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Abstract— In this paper, we present a novel Iterative Learn-
ing Control (ILC) strategy that is robust against model uncer-
tainty, as given by a system model and an additive uncertainty
bound. The design methodology hinges on H∞ optimisation,
however, the procedure is modified such that the ILC controller
is noncausal and inherently acts on a finite time interval.
The resulting controller has the structure of a norm optimal
ILC controller, so that robustness can be easily assessed.
Furthermore, in an example, we show that the presented robust
ILC controller can outperform linear quadratic ILC controllers.

I. INTRODUCTION

Iterative Learning Control (ILC) is a control strategy that

can be applied to high performance systems that perform

a task repeatedly. Since the task is repetitive, it sounds

natural to include experience from previous trials to improve

performance of the controlled system in the subsequent trial.

Hence, by learning from previous errors. A properly designed

ILC controller iteratively finds a command signal that yields

high system performance. For an introduction to ILC, the

reader is referred to [7].

Although the command signal generated by the ILC con-

troller is based on measured data, the controller is designed

using a system model. Since no model can truly reflect the

real system behaviour, the controller is required to have

some robustness against trial invariant model uncertainty.

Depending on the amount of uncertainty present, and on the

robustness of the controller itself, the ILC controlled system

can become unstable, rendering ILC useless.

A number of contributions have been made that study the

robustness of ILC against model uncertainty, i.e., Robust ILC

(R-ILC). For a norm optimal ILC controller (see, e.g., [3],

[10], [14]), it is recognised that it has some robustness against

model uncertainty. To quantify the allowable uncertainty,

tools have been developed in [9], [11], [13]. Although an

uncertainty model is used to analyse robustness, the ILC

controller itself does not incorporate such an uncertainty

model, resulting in a declined performance of the ILC

algorithm.

A class of R-ILC controllers that do incorporate an uncer-

tainty model in the design of a controller, pose the design

problem as an H∞ optimisation problem, [4], [19]. Herein,

the design problem is posed in the frequency domain, and

therefore, yields an approximate result. This is due to the

fact that the Fourier transform assumes that signals act on

an infinite time interval, whereas in ILC, they inherently act

on a finite time interval. Moreover, the resulting H∞ optimal

controllers are causal, which is also a limitation. Causality

of ILC controllers refers to the fact that the command signal

in trial k + 1 at time t only depends on information of trial

k at time [0, . . . , t− 1]. Though, according to [12], [21], the

real benefit of ILC lies in the noncausality of the solution.

In [16], the ILC controller problem is formulated as an H∞
problem in the trial domain, but trial varying uncertainty is

discussed, instead of trial invariant uncertainty.

Another suggestion that uses an uncertainty model for

designing an ILC controller, is made in [1], [2]. Herein,

model uncertainty is represented as interval uncertainty in the

system’s impulse response. Although the resulting controllers

are noncausal and inherently act on a finite time interval,

synthesis of these controllers can be numerically demanding.

In this paper, we present an R-ILC controller, with a

structure similar to that of norm optimal ILC controllers, that

incorporates an uncertainty model in the controller. Because

of this similar structure, we can use results of [9] to show

that the ILC algorithm is robust. For the derivation of the

controller, we use a procedure similar to H∞ optimisation,

however, modified in such a way that the solution becomes

noncausal and inherently acts on a finite time interval. A

similar procedure is presented in [22], however, in this paper

we can make statements about robustness in a more elegant

framework.

The remainder of this paper is organised as follows.

In Section II, we introduce the necessary ILC notations.

Subsequently, in Section III, we quickly review the ideas and

results of [9], by defining the robust monotonic convergence

problem and by giving sufficient conditions for robust mono-

tonic convergence. The main contribution of this paper, the

R-ILC solution, is presented in Section IV. In Section V, a

simulation example is discussed that shows that the presented

R-ILC controller outperforms the conventional norm optimal

ILC controller, while retaining its robustness. Finally, some

conclusions are drawn in Section VI.

