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Abstract— In this paper, we study MIMO Iterative Learning
Control (ILC) and its robustness against model uncertainty.
Although it is argued that, so-called, norm optimal ILC
controllers have some inherent robustness, not many results
are available that can make quantitative statements about the
allowable model uncertainty. In this paper, we derive sufficient
conditions for robust convergence of the ILC algorithm in
presence of an uncertain system with an additive uncertainty
bound. These conditions are applied to norm optimal ILC,
resulting in guidelines for robust controller design. Theoretical
results are illustrated by simulations.

I. INTRODUCTION

In many control applications, a system has to perform the
same task over and over again. Examples of such systems
are robotic manipulators (e.g., a pick and place machine) and
chemical batch processes. Iterative Learning Control (ILC) is
a control strategy that uses the repetitive nature of the task to
improve performance by learning from previous experience.
When properly designed, an ILC controller iteratively finds
a command signal that yields high system performance. For
an introduction to ILC, the reader is referred to [5].

ILC research has always focussed on stability and con-
vergence of the ILC algorithm. The analysis of stability and
convergence in presence of model uncertainty, i.e., robust
ILC, is less studied. In [10], [12], robustness properties of
Linear Quadratic (LQ) ILC controllers (see, e.g., [3], [7], [9],
[13]) are studied. Herein, the analysis is performed in the
frequency domain and therefore, only approximate (possibly
conservative) results are obtained. This is due to the fact that
the Fourier transform assumes that signals act on an infinite
interval, whereas in ILC, they inherently act on a finite time
interval.

Systematic approaches to synthesise robust ILC controllers
are studied in [4], [17]. With the control problem posed
as an H∞ optimal control problem, these results have two
drawbacks: First, they are posed in the frequency domain.
And second, the solutions are causal, i.e., the command
signal in trial k+1 at time t only depends on information of
trial k at time [0, . . . , t − 1]. In [11], [19], it was argued
that the real benefit of ILC lies in the noncausality of
the command signal. An alternative robust ILC approach
[1], [2], represents model uncertainty as interval uncertainty
in the system’s Markov parameters. Although the resulting

controllers are noncausal, synthesis of these controllers is
numerically demanding.

Thus, existing tools for analysing and synthesising robust
ILC controllers still have a number of deficiencies, caused
by frequency domain representations, causality of the ILC
controller, and a cumbersome representation of the model
uncertainty. In this paper, we develop analysis and synthesis
tools that overcome these limitations.

As a main contribution of this paper, we derive robust
convergence conditions for first order ILC controllers, using
a framework that incorporates the finite time character of
ILC. In order to derive these conditions, we present a, for
ILC, novel way to represent uncertainty. Moreover, we give
a frequency domain interpretation of the robust convergence
conditions. As it turns out, the results of [10] form a
special case of the work presented here. Finally, we consider
design issues for both the aforementioned LQ-ILC solutions,
and solutions that incorporate an uncertainty model in the
controller [8], [20], for they have a very similar structure.

The remainder of this paper is organised as follows. In
Section II, we introduce the necessary ILC notations. Next, in
Section III, the robust convergence problem is defined. Sub-
sequently, sufficient conditions for robust convergence, both
in finite time and frequency domain, are derived in Section
IV. In Section V, we illustrate the robust convergence results
by means of simulation examples with LQ-ILC controllers.
Finally, some conclusions are drawn in Section VI.

II. NOMENCLATURE

In this paper, we consider discrete time, Linear Time
Invariant (LTI) systems, with l outputs and m inputs. Since
for these systems the z-transform exists, we can represent
a set of perturbed systems Πz with a bounded additive
uncertainty as follows:

Πz : {Jp(z) = J(z) +Wi(z)∆(z)Wo(z) : ‖∆(z)‖i2 ≤ 1} .
(1)

In (1), J(z) represents the nominal model, Wi(z) and Wo(z)
form a bound on the additive uncertainty, and ∆(z) is an
arbitrary, stable system. The Frequency Response Function
(FRF) is obtained by substituting z = ejϑ.

