ(0) = 0,

y(t) = Cσ(t)x(t), t ∈ [0,∞),

(1)

where x(t) ∈ R
n is the state, u(t) ∈ R

p is the control input,

ω(t) ∈ R
n is the exogenous disturbance which belong to

L2[0,∞), y(t) ∈ R
q is the output, φ(t) is the continuous
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vector valued function specifying the initial state of the

system, di(t) denote the continuous time-varying delays

satisfying the assumption below.

Assumption 1. 0 < di(t) ≤ τ, i ∈ N.

The right continuous function σ(t) : [0,∞) →
N , {1, 2, · · · , N} is the switching signal,

corresponding to it, the switching sequence Σ =
{x0; (i0, t0), (i1, t1), · · · , (ij , tj), · · · |ij ∈ N} means

that the ij th subsystem is active when t ∈ [tj , tj+1). For

simplicity, we denote σ := σ(t). Ai, Di, Bi, Ci and Πi are

constant matrices of appropriate dimensions, i ∈ N . The

uncertainties △Ai,△Di and △ Bi, i ∈ N are assumed to

satisfy the following assumption.

Assumption 2. [△Ai,△Di,△Bi] = EiΓi(t)[Fi, Li,Hi],
i ∈ N, where Ei, Fi, Li and Hi are constant matrices with

appropriate dimensions, and Γi(t), i ∈ N are unknown,

real and possibly time-varying matrices satisfying

ΓT
i (t)Γi(t) ≤ I, t ≥ 0.

Given the reference model and performance index as

ẋr(t) = Arxr(t) + Mr(t), xr(0) = 0, (2)
∫ ∞

0

e−αteT
r (t)Qer(t)dt ≤ γ2

∫ ∞

0

̟T (t)̟(t)dt, (3)

where xr(t) ∈ R
n is reference state, Ar is a Hurwitz matrix

and M is a constant matrix with appropriate dimmensins, r(t)
is reference input which belong to L2[0,∞); er(t) = x(t)−
xr(t) denotes the error between the real state of the switched

system (1) and the reference state of (2); Q is a positive

definite weighting matrix; ̟(t) = (ωT (t)ΠT
σ , rT (t)MT )T ,

γ > 0 is disturbance attenuation level.

Combining (1) with (2), we get the augmented system

[

ẋ(t)
ẋr(t)

]

=





(Aσ + △Aσ)x(t)+(Dσ + △Dσ)x(t − dσ(t))
+(Bσ + △Bσ)u(t)

Arxr(t)





+

[

Πσω(t)
Mr(t)

]

. (4)

Definition 1. The system (1) is said to be robust exponen-

tially stabilizable under control law u = u(t) and switching

signal σ = σ(t), if the solution x(t) of switched system (1)

through (t0, φ) ∈ R+ × Cn satisfies

‖x(t)‖ ≤ κ‖xt0‖cle
−λ(t−t0), ∀t ≥ t0

for some constants κ ≥ 0 and λ > 0.

Definition 2. For system (4), if there exist control input

u = u(t) and switching signal σ = σ(t) such that (4) is

robust exponentially stabilizable when ̟ ≡ 0 and (3) is

satisfied when ̟ 6= 0 under the initial conditions stated in

(1) and (2), then the switched system (1) is said to have

weighted H∞ model reference robust tracking performance.

Definition 3[5]. For any T2 > T1 ≥ 0, let Nσ(T1, T2)
denote the number of switching of σ(t) over (T1, T2). If

Nσ(T1, T2) ≤ N0 + T2−T1

Tα
holds for Tα > 0, N0 ≥ 0, then

Tα is called average dwell time.

Our purpose is to design robust tracking controller u(t) =

Kσ(t)er(t) and a switching law such that system (1) has the

weighted H∞ model reference robust tracking performance.

To conclude this section, we recall the following lemmas

which will be used in the proof of our main results.

Lemma 1[1]. Let M, N be real matrices of appropriate

dimensions. For any matrix Q > 0 of appropriate dimension

and any scalar γ > 0, the following inequality holds

MN + NT MT ≤ γ−1MQ−1MT + γNT QN.

Lemma 2[14]. Given matrices Q = QT ,H,E and R =
RT > 0 of appropriate dimensions, Q + HFE +
ET FT HT < 0 holds for all F satisfying FT F ≤ R, if

and only if there exists scalar β > 0 such that

Q + βHHT + β−1ET RE < 0.