II. NOMENCLATURE

In this paper, we consider discrete time, Linear Time

Invariant (LTI) systems, with l outputs and m inputs. Since
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for these systems the z-transform exists, we can represent

a set of perturbed systems Πz with a bounded additive

uncertainty as follows:

Πz : {Jp(z) = J(z) + Wi(z)Δ(z)Wo(z) : ‖Δ(z)‖i2 ≤ 1} .
(1)

In (1), J(z) represents the nominal model, Wi(z) and Wo(z)
form a bound on the additive uncertainty, and Δ(z) is an

arbitrary, stable system.

Since ILC explicitly acts on a finite time interval

t ∈ [0, 1, . . . , N − 1 ], we can use the lifted setting,

as first introduced in [18], to express our systems and filters.

In this setting, every time signal in trial k is stored in either

an lN - or an mN -dimensional column vector, e.g.:

yk =
[
yT

k (0), yT
k (Ts), . . . , yT

k ((N − 1)Ts)
]T

, (2)

where Ts denotes the sampling time. For brevity of notation,

Ts is omitted in the remainder of this paper. In the same

setting, systems are represented by its convolution matrix:

J =

⎡
⎢⎢⎢⎢⎣

j(0) 0 . . . 0

j(1) j(0)
...

...
. . .

. . . 0
j(N − 1) . . . j(1) j(0)

⎤
⎥⎥⎥⎥⎦ , (3)

where the sequence {j(0), j(1), . . . , j(N − 1)}, with j(t) ∈
R

l×m, denotes the system’s Markov parameters. The Markov

parameters result from observing the system’s response to a

unit pulse. The matrices Wi and Wo are derived from Wi(z)
and Wo(z), respectively, similar as J from J(z). Using the

lifted notation, a finite time representation of (1) can be

written as:

Π : {Jp = J + WiΔWo : ‖Δ‖i2 ≤ 1} . (4)

The set Π now maps an input vector fk ∈ R
mN to an output

vector yk ∈ R
lN , i.e., yk = Jpfk. The lifted system Δ of

(4) represents an arbitrary, norm bounded, lower triangular,

block Toeplitz matrix. Although, representing uncertainty as

in (4) may be a novel idea for ILC, it is a mature concept

in the field of robust control theory (see, e.g., [20]).

In this paper, we use both the z-domain and the lifted

description. To avoid any confusion, all z-domain signals

and systems will have the index z.

Furthermore, in this paper, we make extensive use of

norms. Given a lifted description, the induced 2-norm is

defined as follows:

‖J‖i2 = sup
f �=0

‖Jf‖2

‖f‖2
= σ(J), (5)

where ‖f‖2 =
√〈f, f〉 denotes the 2-norm for vectors and

σ denotes the maximum singular value.

III. CONDITIONS FOR ROBUST MONOTONIC

CONVERGENCE

In this Section, we revise the results presented in [9],

where the notion of robust monotonic convergence (RMC)

is formulated and conditions for RMC for norm optimal ILC

ekfk+1 +

+

+
w—1I

Q

+

+

r

fk

—

L

J

WiWo

qk pk

Fig. 1: General ILC control structure.

controllers are derived. Yet first, let us consider the ILC

control structure used in this paper. This control structure

is similar to the one used in [23] and is shown in Fig. 1.

The corresponding trial domain dynamics are:{
fk+1 = Qfk + Lek

ek = r − Jpfk,
(6)

with the corresponding closed loop dynamics:

fk+1 = (Q− LJp) fk + Lr. (7)

In [7], [17], conditions for stability and convergence of

the ILC controlled system are given. We extend the notion

of monotonic convergence to include model uncertainty.

Definition 3.1 (Robust Monotonic Convergence): Given a

Q and L, the ILC system (7) has the property Robust

Monotonic Convergence (RMC) if there exists an 0 ≤ α < 1
such that for all Jp ∈ Π:

‖fk+1 − f∞‖2 ≤ α‖fk − f∞‖2, (8)

with:

α = ‖Q − LJp‖i2, (9)

and f∞ = limk→∞ fk.