Since ILC explicitly acts on a finite time interval
t ∈ [0, 1, . . . , N − 1 ], we can use the lifted setting,
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as first introduced in [16], to express our systems and filters.
In this setting, every time signal in trial k is stored in either
an lN - or an mN -dimensional column vectors, e.g.:

yk =
[
yTk (0), yTk (Ts), . . . , yTk ((N − 1)Ts)

]T
, (2)

where Ts denotes the sampling time. For brevity of notation,
Ts is omitted in the remainder of this paper. In the same
setting, systems are represented by their convolution matrix:

J =


j(0) 0 . . . 0

j(1) j(0)
...

...
. . . . . . 0

j(N − 1) . . . j(1) j(0)

 , (3)

where the sequence {j(0), j(1), . . . , j(N − 1)}, with j(t) ∈
Rl×m, denotes the system’s Markov parameters. The Markov
parameters result from observing the system’s response to a
unit pulse. The matrices Wi and Wo are derived from Wi(z)
and Wo(z), respectively, similar as J from J(z). Using the
lifted notation, a finite time representation of (1) can be
written as:

Π : {Jp = J +Wi∆Wo : ‖∆‖i2 ≤ 1} . (4)

The set Π now maps an input vector fk ∈ RmN to an output
vector yk ∈ RlN , i.e., yk = Jpfk. The lifted system ∆ of
(4) represents an arbitrary norm bounded, lower triangular,
block Toeplitz matrix. Although, representing uncertainty as
in (4) is a novel idea for ILC, it is a matured concept in the
field of robust control theory (see, e.g., [18]).

In this paper, we use both the z-domain and the lifted
description. To avoid any confusion, all z-domain signals
and systems will have the index z.

Furthermore, in this paper, we make extensive use of
norms. Given a lifted description, the induced 2-norm is
defined as follows:

‖J‖i2 = sup
f 6=0

‖Jf‖2
‖f‖2

= σ(J), (5)

where ‖f‖2 =
√
〈f, f〉 denotes the 2-norm for vectors and σ

denotes the maximum singular value. For a transfer function
description, the induced 2-norm is given by:

‖J(z)‖i2 = sup
f(z)6=0

‖J(z)f(z)‖2
‖f(z)‖2

= sup
ϑ∈[−π,π]

σ
(
J(ejϑ)

)
.

(6)

III. THE ROBUST MONOTONIC CONVERGENCE PROBLEM

In this Section, we define the robust monotonic conver-
gence problem, that we will subsequently solve for general
norm optimal ILC controllers in Section IV. Yet first, let
us consider the ILC control structure used in this paper.
This control structure is similar to the one used in [21]
and is shown in Fig. 1. The corresponding trial domain
dynamics are: {

fk+1 = Qfk + Lek

ek = r − Jpfk,
(7)

ekfk+1 +

+

+
w—1I

Q

+

+

r

fk

—

L

J

∆ WiWo

qk pk

Fig. 1: General ILC control structure.

with corresponding closed loop dynamics:

fk+1 = (Q− LJp) fk + Lr. (8)

Eq. (7) is robustly asymptotically stable in the trial domain
if and only if all eigenvalues of Q−LJp are within the unit
circle for all Jp ∈ Π [5], [14]. More important, however, is
the notion of monotonic convergence. The command signal
of the ILC algorithm converges monotonically if there exists
a 0 ≤ α < 1 such that:

‖fk+1 − f∞‖2 ≤ α‖fk − f∞‖2, (9)

where f∞ = limk→∞ fk. If we extend the concept of
monotonic convergence to include model uncertainty, we can
define robust monotonic convergence.

Definition 3.1 (Robust Monotonic Convergence): Given a
Q and L, the ILC system (8) has the property Robust
Monotonic Convergence (RMC) if there exists a 0 ≤ α < 1,
for all Jp ∈ Π, such that:

‖fk+1 − f∞‖2 ≤ α‖fk − f∞‖2, (10)

with:
α = ‖Q − LJp‖i2. (11)

The difference between monotonic convergence and RMC
is that in the former case we only guarantee the command
signal to converge for Jp = J .