III. PERFORMANCE ANALYSIS AND CONTROLLER DESIGN

In this section, we will show how to design state feedback

gain Ki and switching law σ(t) = i, (i ∈ N) for switched

time-varying delays system (1), such that the weighted H∞

model reference robust tracking performance is satisfied. We

first consider the nominal system of switched system (1),






ẋ(t) = Aσx(t) + Dσx(t − dσ(t)) + Bσu(t) + Πσω(t),
x(t) = φ(t), t ∈ [−τ, 0], x(0) = φ(0) = 0,

y(t) = Cσx(t), t ∈ [0,∞).
(5)

In this case, the augmented system (4) can be reduced to
[

ẋ(t)
ẋr(t)

]

=

[

Aσx(t) + Dσx(t − dσ(t)) + Bσu(t)
Arxr(t)

]

+

[

Πσω(t)
Mr(t)

]

. (6)

Consider the ith subsystem with the state feedback con-

troller u(t) = Kier(t). The augmented system (6) can be

rewritten as

˙̄x(t) = Āix̄(t) + D̄ix̄(t − di(t)) + ̟(t), (7)

where

x̄(t) =

[

x(t)
xr(t)

]

, Āi =

[

Ai + BiKi−BiKi

0 Ar

]

,

D̄i =

[

Di0
0 0

]

, ̟(t) =

[

Πσω(t)
Mr(t)

]

, Q̄ =

[

Q −Q

−Q Q

]

.

(8)

Consider the following closed-loop switched linear system

with time-varying delays,

˙̄x(t) = Āσx̄(t) + D̄σx̄(t − dσ(t)) + ̟(t). (9)

We have the following result.

Theorem 1. Suppose that the augmented system (9) satisfies

Assumption 1. For given positive constants α, γ, if there

exist positive definite matrices Pi, Si, matrices Ki, and any

matrices Yi, Ti with appropriate dimensions, such that

Θi :=













ϕi
11 + Q̄ ϕi

12 −Yi ĀT
i Si Pi

∗ ϕi
22 −Ti D̄T

i Si 0
∗ ∗ −τ−1e−ατSi 0 0
∗ ∗ ∗ −τ−1Si 0
∗ ∗ ∗ ∗ −γ2I













< 0,

i ∈ N (10)
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hold, then under the feedback controller u(t) = Kσer(t)
for system (6), the weighted H∞ model reference robust

tracking performance in (1) is guaranteed for any switching

signal with average dwell time satisfying

Tα > T ∗
α =

lnµ

α
, (11)

where µ ≥ 1 satisfies

Pi ≤ µPj , Si ≤ µSj , ∀i, j ∈ N, (12)

ϕi
11=ĀT

i Pi + PiĀi + αPi + Y T
i + Yi,

ϕi
12=PiD̄i + TT

i − Yi,

ϕi
22=−TT

i − Ti.

Proof. By Schur complement lemma, the conditions (10) are

equivalent to the following inequalities when i ∈ N




Ωi
11 + γ−2PiPi + Q̄ Ωi

12 −Yi

∗ Ωi
22 −Ti

∗ ∗ −τ−1e−ατSi



 < 0. (13)

where

Ωi
11 = ϕi

11 + τĀT
i SiĀi,

Ωi
12 = ϕi

12 + τĀT
i SiD̄i,

Ωi
22 = ϕi

22 + τD̄T
i SiD̄i.

Multiplying both sides of (13) by symmetric matrix

diag{I, I, di(t)I}, and noticing 0 < di(t) ≤ τ , we have




Ωi
11 + γ−2PiPi + Q̄ Ωi

12 −di(t)Yi

∗ Ωi
22 −di(t)Ti

∗ ∗ −di(t)e
−ατSi



 < 0. (14)

Define the piecewise Lyapunov functional candidate

V (x̄(t)) =Vσ(t)(x̄t) = x̄T (t)Pσ(t)x̄(t)

+

∫ 0

−τ

∫ t

t+θ

˙̄xT (s)e−α(t−s)Sσ(t) ˙̄x(s)dsdθ,
(15)

which is positive definite since Pi and Si (i ∈ N) are

positive definite matrices.

First, we will prove that system (9) is exponentially stable

while ̟ ≡ 0.