The difference between monotonic convergence and RMC

is that in the former case we only guarantee the command

signal to converge monotonically for Jp = J .

In [9], conditions for RMC are derived for norm optimal

ILC controllers. These controllers have the following filters:

Q =
(
JT QJ + R + S

)−1 (
JT QJ + R

)
, (10a)

L =
(
JT QJ + R + S

)−1
JT Q, (10b)

where Q = QT > 0, R = RT ≥ 0, and S = ST ≥ 0 denote

weighting matrices. Note the difference between Q and Q:

the former is a filter, while the latter is a weighting matrix.

In [9], [13] it was proved that allowable model uncertainty

is not influenced by R. Considering this fact, sufficient con-

ditions for RMC are given in the following Proposition [9].

Proposition 3.1: Given system (7), with Q and L given

by (10a) and (10b), respectively. Then, for MIMO systems

(4) the ILC algorithm is RMC for any R = ρI ≥ 0, if:

‖Wo‖i2 · ‖
(
JT QJ + S

)−1
JT QWi‖i2 < 1. (11)
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Furthermore, for SISO systems (4) and Wo square, the ILC

algorithm is RMC if:

‖ (
JT QJ + S

)−1
JT QWiWo‖i2 < 1. (12)

IV. R-ILC AND THE MINIMAX GAME

Using the results of the previous Section, it has become

possible to design a norm optimal ILC controller that has

RMC. As the main contribution of this paper, we discuss a

procedure that results in an R-ILC controller that explicitly

incorporates an uncertainty model. As it turns out, the

structure of the controller is similar to that of norm optimal

ILC controllers. For this, we present a theory similar to

discrete time H∞ control theory [5], [15], but modified in

such a way that the solution is noncausal and inherently finite

time. Hence, since the Hardy space refers to a class of stable,

causal transfer functions, the name H∞ is not appropriate for

this solution.

A. General Formulation

A common approach in robust control theory is to for-

mulate the problem using the generalised plant paradigm,

that is depicted in Fig. 2. Given a generalised plant P , the

control problem is to find a controller K that minimises the

performance outputs z, which are disturbed by disturbances

w, using controlled inputs u and measured outputs y.

Fig. 2: The generalised plant paradigm.

In [5], [15], finite time H∞ is discussed. A suboptimal

controller is found by solving the following minimax crite-

rion:

min
u

max
w

J (w(t), u(t), z(t), y(t)) , (13)

where:

J =
N−1∑
t=0

zT (t)z(t) − γ2wT (t)w(t), (14)

Using an observation made in [3], this cost functional can

be converted into a lifted domain cost functional:

J = zT z − γ2wT w. (15)

Optimal control problems are usually posed as constrained

optimisation problems. The constraints stem from the system

dynamics and from relations describing measured outputs.

Since in the lifted domain, the system dynamics are hidden

inside the Toeplitz matrices, the constraints consist of the

measured output relations only. These constraints can be

added to (15) using Lagrange multipliers (see, e.g., [6]).

Then, the solution that minimises the maximum disturbance

is found where the constrained cost functional has a saddle

point, i.e., where the Jacobian of the cost functional equals

zero.

B. R-ILC using a Generalised Plant Formulation

The objective of an ILC controller is to minimise the error

ek+1 using measured information of ek and fk. According

to Fig. 1, the error at trial k is as follows:{
ek = r − Jfk − Wipk

qk = Wofk,
(16)

Since the reference trajectory r is equal for each trial, the

error at trial k + 1 can be described as follows:⎧⎪⎨
⎪⎩

ek+1 = ek + Jfk + Wipk − Jfk+1 − Wipk+1

qk = Wofk

qk+1 = Wofk+1.