Definition 3.2 (Robust Performance): Robust Perfor-
mance (RP) of the ILC system (8) is defined as the error
for k →∞, i.e.:

e∞ =
(
I − Jp (I −Q+ LJp)

−1
L
)
r. (12)

Note that (12) can equal zero for all Jp ∈ Π if and only
if Q = I and r ∈ Im(Jp).

IV. ROBUST MONOTONIC CONVERGENCE OF NORM
OPTIMAL ILC

In this Section, we derive sufficient conditions for RMC
for a norm optimal ILC controlled system in both the lifted
and frequency domain.

The norm optimal ILC controller is a generalisation of
the LQ-ILC controller, as studied in [3], [7], [9], [13]. In
norm optimal ILC, the control problem is to minimise the
following cost functional:

J = eTk+1Qek+1 + fT∆Rf∆ + fTk+1Sfk+1, (13)
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where f∆ = fk+1−fk, and Q = QT > 0, R = RT ≥ 0, and
S = ST ≥ 0 denote weighting matrices. Note the difference
between Q and Q: the former is a filter, while the latter is a
weighting matrix. Substituting ek+1 = ek − Jf∆ and taking
∂J
∂fk+1

= 0, yields the following LQ optimal ILC controller:

fk+1 =
(
JTQJ +R+ S

)−1 ((
JTQJ +R

)
fk + JTQek

)
.

(14)
This can be put in the framework of (7) by defining:

Q =
(
JTQJ +R+ S

)−1 (
JTQJ +R

)
, (15a)

L =
(
JTQJ +R+ S

)−1
JTQ. (15b)

While in LQ-ILC, the weighting matrices Q, R, and S
are taken in the form of βI , where β is a scalar, in norm
optimal ILC we no longer restrict Q and S to have this
structure. In [8], for example, a robust ILC control structure
is derived that explicitly incorporates an uncertainty model
in the controller’s weighting matrices.

After combining (4) with (15a) and (15b), condition (11)
shows that this ILC algorithm is RMC if:

‖
(
JTQJ +R+ S

)−1 (
R− JTQWi∆Wo

)
‖i2 < 1, (16)

for all ‖∆‖i2 < 1. Since this expression is still a function
of ∆, we cannot use it to guarantee RMC: Any effort to
remove this ∆ using algebraic manipulations, results in very
conservative results.

In the remainder of this Section, we present two ways
to circumvent this problem: First, we derive conditions for
RMC in the lifted domain using concepts from robust feed-
back control, to be more specifically, µ-analysis (see, e.g.,
[15], [18]). Subsequently, we employ a frequency domain
interpretation to derive results for Single-Input-Single-Output
(SISO) systems.

A. Lifted Domain RMC

For deriving RMC conditions in the lifted domain, we
consider the N∆ structure, see Fig 2a. This structure can be
obtained by reorganising Fig. 1, i.e.:[

qTk fTk+1

]T = N
[
pTk fTk

]T
, (17)

with:
N =

[
0 Wo

−LWi Q− LJ

]
. (18)

This formulation enables us to use generally well known
ideas from robust control theory: With ‖∆‖i2 ≤ 1, the upper
linear fractional transformation:

‖Fu(N,∆)‖i2 = ‖Q − L (J +Wi∆Wo)︸ ︷︷ ︸
Jp

‖i2 < 1, (19)

is exactly equal to (11). Because we require ‖Fu(N,∆)‖i2 <
1 ∀ ‖∆‖i2 ≤ 1, we can include this requirement in the ∆-
block, as shown in Fig. 2b.

A standard result from µ-analysis, [15], [18], yields that
‖Fu(N,∆N )‖i2 < 1 if:

inf
D∈D

‖DND−1‖i2 < 1, (20)

k k+1

k k

(a) (b)

Fig. 2: N∆-structure.

where D = {D : D∆N = ∆ND : ∆N ∈∆}, and ∆ =
{diag(∆,∆f ) : ‖∆‖i2, ‖∆f‖i2 ≤ 1}.

We now present our main results using the following two
propositions.