When t ∈ [tk, tk+1), for the simplicity of notations,

suppose that the ith subsystem is active, i.e., σ(t) = i.

Differentiating (15) along the trajectory of (9) and noticing

di(t) ≤ τ , we obtain

V̇i(x̄t) ≤2x̄T (t)Pi(Āix̄(t) + D̄ix̄(t − di(t)))

+τ ˙̄xT (t)Si ˙̄x(t) −

∫ t

t−di(t)

˙̄xT (s)e−ατSi ˙̄x(s)ds

−α

∫ 0

−τ

∫ t

t+θ

˙̄xT (s)e−α(t−s)Si ˙̄x(s)dsdθ. (16)

Note that

τ ˙̄xT (t)Si ˙̄x(t) = x̄T (t)τĀT
i SiĀix̄(t)

+ 2x̄T (t)τĀT
i SiD̄ix̄(t − di(t))

+ x̄T (t − di(t))τD̄T
i SiD̄ix̄(t − di(t)).

(17)

From the Leibniz-Newton formula, we obtain

2[x̄T (t), x̄T (t − di(t))]

[

Yi

Ti

]

× [x̄(t) − x̄(t − di(t)) −

∫ t

t−di(t)

˙̄x(s)ds] = 0. (18)

Substituting (17) and (18) into (16) yields

V̇i(x̄t) + αVi(x̄t)

≤

[

x̄(t)
x̄(t − di(t))

]T [

Ωi
11Ω

i
12

∗ Ωi
22

] [

x̄(t)
x̄(t − di(t))

]

− 2
[

x̄T (t)Yi + x̄T (t − di(t))Ti

]

∫ t

t−di(t)

˙̄x(s)ds

−

∫ t

t−di(t)

˙̄xT (s)e−ατSi ˙̄x(s)ds.

Let ξ(t, s) =
[

x̄T (t)x̄T (t − di(t)) ˙̄xT (s)
]T

. We have

V̇i(x̄t) + αVi(x̄t) ≤
1

di(t)
×

∫ t

t−di(t)

ξT (t, s)





Ωi
11 Ωi

12 −di(t)Yi

∗ Ωi
22 −di(t)Ti

∗ ∗ −di(t)e
−ατSi



 ξ(t, s)ds.

Taking (14) into account, we get

V̇i(x̄t) + αVi(x̄t) <
1

di(t)
×

∫ t

t−di(t)

ξT (t, s)diag{−Q̄ − γ−2PiPi, 0, 0}ξ(t, s)ds.

Noticing that Q̄ ≥ 0 and γ−2PiPi > 0, we can obtain

V̇i(x̄t) + αVi(x̄t) < 0, i ∈ N. (19)

When t ∈ [tk, tk+1), integrating (19) from tk to t gives

V (x̄t) = Vσ(t)(x̄t) ≤ e−α(t−tk)Vσ(tk)(x̄tk
). (20)

Using (12) and (15), at the switching instant ti, we have

Vσ(ti)(x̄ti) ≤ µVσ(t−
i

)(x̄t
−

i
), i = 1, 2, · · · . (21)

Therefore, it follows from (20), (21) and the relation k =
Nσ(t0, t) ≤ N0 + t−t0

Tα
, noticing N0 > 0, that

V (x̄t) ≤e−α(t−tk)µVσ(t−
k

)(x̄t
−

k
)

≤e−α(t−tk−1)µVσ(tk−1)(x̄tk−1
) ≤ · · ·

≤e−α(t−t0)µkVσ(t0)(x̄t0)

≤µN0 · e−(α−
ln µ
Tα

)(t−t0)Vσ(t0)(x̄t0).

(22)

In view of (15) again, it holds that

a‖x̄(t)‖2 ≤ V (x̄t), Vσ(t0)(x̄t0) ≤ b‖x̄t0‖
2
cl, (23)

where a = mini∈N λmin(Pi), b = maxi∈N λmax(Pi) +
τ2 maxi∈N λmax(Si).

Let λ = 1
2 (α− ln µ

Tα
). Combining (22) and (23) gives rise to

‖x̄(t)‖2 ≤
1

a
V (x̄t) ≤

b

a
µN0 · e−(α−

ln µ
Tα

)(t−t0)‖x̄t0‖
2
cl.
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Therefore, ‖x̄(t)‖ ≤
√

b
a
µ

N0
2 · e−λ(t−t0)‖x̄t0‖cl, which

means that system (9) is exponentially stable with ̟ ≡ 0.