(17)

Furthermore, in norm optimal ILC, it is common to limit

the change of command signal between two subsequent

trials, i.e., by weighting fΔ = fk+1 − fk. We can add this

requirement to the generalised plant, using weighting matrix

R1/2 =
√

ρI , such that R = R1/2R1/2. Using the fact that

ek and fk are measured outputs, we can define the inputs

and outputs of the generalised plant as follows:

w =
[
pT

k pT
k+1 eT

k fT
k

]T
(18a)

u = fk+1 (18b)

z =
[
qT
k qT

k+1 eT
k+1 fT

Δ

]T
(18c)

y =
[
eT
k fT

k

]T
(18d)

Using (17), (18a), (18b), (18c), and (18d), the ILC control

problem can be stated using the following generalised plant:⎡
⎢⎢⎢⎢⎢⎢⎣

qk

qk+1

ek+1

fΔ

ek

fk

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 Wo 0
0 0 0 0 Wo

Wi −Wi I J −J
0 0 0 −R1/2 R1/2

0 0 I 0 0
0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

pk

pk+1

ek

fk

fk+1

⎤
⎥⎥⎥⎥⎦
(19)

We can now present the solution to the optimal ILC control

problem.

Proposition 4.1: Given the minimax criterion (13) with

cost functional (15) and generalised plant (19). Then, the

ILC controller that solves (13) has the structure of (6) with

learning filters:

Q =
(
JT QJ + R + S

)−1 (
JT QJ + R

)
(20a)

L =
(
JT QJ + R + S

)−1
JT Q, (20b)

with:

Q =
(
I − 1

2γ−2WiW
T
i

)−1
, and S = WT

o Wo. (21)

Proof: The minimax game is solved by looking for a

saddle point of (15), i.e., where its Jacobian equals zero.
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Substituting (19), with w and z according to (18a) and (18c),

in (15) gives the following unconstrained cost functional:

J = fT
k

(
WT

o Wo + R − γ2I
)
fk

− γ2
(
pT

k pk + pT
k+1pk+1 + eT

k ek

)
+ fT

k+1

(
WT

o Wo + R
)
fk+1 − 2fT

k Rfk+1

+ (Wipk − Wipk+1 + ek + Jfk − Jfk+1)
T

(Wipk − Wipk+1 + ek + Jfk − Jfk+1) .
(22)

The saddle point is achieved where the following partial

derivatives equal zero:

∂J
∂pk

=
(
WT

i Wi − γ2I
)
pk − WT

i Wipk+1

+ WT
i ek + WT

i Jfk − WT
i Jfk+1 = 0 (23a)

∂J
∂pk+1

=
(
WT

i Wi − γ2I
)
pk+1 − WT

i Wipk

− WT
i ek − WT

i Jfk + WT
i Jfk+1 = 0 (23b)

∂J
∂fk+1

= −JT Wipk + JT Wipk+1 −
(
JT J + R

)
fk

− JT ek +
(
JT J + R + WT

o Wo

)
fk+1 = 0.

(23c)

Note that we do not take ∂J
∂ek

and ∂J
∂fk

, since they are

measured outputs and, therefore, given. Adding (23a) to

(23b) yields that pk+1 = −pk. Substituting this in (23a)

gives us:

pk =
(
γ2 − 2WT

i Wi

)−1 (
WT

i ek + WT
i Jfk − WT

i Jfk+1

)
.

(24)

Finally, applying pk = −pk+1 to (23c), and substituting (24)

herein, yields:(
JT

(
I − 1

2γ−2WiW
T
i

)−1
J + R + WT

o Wo

)
fk+1 =

JT
(
I − 1

2γ−2WiW
T
i

)−1
(ek + Jfk) + Rfk,

(25)

from which (20a) and (20b) can be obtained.

Note that the structure of this controller is equivalent to

that of (10a) and (10b).

C. RMC of the R-ILC Controller

Like in H∞ feedback control, the R-ILC controller is

suboptimal, i.e., γ > γopt, where γopt is the induced 2-norm

of the closed loop system. The closed loop system N is

obtained by substituting fk+1 = Qfk + Lek into (19), and

is given by:[
qT
k qT

k+1 eT
k+1

]T = N
[
pT

k pT
k+1 eT

k fT
k

]T
, (26)

where:

N =

⎡
⎣ 0 0 0 Wo

0 0 WoL WoQ
Wi −Wi I − JL J(I −Q)

⎤
⎦ . (27)

Note that we have taken R = 0, since it does not contribute

to RMC, and removed fΔ from the closed loop system. The

suboptimal controller can approach the optimal solution by

iteratively lowering γ for as long as γ ≥ ‖N‖i2 and the

RMC condition of Proposition 3.1 is satisfied.