Proposition 4.1: Given system (8) and ILC controller
(14), with R = 0. Then, for MIMO systems (4), the ILC
algorithm is RMC if:

‖Wo‖i2 · ‖
(
JTQJ + S

)−1
JTQWi‖i2 < 1. (21)

Furthermore, for SISO systems (4) and Wo square, the ILC
algorithm is RMC if:

‖
(
JTQJ + S

)−1
JTQWiWo‖i2 < 1. (22)

Proof: Consider the N∆ structure of Fig. 2a. Substitution
of (15a) and (15b) into (20) and taking R = 0 yields:

inf
D

∥∥∥∥[D 0
0 I

] [
0 Wo

−LWi 0

] [
D−1 0

0 I

]∥∥∥∥
i2

< 1, (23)

with D an arbitrary lower triangular block Toeplitz matrix
of the form:

D =


doIm 0 · · · 0

d1Im doIm
. . .

...
...

. . . . . . 0
dN−1Im · · · d1Im d0Im

 , (24)

where Im ∈ Rm×m identity matrix. Since (23) has an
antidiagonal structure, the inequality is satisfied if and only
if:

inf
D

max
{
‖DWo‖i2, ‖LiWiD

−1‖i2
}
< 1. (25)

If we take D = dI , then there exists a d ∈ R+, for which
(25) is equal to (21). If we take D = W−1

o , then (25) is
equal to (22).

Proposition 4.2: Assume that (8) with ILC controller (14)
is RMC for R = 0. Then (8) is RMC for R = ρI ≥ 0, where
ρ ∈ R.

Proof: Observe that (16) is equivalent to:

‖
(
JTQJ +R+ S

)−1 (
R+

(
JTQJ + S

)
Y
)
‖i2 < 1,

(26)
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with Y = −
(
JTQJ + S

)−1
JTQWi∆Wo and ‖Y ‖i2 < 1.

For R = ρI ≥ 0, (26) has an upper bound given by:

‖
(
JTQJ + ρI + S

)−1
(ρI

+(1− ε)
(
JTQJ + S

))
‖i2 < 1, (27)

with 0 < ε ≤ 1. With JTQJ + S square, symmetric and
positive definite, this inequality is satisfied for all ρ ≥ 0.

Remark: From Proposition 4.2 we conclude that the
parameter R does not influence the robustness of norm
optimal ILC against model uncertainty. A similar statement
has also been made in [12].

B. Frequency Domain RMC
Although we argued that the frequency domain is not the

preferred domain to analyse RMC, it can give us valuable in-
sight in the RMC properties of norm optimal ILC controllers.
In [14], a sufficient condition for monotonic convergence is
given by:

|Q(ejϑ)| |I − L?(ejϑ)J(ejϑ)| < 1, ϑ ∈ [−π, π], (28)

with L?(ejϑ) = Q−1(ejϑ)L(ejϑ). Using this result, we can
derive a sufficient condition for RMC, given by:

|Q(ejϑ)| |I − L?(ejϑ)Jp(ejϑ)| < 1 ∀Jp(ejϑ) ∈ Πz. (29)

In the following result, we restrict ourselves to SISO
systems, since the derivation requires the matrix mul-
tiplications to commute. In other words, we require:
Wi(z)∆(z)Wo(z) = Wi(z)Wo(z)∆(z) = WA(z)∆(z).
Furthermore, we require Q and S to correspond to an LTI
system, so that their z-transform exists, and R to be a
constant. The following result is a generalisation of [10].

Proposition 4.3: Given the set of SISO systems (1), ILC
controller:

Q(z) =
(
J(z−1)Q(z)J(z) +R+ S(z)

)−1(
J(z−1)Q(z)J(z) +R

)
, (30a)

L(z) =
(
J(z−1)Q(z)J(z) +R+ S(z)

)−1
J(z−1)Q(z),

(30b)

and R ≥ 0. Then the ILC controlled system is RMC if:

|
(
J(e−jϑ)Q(ejϑ)J(ejϑ) + S(ejϑ)

)−1

J(e−jϑ)Q(ejϑ)WA(ejϑ)| < 1. (31)