Next, we will show under the zero initial condition with

̟ 6= 0 that
∫ ∞

0
e−αteT

r (t)Qer(t)dt ≤ γ2
∫ ∞

0
̟T (t)̟(t)dt.

Suppose that t ∈ [tk, tk+1), and the ith subsystem is

active. Differentiating the Lyapunov functional candidate

along the trajectory x̄(t) of system (9), we can easily get

V̇i(x̄t) + αVi(x̄t)

≤
1

di(t)

∫ t

t−di(t)

ξT (t, s)





Ωi
11Ω

i
12 −di(t)Yi

∗ Ωi
22 −di(t)Ti

∗ ∗ −di(t)e
−ατSi



 ξ(t, s)ds

+ 2x̄T (t)Pi̟(t). (24)

Applying Lemma 1 gives

2x̄T (t)Pi̟(t) ≤ γ−2x̄T (t)PiPix̄(t) + γ2̟T (t)̟(t). (25)

Substituting (25) into (24) yields

V̇i(x̄t) + αVi(x̄t) ≤
1

di(t)

∫ t

t−di(t)

ξT (t, s)

×





Ωi
11 + γ−2PiPiΩ

i
12 −di(t)Yi

∗ Ωi
22 −di(t)Ti

∗ ∗ −di(t)e
−ατSi



 ξ(t, s)ds

+γ2̟T (t)̟(t). (26)

Taking (14) into account again, and noticing the structure of

Q̄, we obtain

V̇i(x̄t) + αVi(x̄t)

<
1

di(t)

∫ t

t−di(t)

ξT (t, s)





−Q̄00
∗ 00
∗ ∗0



 ξ(t, s)ds + γ2̟T (t)̟(t)

=−eT
r (t)Qer(t) + γ2̟T (t)̟(t). (27)

Let Γ(t) = eT
r (t)Qer(t) − γ2̟T (t)̟(t). According to the

theory of the first order linear nonhomogeneous differential

inequality, for any t ∈ [tk, tk+1), we have

V (x̄t) ≤ e−α(t−tk)Vσ(tk)(x̄tk
) −

∫ t

tk

e−α(t−s)Γ(s)ds, (28)

It follows from (12) that

V (x̄ti
) ≤ µVσ(t−

i
)(x̄t

−

i
), i = 1, 2, · · · . (29)

Let t0 = 0, combining (28) and (29) gives rise to

V (x̄t) ≤µVσ(t−
k

)(x̄t
−

k
)e−α(t−tk) −

∫ t

tk

e−α(t−s)Γ(s)ds

≤µkVσ(t0)(x̄0)e
−αt − µk

∫ t1

0

e−α(t−s)Γ(s)ds

− µk−1

∫ t2

t1

e−α(t−s)Γ(s)ds (30)

− · · · −

∫ t

tk

e−α(t−s)Γ(s)ds

=e−αt+Nσ(0,t) ln µV (x̄0)

−

∫ t

0

e−α(t−s)+Nσ(s,t) ln µΓ(s)ds.

Under the zero initial condition, (30) becomes

0 ≤ −

∫ t

0

e−α(t−s)+Nσ(s,t) ln µΓ(s)ds. (31)

Multiplying both sides of (31) by e−Nσ(0,t) ln µ yields
∫ t

0

e−α(t−s)−Nσ(0,s) ln µeT
r (s)Qer(s)ds

≤

∫ t

0

e−α(t−s)−Nσ(0,s) ln µγ2̟T (s)̟(s)ds.

(32)

Note that Nσ(0, s) ≤ N0 + s
Tα

, N0 > 0 and Tα > ln µ
α

, we

have

Nσ(0, s) lnµ ≤ N0 lnµ + αs. (33)

Therefore, it follows from (32) and (33) that
∫ t

0

e−αteT
r (s)Qer(s)ds <

∫ t

0

e−α(t−s)γ2̟T (s)̟(s)ds.

(34)

Integrating both sides of (34) from 0 to ∞ results in
∫ ∞

0

e−αseT
r (s)Qer(s)ds ≤

∫ ∞

0

γ2̟T (s)̟(s)ds.

This completes the proof.