If for a given uncertainty model, no γ can be found such

that the R-ILC controller satisfies Proposition 3.1, a solution

to the tuning of R-ILC can be found by observing that:

WiΔWo = β−1WiΔβWo, (28)

i.e., by introducing a scaling factor β in the uncertainty

model. Although the i/o behaviour of WiΔWo does not

change by defining Wi → β−1Wi and Wo → βWo, the R-

ILC controller has obtained an additional tuning parameter.

Note that this β can be interpreted as a D-scaling factor, as

used in feedback μ-synthesis [20].

Substitution of Wi → β−1Wi and Wo → βWo in the

R-ILC controllers results in Q and S

Q = β2
(
β2 − 1

2γ−2WiW
T
i

)−1
, S = β2WT

o Wo. (29)

By dividing both Q and S by β2, we find

Q =
(
β2 − 1

2γ−2WiW
T
i

)−1
, S = WT

o Wo. (30)

Although for Wi = WA and Wo = I , no systematic tuning

guidelines for γ and β in R-ILC have been found yet, for

the case Wi = I and Wo = WA, we can exploit the fact that

Q is of the form q−1I , with q = β2 − 1
2γ−2 for our tuning.

With Q = q−1I , the R-ILC controller becomes:

L = (JT J + qWT
o Wo)−1JT , (31a)

Q = (JT J + qWT
o Wo)−1JT J. (31b)

Tuning of the R-ILC controllers boils down to the iteratively

lowering q for as long as the appropriate RMC condition is

satisfied. For a given value q, there always exists a β and

γmin such that ||N ||i2 < γmin and q = β2 − 1
2γ−2

min. Hence,

after tuning q there is no need to explicitly determine the

γmin.

V. SIMULATION EXAMPLE

In this Section, we illustrate the theory by means of a

simulation example with an uncertain system. In this exam-

ple, we compare the performance of the newly proposed R-

ILC controller with a Linear Quadratic (LQ)-ILC controller,

i.e., a norm optimal ILC controller with diagonal weighting

matrices Q, R, and S.

A. System Description

For this example, we consider a model of the two-mass

system used in [23]. The continuous time dynamics of this

system are governed by the following transfer function:

G(s) =
ds + k

m1m2s4 + (m1 + m2)ds3 + (m1 + m2)ks2
,

(32)

where m1 = 2 · 10−4, m2 = 1.6 · 10−4, d = 5.66 · 10−4,

and k = 9.8. Uncertainty is introduced by perturbing the

values d and k between 95% and 105% of their nominal

values. A discrete time equivalent of this model is obtained

by using a ’zero-order-hold’ approximation with a sampling
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Fig. 3: The impulse response of the uncertain system Jp.

frequency of 1kHz. Since this system is marginally stable, it

is controlled using feedback with the following controller:

K(s) = 0.2

(
1

2π·3s + 1
) (

1
(2π·52)2 s2 + 0.02

2π·52s + 1
)

(
1

2π·20s + 1
) (

1
(2π·52)2 s2 + 2

2π·52s + 1
) , (33)

which is implemented in discrete time using a Tustin ap-

proximation with a prewarp frequency of 52Hz. In case we

use feedback control in conjunction with ILC, the process

sensitivity is the relevant transfer function for ILC:

J(z) = (I + G(z)K(z))−1
G(z). (34)

The nominal system model is obtained by taking the

nominal values for k and d. The additive uncertainty bound

of the process sensitivity is obtained by taking a Tustin

approximation of the following continuous time bound:

WA(s) = 5 · 10−6 ·
(

1
(2π·0.2)2 s2 + 2

2π·0.2s + 1
)

(
1

(2π·5.2)2 s2 + 0.6
2π·5.2s + 1

) ·
(

1
(2π·51)2 s2 + 1.1

2π·51s + 1
) (

1
(2π·54.5)2 s2 + 1.1

(2π·54.5)s + 1
)

(
1

(2π·51)2 s2 + 0.04
2π·51s + 1

) (
1

(2π·54.5)2 s2 + 0.042
(2π·54.5)s + 1

) .