Proof: Substituting (30b) into (29) yields:

|Q(ejϑ)| |
(
J(e−jϑ)Q(ejϑ)J(ejϑ) +R

)−1(
R− J(e−jϑ)Q(ejϑ)WA(ejϑ)∆(ejϑ)

)
| < 1. (32)

With
(
J(e−jϑ)Q(ejϑ)J(ejϑ) +R

)−1
a zero-phase filter, we

can, after substituting (30a), rewrite this expression as:

|
(
J(e−jϑ)Q(ejϑ)J(ejϑ) +R+ S(ejϑ)

)−1 |
|R− J(e−jϑ)Q(ejϑ)WA(ejϑ)∆(ejϑ)| < 1 ⇔∣∣R− J(e−jϑ)Q(ejϑ)WA(ejϑ)∆(ejϑ)

∣∣ <∣∣J(e−jϑ)Q(ejϑ)J(ejϑ) +R+ S(ejϑ)
∣∣ , (33)

Since ∆(ejϑ) is an arbitrary, stable system, there exists
a ∆(ejϑ) for which the upper bound of the triangular
inequality is achieved. Therefore, without introducing extra
conservatism, (33) can be rewritten to:

R+
∣∣J(e−jϑ)Q(ejϑ)WA(ejϑ)

∣∣ <∣∣J(e−jϑ)Q(ejϑ)J(ejϑ) + S(ejϑ)
∣∣+R ⇔∣∣J(e−jϑ)Q(ejϑ)WA(ejϑ)

∣∣ <∣∣J(e−jϑ)Q(ejϑ)J(ejϑ) + S(ejϑ)
∣∣ .

The latter expression can be rewritten to (31).

The results of Proposition 4.3 confirm that the parameter
R does not influence the robustness properties of the ILC
controller.

Corollary 4.4: Proposition 4.3 shows that some uncer-
tainty can be allowed while still retaining maximum per-
formance. If the multiplicative uncertainty |WM (ejϑ)| =
|J−1(ejϑ)WA(ejϑ)| < 1 for all ϑ ∈ [−π, π], the norm
optimal ILC solution with R = S = 0 is RMC. This result is
very similar to that of [6], in which model based feedforward
is discussed.

V. SIMULATION EXAMPLE

In this Section, we illustrate the results of Section IV using
an LQ-ILC controller. Hence, we restrict Q, R, and S to have
a diagonal form.

A. System Description

For this example, we consider a model of the two-mass
system used in [21]. The continuous time dynamics of this
system are governed by the following transfer function:

G(s) =
ds+ k

m1m2s4 + (m1 +m2)ds3 + (m1 +m2)ks2
,

(34)
where m1 = 2 · 10−4, m2 = 1.6 · 10−4, d = 5.66 · 10−4,
and k = 9.8. Uncertainty is introduced by perturbing the
values d and k between 95% and 105% of their nominal
values. A discrete time equivalent of this model is obtained
by using a ’zero-order-hold’ approximation with a sampling
frequency of 1kHz. Since this system is marginally stable, it
is controlled using feedback with the following controller:

K(s) = 0.2

(
1

2π·3s+ 1
) (

1
(2π·52)2 s

2 + 0.02
2π·52s+ 1

)
(

1
2π·20s+ 1

) (
1

(2π·52)2 s
2 + 2

2π·52s+ 1
) , (35)

which is implemented in discrete time using a Tustin ap-
proximation with a prewarp frequency of 52Hz. In case we
use feedback control in conjunction with ILC, the process
sensitivity is the relevant transfer function for ILC:

J(z) = (I +G(z)K(z))−1
G(z). (36)

The nominal system model is obtained by taking the
nominal values for k and d. The additive uncertainty bound
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of the process sensitivity is obtained by taking a Tustin
approximation of the following continuous time bound:

WA(s) = 5 · 10−6 ·

(
1

(2π·0.2)2 s
2 + 2

2π·0.2s+ 1
)

(
1

(2π·5.2)2 s
2 + 0.6

2π·5.2s+ 1
) ·

(
1

(2π·51)2 s
2 + 1.1

2π·51s+ 1
)(

1
(2π·54.5)2 s

2 + 1.1
(2π·54.5)s+ 1

)
(

1
(2π·51)2 s

2 + 0.04
2π·51s+ 1

)(
1

(2π·54.5)2 s
2 + 0.042

(2π·54.5)s+ 1
) .