Remark 1. When µ = 1, we have T ∗
α = 0, which implies

that the switching signal can be arbitrary. Note that N0 = 0
corresponds to the case of no switching on any interval of

length smaller than Tα, this case degenerates into dwell time

case, that is, if we discard the first N0 switches, then the

average time between consecutive switches is at least Tα

(cf. [5], [8]). Therefore, our adopting N0 > 0 in this paper

is more general and natural.

Now, we will design robust tracking controllers.

Consider the ith subsystem with state feedback controller

of the form u(t) = Kier(t). Augmenting system (4) we have

˙̄x(t) = (Āi + △Āi)x̄(t) + (D̄i + △D̄i)x̄(t − di(t)) + ̟(t),

where x̄(t), Āi, D̄i and ̟(t) are defined in (8), and

△Āi =

[

△Ai + △BiKi−△BiKi

0 0

]

,△D̄i =

[

△Di0
0 0

]

.

We adopt the following notations

Ēi=

[

Ei0
0 0

]

, F̄i =

[

Fi + HiKi−HiKi

0 0

]

,

Γ̄i(t)=

[

Γi(t)0
0 0

]

, L̄i =

[

Li0
0 0

]

, H̄i =

[

Hi

0

]

.

A simple calculation shows
[

△Āi,△D̄i,△B̄i

]

= ĒiΓ̄i(t)
[

F̄i, L̄i, H̄i

]

, i ∈ N

and

Γ̄T
i (t)Γ̄i(t) ≤ I,

which means Assumption 2 is satisfied.

Consider the closed loop switched linear uncertain system

with time-varying delays,

˙̄x(t) = (Āσ +△Āσ)x̄(t)+(D̄σ +△D̄σ)x̄(t−dσ(t))+̟(t).
(35)

1579























ϕi
11 + Q̄ ϕi

12 + β−1F̄T
i L̄i −Yi ĀT

i Si + βPiĒiĒ
T
i Pi PiĒi F̄i

∗ ϕi
22 + β−1L̄T

i L̄i −Ti D̄T
i Si 0 0 0

∗ ∗ −τ−1e−ατSi 0 0 0 0
∗ ∗ ∗ −τ−1Si + βĒiĒ

T
i 0 0 0

∗ ∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ ∗ −β−1I 0
∗ ∗ ∗ ∗ ∗ 0 −βI





















< 0, i ∈ N (38)

We have the following result.

Theorem 2. Suppose that the augmented system (35) satisfies

Assumption 1-2. For given positive constants α, γ, if there

exist scalar β > 0, positive definite matrices Pi, Si, matrices

Ki, and any matrices Yi, Ti with appropriate dimensions,

such that (38) hold, then under the feedback controller

u(t) = Kσer(t) for system (4), the weighted H∞ model

reference robust tracking performance in (1) is guaranteed

for any switching signal with average dwell time satisfying

Tα > T ∗
α =

lnµ

α
, (37)

where µ ≥ 1 satisfies

Pi≤ µPj , Si ≤ µSj , ∀i, j ∈ N, (38)

ϕi
11=ĀT

i Pi + PiĀi + αPi + Y T
i + Yi,

ϕi
12=PiD̄i + TT

i − Yi,

ϕi
22=−TT

i − Ti.

Proof. Define the piecewise Lyapunov functional candidate

V (x̄(t)) =Vσ(t)(x̄(t)) = x̄T (t)Pσ(t)x̄(t)

+

∫ 0

−τ

∫ t

t+θ

˙̄xT (s)e−α(t−s)Sσ(t) ˙̄x(s)dsdθ, (39)

and let Âi = Āi +△Āi, D̂i = D̄i +△D̄i. The result follows

from Theorem 1 if it holds that













ϕ̂i
11 + Q̄ϕ̂i

12 −Yi ÂT
i Si Pi

∗ ϕ̂i
22 −Ti D̂T

i Si 0
∗ ∗ −τ−1e−ατSi 0 0
∗ ∗ ∗ −τ−1Si 0
∗ ∗ ∗ ∗ −γ2I













< 0, i ∈ N,

(40)

where

ϕ̂i
11=ÂT

i Pi + PiÂi + αPi + Y T
i + Yi,

ϕ̂i
12=PiD̂i + TT

i − Yi,

ϕ̂i
22=−TT

i − Ti.