(35)

The lifted system description of (4) is obtained by defining

J , Wi and Wo as given in (3). The perturbed system’s

impulse response and the defined trajectory for ILC (which

is in fact the reference trajectory filtered by the sensitivity

function (I + G(z)K(z))−1
) are depicted in Fig. 3 and Fig.

4, respectively.

B. RMC of a R-ILC Controlled System

With the system described, we can design the ILC con-

trollers, such that the ILC algorithm is RMC.

For the LQ-optimal controller, Proposition 3.1 gives a suf-

ficient condition for RMC. The ILC controller with learning

filters (10a), (10b), with Q = I , R = 0, and S = 0.7 · I ,

guarantees RMC.

For the R-ILC controller, we represent our uncertainty

by choosing Wi = I and Wo = WA. With this choice

of uncertainty, no γ can be found such that the R-ILC

controller satisfies the conditions of Proposition 3.1. We

therefore introduce the β-factor as argued in Section IV-C

0 0.1 0.2 0.3 0.4 0.5
-30

-20

-10

0

10

20

30

Trajectory for ILC
Reference trajectory

R
ef

er
en

ce
(m

)

Time (s)

Fig. 4: The applied reference trajectory r.

to achieve RMC. Then, tuning the controller boils down to

choosing q. It turns out that choosing q = 1250 makes the

R-ILC controller RMC.

Fig. 5 shows that in both situations the 2-norm of the

command signal converges monotonically, and Fig. 6 depicts

the 2-norm of the error for both ILC controllers. These results

are based on simulations with 25 samples of Jp ∈ Π. It can

be concluded that both controllers achieve RMC, however the

R-ILC has a converged error whose norm is approximately

10 times smaller than that of the LQ-ILC controller. The

nonzero asymptotic value of ‖fk−f∞‖2 is due to numerical

errors.

It can be reasoned why the R-ILC controller outperforms

the LQ-ILC controllers by considering the power spectral

density of the error at trial k = 10, see Fig. 7. In LQ-ILC,

the Q-filter has a low pass characteristic that cuts off all

singular values smaller than a certain threshold [8]. Because

the uncertainty of our example is associated with large

singular values, the cut off value of the Q-filter is relatively

high. The Q-filter of the R-ILC controller, however, cuts off

singular values that are associated with singular vectors that

are uncertain, independent of the magnitude of the singular

value itself. As a result, R-ILC only gives robustness where

it is required.

VI. CONCLUSIONS

In this paper, we have presented a novel Iterative Learn-

ing Control (ILC) strategy that is robust against model

0 1 2 3 4 5 6 7 8 9 10
10−15

10−10

10−5

100

105

LQ-ILC: S = 0.7 · I
R-ILC: q = 1250

‖f
k
−

f ∞
‖ 2

Trial (k)

Fig. 5: Convergence of the command signal for both the R-

ILC and the LQ-ILC controller.
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Fig. 6: Convergence of the error for both the R-ILC and the

LQ-ILC controller.
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LQ-ILC: Error at k = 10
R-ILC: Error at k = 10
Error at k = 1P
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(d

B
H

z
)

Frequency (Hz)

Fig. 7: Power spectral density of the error.

uncertainty, specified by a nominal model and an additive

uncertainty bound. The resulting controller is the result of an

optimisation over an induced norm, and acts on a finite-time

interval, exploits noncausal behaviour, and incorporates an

uncertainty model. An example has shown that the presented

robust ILC controller can outperform linear quadratic ILC

controllers, in terms of performance loss that is necessarily

sacrificed to obtain the required amount of robustness.
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