(37)

Since this example is a SISO system, all matrix multiplica-
tions commute, and we can take either Wi(z) = WA(z) and
Wo(z) = 1 or Wi(z) = 1 and Wo(z) = WA(z).

The lifted system description of (4) is obtained by defining
J , Wi and Wo as given in (3). The perturbed system’s
impulse response and the defined trajectory for ILC (which
is in fact the reference trajectory filtered by the sensitivity
function (I +G(z)K(z))−1) are depicted in Fig. 3 and
Fig. 4, respectively.

B. RMC for R,S → 0 and Retaining Uncompromised
Performance

In Corollary 4.4, we stated that if we require uncompro-
mised performance in combination with RMC, we have to
satisfy |WM (z)| < 1. To illustrate this, we consider the
following multiplicative uncertainty:

WM (s) = 5.8 · 10−7·(
1

(2π)2 s
2 + 1.2

2π s+ 1
)2

(
1

(2π·4.5)2 s
2 + 1

2π·4.5s+ 1
)(

1
(2π·52)2 s

2 + 0.032
2π·52s+ 1

) ,
(38)

which is discretised using a Tustin transformation. The
additive uncertainty description is obtained as follows:

WA,1(z) = J(z)WM (z). (39)

It can verified that this additive uncertainty bound satisfies
the condition of Corollary 4.4. An uncertain system that does
not satisfy these conditions is given by:

WA,2(z) = 2.5 · J(z)WM (z). (40)
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Fig. 4: The applied reference trajectory r.

Fig. 5 and Fig. 6 show the convergence behaviour for
several systems in the two sets by choosing Q = I , R =
S = 0. It can be seen that the set using WA,2, although it is
stable, does not achieve RMC.

C. RMC Cannot be Guaranteed for R 6= 0 and S = 0

Here, we show that by tuning R, we cannot achieve RMC.
For that, we use (37) as our uncertainty bound and choose
Q = I and S = 0. In Fig. 7, convergence, or lack thereof,
of the error signal is shown for R = 0, R = 0.1 · I and
R = I . Increasing R will only postpone the appearance of
the instable behaviour. Since for unstable systems f∞ does
not exist, it is not possible to show the convergence of the
command signal ‖fk − f∞‖2, as we did in Fig. 5. Instead,
the lack of convergence of the error is used to illustrate that
the system is indeed not RMC.

D. RMC for R = 0 and S 6= 0

Propositions 4.1 and 4.3 are both sufficient conditions
for RMC. This is due to the fact that even monotonic
convergence for the nominal system is stated as a sufficient
condition. However, if we violate the aforementioned con-
ditions, the system can become unstable. Using (37), the
system is RMC for Q = I , R = 0, and S = 0.7 · I , while
for S < 0.7 · I , the conditions are not satisfied. Fig. 8 shows
that for S = 0.5 · I , the system becomes unstable, although
one might wrongfully conclude that the system is stable after
observing the first few trials.
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Fig. 5: Convergence of the command signal with R,S → 0.
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VI. CONCLUSIONS

In this paper, we studied robustness against model un-
certainty of norm optimal ILC controllers in the finite time
domain. For that, we introduced the notion of robust mono-
tonic convergence (RMC) and presented sufficient conditions
to guarantee RMC, for a given norm optimal ILC controller
and an additive uncertainty bound. It turns out that RMC can
be examined by evaluating a single expression. Using this
expression, we obtained guidelines for synthesis of robust
ILC controllers. Finally, we illustrated these design issues
with simulation examples using an LQ-ILC controller.

Using the obtained insight in RMC, in [8], we focus on
synthesis of robust ILC controllers that are equipped with an
uncertainty model inside the controller. For these controllers,
it can be guaranteed that the ILC algorithm is RMC.

Future research could focus on extending the theory to
include analysis of higher order ILC, as well as trial varying
model uncertainty.
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