Now, we show that (40) hold. We rewrite (40) as follows

Θi +













△ĀT
i Pi + Pi△ĀiPi△D̄i0△ĀT

i 0
∗ 0 0△D̄T

i 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0













=Θi +













PiĒi

0
0
Ēi

0













Γi(t)
[

F̄iL̄i 0 0 0
]

+













F̄T
i

L̄T
i

0
0
0













ΓT
i (t)

[

ĒT
i Pi 0 0 ĒT

i 0
]

< 0, i ∈ N, (41)

where Θi is defined in (10). Lemma 2 indicates that (41) hold

if there exists a positive number β, such that the following

inequalities hold

Θi + β













PiĒi

0
0
Ēi

0













[

ĒT
i Pi 0 0 ĒT

i 0
]

+β−1













F̄T
i

L̄T
i

0
0
0













[

F̄i L̄i 0 0 0
]

< 0, i ∈ N. (42)

It is easy to show that (42) are equivalent to (38), conse-

quently, (40) hold and the proof is end.

Remark 2. Due to the Lyapunov functional candidate we

designed does not include the time-varying delays terms

di(t)(i ∈ N), the number of constraint conditions is reduced

compared to existing results (e.g., [4], [12]), which in turn

reduces the difficulties of designing switching control laws.

IV. NUMERICAL EXAMPLE

Consider the switched linear uncertain system (1) with

time varying delays and the reference system (2) with

A1 =

[

−4−2.5
1.2−1.5

]

, D1 =

[

0.20.1
0.1 0

]

, B1 =

[

−0.1
−0.3

]

;

A2 =

[

−2 0.5
−3.2−3.5

]

, D2 =

[

0.10.1
0.2 0

]

, B2 =

[

−0.1
0.7

]

;

Ar =

[

−4.5−1.5
1.2 −1.5

]

, F1 =

[

0.4 0
0 0.4

]

, F2 =

[

0.6 0
0 −0.1

]

;

E1 =

[

0.1 0
0 −0.5

]

, L1 =

[

0.1 0
0 0.3

]

, H1 =

[

0.8
0.1

]

;

E2 =

[

0.3 0
0 −0.1

]

, L2 =

[

0.1 0
0 −0.4

]

, H2 =

[

0.3
0.1

]

;

Π1 = Π2 = M = diag{1, 1};

1580



0 2 4 6 8 10
−0.5

0

1

2

3

4

t

 

 

x
1

x
r1

x
1

x
r1

Fig. 1. State x1 tracking the reference state xr1.
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Fig. 2. State x2 tracking the reference state xr2.

and dσ(t) = 0.6 + 0.6 sin t. For α = 0.6, τ = 1.2, solving

(38) gives piecewise Lyapunov functional (39) with

P1 =

[

P̂−1
1 0

0 P̂−1
1

]

, P2 =

[

P̂−1
2 0

0 P̂−1
2

]

,

S1 =

[

Ŝ1 0

0 Ŝ1

]

, S2 =

[

Ŝ2 0

0 Ŝ2

]

,

where

P̂1 =

[

0.1542 −0.0153
−0.0153 0.1494

]

, P̂2 =

[

0.0897 −0.0378
−0.0378 0.0815

]

,

Ŝ1 =

[

2.68160.0027
0.00272.6775

]

, Ŝ2 =

[

2.7482 −0.0531
−0.0531 2.7368

]

.

Consequently, the controller gains are given as K1 =
[

0.52951.0927
]

and K2 =
[

4.02921.8681
]

. Solving (38)

gives µ = 2.8645, and according (37), we have τ∗
α = ln µ

α
=

1.7540. By using average dwell time method provided by

Theorem 1 and 2, we obtained that system (1) is with the

weighted H∞ model reference robust tracking performance,

the simulation results are depicted in Fig.1-Fig.3.

V. CONCLUSIONS

In this paper, we have investigated the robust tracking con-

trol problem for switched linear uncertain systems with time-

varying delays. Sufficient conditions for the solvability of the

robust tracking control problems are developed. Weighted

H∞ model reference robust tracking performance is given for

the switched systems with time-varying delays; with average

dwell time technique, satisfactory tracking control results

are obtained. Meanwhile, by using free weighting matrix

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

t

Fig. 3. Switching signal with average dwell time.

scheme, the conservativeness of designing switching control

laws is reduced. Consequently, the difficulties of the stability

analysis and control synthesis of switched system with time-

varying delays are substantially reduced by relaxing some

constrain conditions compared with the existing results.
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